
MAI MULTE A MINHA OUTOMOTIU MIU
US010019283B2

(12) United States Patent
Yudanov et al .

(10) Patent No . : US 10 , 019 , 283 B2
(45) Date of Patent : Jul 10 , 2018

.
(54) PREDICTING A CONTEXT PORTION TO

MOVE BETWEEN A CONTEXT BUFFER
AND REGISTERS BASED ON CONTEXT
PORTIONS PREVIOUSLY USED BY AT
LEAST ONE OTHER THREAD

(58) Field of Classification Search
??? GO6F 9 / 461
See application file for complete search history .

(56) References Cited
U . S . PATENT DOCUMENTS

(71) Applicant : Advanced Micro Devices , Inc . ,
Sunnyvale , CA (US)

(72) Inventors : Dmitri Yudanov , Austin , TX (US) ;
Sergey Blagodurov , Bellevue , WA
(US) ; Arkaprava Basu , Austin , TX
(US) ; Sooraj Puthoor , Austin , TX
(US) ; Joseph L . Greathouse , Austin ,
TX (US)

*

*
*

*

@ (73) Assignee : Advanced Micro Devices , Inc . , Santa
Clara , CA (US)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 192 days .

6 , 205 , 543 B1 * 3 / 2001 Tremblay G06F 9 / 30043
712 / 228

6 , 233 , 599 B1 * 5 / 2001 Nation GO6F 9 / 30127
712 / 207

6 , 408 , 325 B1 * 6 / 2002 Shaylor GO6F 9 / 462
712 / 228

9 , 378 , 161 B1 * 6 / 2016 Dalal . GOOF 13 / 16
9 , 582 , 320 B2 * 2 / 2017 Holt . G06F 9 / 462
9 , 652 , 395 B2 * 5 / 2017 Mese . G06F 12 / 123

2003 / 0046521 A1 * 3 / 2003 Shoemaker G06F 9 / 3851
712 / 228

2005 / 0125802 A1 * 6 / 2005 Wang . GO6F 9 / 3009
718 / 108

2007 / 0022428 A1 * 1 / 2007 Yamasaki G06F 9 / 461
718 / 108

2013 / 0061239 A1 * 3 / 2013 Lahav G06F 9 / 461
718 / 108

2014 / 0189711 A1 * 7 / 2014 Luiz G06F 9 / 461
718 / 106

* cited by examiner
Primary Examiner — David J . Huisman
(57) ABSTRACT
A processing device includes a first memory that includes a
context buffer . The processing device also includes a pro
cessor core to execute threads based on context information
stored in registers of the processor core and a memory
controller to selectively move a subset of the context infor
mation between the context buffer and the registers based on
one or more latencies of the threads .

18 Claims , 5 Drawing Sheets

(21) Appl . No . : 14 / 746 , 601
(22) Filed : Jun . 22 , 2015

(65) Prior Publication Data
US 2016 / 0371082 A1 Dec . 22 , 2016

(51) Int . Ci .
G06F 9 / 46 (2006 . 01)
G06F 9 / 30 (2018 . 01)

(52) U . S . CI .
CPC GO6F 9 / 461 (2013 . 01) ; G06F 9 / 3013

(2013 . 01) ; G06F 9 / 30145 (2013 . 01)

500 505

CONTEXT
THREAD 1

CONTEXT
THREAD 4B
THREAD 5B
THREAD 3

.

THREAD 2
THREAD ZA
THREAD 5A

STALLED WAKE ACTIVE
ID 4
ID 5

PRE - EMPTED

. ID 3 IN

605 610

600

now U . S . Patent Jul . 10 , 2018 Sheet 1 of 5 US 10 , 019 , 283 B2

100

RAM 123 135 CORE 106 CORE 108 111

LOCAL CACHE LOCAL CACHE
110 MEMORY CONTROLLER

113

LOCAL CACHE LOCAL CACHE
112 CORE 105 CORE 107

- - - - - - - - - - - -

RAM 122
-

- - - - SHARED CACHE 115
FIG . 1

- - - -

MEMORY CONTROLLER 130
125

. - - - - - - - - - - - - - - - -

RAM 121 D RAM 120 125

200

U . S . Patent

CONTEXT THREAD 1 THREAD2 THREAD 3

| CONTEXT THREAD4 THREAD5

220

225 |

Jul . 10 , 2018

MAIN MEMORY 215

PROCESSOR CORE 205

BUFFER MEMORY 210

??? ?

Sheet 2 of 5

ACTIVE D1

STALLED WAKE D2 | X

235

PREEMPTED R ?
D4

TN1 | 245

D3
|

X + Y .

?

240 -

SCHEDULER 230
FIG . 2

US 10 , 019 , 283 B2

atent Jul . 10 , 2018 Sheet 3 of 5 US 10 . 019 , 283 B2

300 1305

??? CONTEXT
THREAD11
THREAD2
THREAD 3

CONTEXT
THREAD4
THREAD5 "

- - - -

FIG . 3

300 305

?? CONTEXT
THREAD1

“ THREAD2 "
THREAD4 ”

CONTEXT
THREAD3
“ THREAD 5 *

ACTIVE
ID 4

STALLED WAKE
D2 IX
TD1T

| PRE - EMPTED TR ?
ID3
D5°

= = = = = = = = - - - - - - - - - - -

400 405

FIG . 4

U . S . Patent atent Jul . 10 , 2018 Sheet 4 of 5 US 10 , 019 , 283 B2

500 - - 505

CONTEXT CONTEXT
THREAD 1 THREAD 4

THREAD 2 THREAD 5
510 Suu

THREAD 3

FIG . 5

500 505

| CONTEXT
THREAD 1

CONTEXT
THREAD 4B
THREAD 5B
THREAD 3 THREAD 2

THREAD 4A
THREAD 5A

ACTIVE STALLED WAKE
ID 2 X

PRE - EMPTED | R ?
ID 3 ID 4

ID 5
U 600 605

FIG . 6

U . S . Patent Jul . 10 , 2018 Sheet 5 of 5 US 10 , 019 , 283 B2

700

705

YES ACTIVE THREADS AVAILABLE
FOR SCHEDULING ?

NO
715

YES
REGISTER AVAILABLE ?

720 NO

MOVE CONTEXT INFORMATION FOR
STALLED THREAD FROM REGISTER TO

BUFFER

725

MOVE CONTEXT INFORMATION FOR
READY THREAD FROM BUFFER TO

REGISTER

710

SCHEDULE ACTIVE
THREAD

FIG . 7

US 10 , 019 , 283 B2

PREDICTING A CONTEXT PORTION TO
MOVE BETWEEN A CONTEXT BUFFER
AND REGISTERS BASED ON CONTEXT
PORTIONS PREVIOUSLY USED BY AT

LEAST ONE OTHER THREAD

FIG . 6 is a diagram depicting the contents of the registers
and the context buffer after movement of threads between
the registers and the context buffer according to some
embodiments .

FIG . 7 is a flow diagram of a method for moving context
information between registers and a context buffer according
to some embodiments .

5

BACKGROUND

10
Field of the Disclosure DETAILED DESCRIPTION
The present disclosure relates generally to processing 10

devices and , more particularly , scheduling pipelined instruc Pipeline stalling can be significantly reduced by allowing
tions in processing devices . more threads (or groups of threads) to send work into the

Description of the Related Art pipeline . Thus , one approach to reduce stalling is to increase
Processing devices such as central processing units 15 the number of thread contexts that are available for sched

(CPUs) , graphics processing units (GPUs) , or accelerated uling . However , this may not be possible due to constraints
processing units (APUs) implement pipelines so that opera on the number of thread contexts that can be scheduled , such
tions associated with multiple threads can be concurrently as area overhead or register file latency limitations . Stalling
executed in the pipeline . Contexts for each of the threads may also be reduced by selectively moving context infor
that are available for execution by the pipeline are stored in 20 mation for a thread from registers in a processor core of a
a set of registers that are implemented in the processing processing device to a context buffer based on a latency
device . The processing device can hide the latency of associated with the thread . For example , full or partial
individual threads by switching between the threads that are context information for the thread can be moved from a set
available for execution . For example , a memory (such as a of architectural registers to the context buffer in response to
RAM) may take several cycles to return information from 25 a predicted latency of a memory access request from the
the memory to a first thread . The processing device may thread exceeding a threshold . By moving context informa
therefore launch one or more other threads or perform t ion from the architectural registers to this context buffer ,
operations associated with previously launched threads more space is made available for other contexts .
while waiting for the information requested by the first Full or partial context information for one or more threads
thread to be returned to the processing device . However , 30 may also be selectively moved from the context buffer to the
space and cost considerations limit the number of registers architectural registers . For example , the context information
in the processing device , which in turn limits the number of for a thread can be moved from the context buffer to the set
contexts that can be stored for pending threads , and therefore of architectural registers in response to context information
ultimately limits the number of threads that are available for for another thread being moved from the architectural reg
execution . At least in part because of these constraints , the 35 isters to the context buffer or in response to architectural
pipelines in processing devices frequently stall (i . e . , tempo registers being freed by completion of another thread . Pre
rarily stop executing any instructions) because all of the diction mechanisms may be used to decide whether to move
threads that are available for execution are waiting for all or some of the context information for the thread . Context
previous operations to complete . Some applications stall for information may be selectively moved from the context
more than 90 % of the time for reasons including limits on 40 buffer to the registers based on memory access properties of
the number of available threads , limits on the number of the thread , e . g . , context information for a group of threads
thread groupings that include multiple threads that run the that access the same region in a memory may be selectively
same instruction at the same time , high memory access moved to the registers to facilitate coalescing the memory
latencies , limited memory bandwidth , long execution times accesses by the group of threads . In some embodiments ,
for operations such as transcendental floating - point opera - 45 selective movement of the context information between the
tions , and the like . registers and the context buffer may be controlled by hard

ware , firmware , or an operating system so that the full
BRIEF DESCRIPTION OF THE DRAWINGS context information for threads associated with individual

software applications can be selectively moved between the
The present disclosure may be better understood , and its 50 context buffer and the registers in the processor core .

numerous features and advantages made apparent to those FIG . 1 is a block diagram of a processing system 100 in
skilled in the art by referencing the accompanying drawings . accordance with some embodiments . The processing system
The use of the same reference symbols in different drawings 100 includes multiple processor cores 105 , 106 , 107 , 108
indicates similar or identical items . that are referred to collectively as the " processor cores

FIG . 1 is a block diagram of a processing system in 55 105 - 108 . ” The processor cores 105 - 108 may also be referred
accordance with some embodiments . to using other terms such as processing device , processing

FIG . 2 is a block diagram of a portion of the processing element , compute unit , and the like . The processor cores
system of FIG . 1 according to some embodiments . 105 - 108 can independently execute instructions concur

FIG . 3 is a diagram depicting the contents of registers and rently or in parallel . The processing system 100 shown in
a context buffer of the processing system of FIG . 1 accord - 60 FIG . 1 includes four processor cores 105 - 108 . However ,
ing to some embodiments . some embodiments of the processing system 100 may

FIG . 4 is a diagram depicting the contents of the registers include more or fewer than the four processor cores 105 - 108
and the context buffer of FIG . 3 after movement of threads shown in FIG . 1 . Some embodiments of the processing
between the registers and the context buffer according to system 100 may be formed on a single substrate , e . g . , as a
some embodiments . 65 system - on - a - chip (SOC) . The processing system 100 may be

FIG . 5 is a diagram depicting the contents of registers and used to implement a central processing unit (CPU) , a graph
a context buffer according to some embodiments . ics processing unit (GPU) , an accelerated processing unit

US 10 , 019 , 283 B2

(APU) that integrates CPU and GPU functionality in a single bandwidth and a lower memory access latency than the
chip , a field programmable gate array (FPGA) , or other individual RAM 120 , 122 . Memory access latencies may be
device . predetermined (e . g . , based on the specifications of the cor

The processing system 100 implements caching of data responding memories) or they may be measured by deter
and instructions , and some embodiments of the processing 5 mining the time required to write information to the memory
system 100 may therefore implement a hierarchical cache and subsequently read the information from the memory .
system . Some embodiments of the processing system 100 The individual RAM 120 - 123 may also have different
include local caches 110 , 111 , 112 , 113 that are referred to memory access protocols , different levels of memory
collectively as the “ local caches 110 - 113 . ” Each of the request concurrency , different row lengths (e . g . , as measured
processor cores 105 - 108 is associated with a corresponding 10 in bytes per row) , and the like . Some embodiments of the
one of the local caches 110 - 113 . For example , the local processing system 100 may also include other types of
caches 110 - 113 may be L1 caches for caching instructions or memory such as nonvolatile RAM , flash memory , and the
data that may be accessed by one or more of the processor like .
cores 105 - 108 . Some embodiments of the local caches The processor cores 105 - 108 execute instructions associ
110 - 113 may be subdivided into an instruction cache and a 15 ated with one or more threads based on context information
data cache . The processing system 100 also includes a stored in registers of the processor cores 105 - 108 . The
shared cache 115 that is shared by the processor cores context information for a thread may include information
105 - 108 and the local caches 110 - 113 . The shared cache 115 such as a location of an instruction in a program , pointers to
may be referred to as a last level cache (LLC) if it is the a page table , data retrieved from memory , and the like . Each
highest level cache in the cache hierarchy implemented by 20 processor core 105 - 108 has a limited number of registers
the processing system 100 . Some embodiments of the shared available to store context information . The processor cores
cache 115 are implemented as an L2 cache . The cache 105 - 108 may therefore stall if all of the threads represented
hierarchy implemented by the processing system 100 is not by the context information stored in the registers of the
limited to the two - level cache hierarchy shown in FIG . 1 . processor cores 105 - 108 are waiting for instructions to
Some embodiments of the hierarchical cache system include 25 complete . Context information for the instructions that have
additional cache levels such as an L3 cache , an L4 cache , or the highest latency (or are expected to complete after the
other cache depending on the number of levels in the cache longest time interval) may be swapped out of the registers so
hierarchy . that the processor cores 105 - 108 can initiate instructions

The processing system 100 also includes a plurality of associated with other threads while waiting for the high
individual random access memories (RAM) 120 , 121 , 122 , 30 latency instructions to complete . Context information for the
123 , which may be referred to collectively as “ the individual high latency threads may therefore be moved from the
RAM 120 - 123 . " Although four individual RAM 120 - 123 are registers of the processor cores 105 - 108 to context buffers ,
shown in FIG . 1 , some embodiments of the processing which may be implemented in the individual RAM 121 , 123
system 100 may include more or fewer individual RAM or other memory associated with the processing system 100 .
120 - 123 . Some embodiments of the individual RAM 120 - 35 Context information for one or more threads that are ready
123 are used to implement a heterogeneous RAM 125 . For for execution may then be moved from the context buffers
example , the plurality of individual RAM 120 - 123 can share to the available registers in the processor cores 105 - 108 .
a physical address space associated with the heterogeneous In some embodiments , memory controllers 130 , 135
RAM 125 so that memory locations in the individual RAM control movement of the context information between the
120 - 123 are accessed using a continuous set of physical 40 registers and the context buffers . The memory controllers
addresses . The individual RAM 120 - 103 may therefore be 130 , 135 may also control movement of the context infor
transparent to the operating system of the processing system mation and other data between the individual RAM 120
100 , e . g . , the operating system may be unaware that the 123 , the shared cache 115 , and the local caches 110 - 113 . The
heterogeneous RAM 125 is made up of more than one memory controllers 130 , 135 may be implemented as hard
individual RAM 120 - 123 . In some embodiments , the physi - 45 ware , firmware , or as part of the operating system of the
cal address space of the heterogeneous RAM 125 may be processing system 100 . The memory controllers 130 , 135
mapped to one or more virtual address spaces . may therefore move full or partial context information for

The individual RAM 120 - 123 may have different memory each thread between the registers and the context buffers
access characteristics . Some embodiments of the individual dynamically , e . g . , at run time based on the current state of
RAM 120 , 122 may be implemented using dynamic RAM 50 the processing system 100 . For example , the memory con
(DRAM) that can be accessed at a first memory access trollers 130 , 135 may move full or partial context informa
bandwidth with a first memory access latency . For example , tion between the registers and the context buffers in response
the individual RAM 120 , 122 may be implemented as to one or more threads stalling were in response to one or
double data rate type - 3 synchronous DRAM (DDR3 more threads completing execution . This is in contrast to
SDRAM) . Some embodiments of the individual RAM 121 , 55 conventional register management , such as spill - and - fill
123 may be implemented as stacked DRAM that is formed techniques that are implemented in the software that defines
of multiple individual memory die that are stacked on top of the instructions executed by the processor cores 105 - 108 for
each other and interconnected with other elements in the each thread .
processing system 100 by an interposer , a multi - chip module Conventional spill - and - fill techniques encode specific
(MCM) , or other relatively high bandwidth memory inter - 60 instructions in the software for moving predetermined por
connection . Thus , the individual RAM 121 , 123 can be tions of the context information into and out of the registers
accessed at a second memory access bandwidth with a at predetermined points in the program flow . Consequently ,
second memory access latency . The second memory access the conventional spill - and - fill techniques cannot dynami
bandwidth and the second memory access latency may differ cally move context information at run time based on the
from the first memory access bandwidth and the first 65 current state of the processing system 100 . Furthermore , in
memory access latency , respectively . In some embodiments , order for a processor core , such as the processor core 105 ,
the individual RAM 121 , 123 have a higher memory access to execute an instruction associated with a thread , context

US 10 , 019 , 283 B2

information for the thread must be available in a register of prior to moving the context information from the context
the processor core 105 . Thus , conventional spill - and - fill buffer 225 to the registers 220 so that the thread may be
techniques cannot remove a complete context of a thread scheduled for execution in the processor core 205 .
because the thread cannot remove all of its own context Some embodiments of the buffer memory 210 have
information from the registers in the processor core 105 , 5 different characteristics than the main memory 215 . For
whereas some embodiments of the memory controllers 130 , example , the buffer memory 210 may be implemented using
135 can transfer complete context information for a thread a different process technology than the main memory 215 , a
from the registers to the context buffer because the memory higher density of memory elements than the main memory
controllers 130 , 135 are implemented as hardware , firm - 215 , or it may support a higher bandwidth interconnection
ware , or as part of the operating system of the processing 10 than the main memory 215 . The memory access speed of the
system 100 . As used herein , the term " complete context buffer memory 210 may be higher than the memory access
information ” is understood to refer to all of the context speed of the main memory 215 , and so the memory access
information associated with a thread including context infor - latency of the buffer memory 210 may be lower than the
mation that is required to execute instructions associated memory access latency of the main memory 215 . The
with the thread . 15 processor core 205 may be able to access information in the

FIG . 2 is a block diagram of a portion 200 of a processing registers 220 faster than it can access information in the
system according to some embodiments . The portion 200 buffer memory 210 , but the processor core 205 may also be
may be implemented in some embodiments of the process - able to access information in the buffer 210 faster than it can
ing system 100 shown in FIG . 1 . The portion 200 includes access information in the main memory 215 . As discussed
a processor core 205 that is connected to a buffer memory 20 herein , the buffer memory 210 may be implemented as
210 , and a main memory 215 . The processor core 205 , buffer stacked DRAM and the main memory 215 may be imple
memory 210 , and main memory 215 in the embodiment mented as DDR3 DRAM .
shown in FIG . 2 are connected so that information is passed A scheduler 230 is used to schedule threads in the
between the processor core 205 and the main memory 215 processor core 205 based on the context information in the
via the buffer memory 210 . However , in some embodiments 25 registers 220 . Although the scheduler 230 is depicted as an
the processor core 205 , buffer memory 210 , and main entity separate from the processor core 205 , some embodi
memory 215 may be connected so that information can be ments of the scheduler 230 may be implemented in the
passed directly between the processor core 205 and either processor core 205 . The scheduler 230 may be implemented
the buffer memory 210 or the main memory 215 . The in some embodiments of processor cores 105 - 108 or the
processor core 205 , buffer memory 210 , or main memory 30 memory controllers 130 , 135 . The scheduler 230 stores
215 may be used to implement some embodiments of the information indicating identifiers of threads that are ready to
processor cores 105 - 108 , the stacked DRAM 121 , 123 , or be scheduled for execution (active threads) in an active list
the DRAM 120 , 122 shown in FIG . 1 . 235 . For example , the active list 235 includes an identifier

The processor core 205 implements a set of registers 220 (ID 1) of a first thread because the context information
to store context information for one or more threads that can 35 (Thread 1) for the first thread is stored in the registers 220
be executed by the processor core 205 . For example , the and the first thread is ready for execution .
registers 220 include context information for three threads The scheduler 230 stores information associated with
(Thread 1 , Thread 2 , Thread 3) so that instructions in these stalled threads (e . g . , threads that are waiting results of
threads are available for execution by the processor core executed instructions) in a stall list 240 . For example , the
205 . The context information stored in the registers 220 may 40 stall list 240 include identifiers (ID 2 , ID 3) of second and
include complete contexts for the threads or partial contexts third threads that have context information (Thread 2 and
that include the portions of the complete contexts that are Thread 3) stored in the registers 220 , but which have stalled .
needed to execute the current instruction in the thread . The stall list 240 also includes information (WAKE) indi
Although the context information in the registers 220 is cating the wake - up time for the corresponding thread . The
associated with individual threads in this example , other 45 wake - up time may be determined based on the latency or
embodiments of the registers 220 may store context infor - expected duration of a time interval until completion of the
mation associated with groups of threads that may be instruction . For example , the wake - up time of the second
referred to as wavefronts , ways , workgroups , and the like . thread that encountered an L1 miss (e . g . , to the local caches
The registers 220 may represent architectural registers or 110 - 113 shown in FIG . 1) may be set to X , which is the
physical registers . 50 expected memory operation return time from an L2 cache hit

The buffer memory 210 implements a context buffer 225 (e . g . , a hit in the shared cache 115 shown in FIG . 1) . For
to store context information for one or more threads such as another example , the wake - up time of the third thread that
Thread 4 and Thread 5 . Threads cannot be scheduled for encountered an L2 miss may be set to X + Y , which is the
execution in the processor core 205 directly out of the expected memory operation return time to access the main
context buffer 225 . Context information is therefore moved 55 memory (e . g . , the individual RAM 120 - 123 shown in FIG .
between the context buffer 225 and the registers 220 . For 1) . The scheduler 230 determines the wake - up times for
example , some or all of the context information is moved threads based on information received from the processor
from the context buffer 225 to one or more of the registers c ore 205 , such as information indicating cache misses .
220 prior to scheduling the corresponding thread for execu The scheduler 230 also maintains information indicating
tion in the processor core 205 . Context information can also 60 threads that have context information stored in the context
be moved to the context buffer 225 from the registers 220 or buffer 225 . For example , a preempted list 245 includes
from the main memory 215 . For example , context informa - identifiers of threads (ID 4 , ID 5) that have context infor
tion for a thread may be moved from the registers 220 to the mation stored in the context buffer 225 . The preempted list
context buffer 225 in response to the thread stalling in the 245 also includes information indicating whether the pre
processor core 205 . For another example , context informa - 65 empted threads are ready for execution , e . g . , because an
tion for a thread may be moved from the main memory 215 instruction such as a memory access request or transcen
to the context buffer 225 to free up space in the registers 220 dental floating - point operation has completed . For example ,

US 10 , 019 , 283 B2

the preempted list 245 indicates that the fourth thread (ID 4) registers 220 if complete context information is stored for
is ready (Y) for execution but the fifth thread (ID 5) is not each thread . For example , if the registers 220 include a
yet ready (N) for execution . Context information for the sufficient number of registers to store complete context
preempted threads that are ready for execution can be moved information for 10 threads , the same set of registers 220 can
from the context buffer 225 to the registers 220 so that they 5 store partial context information for 20 threads if the partial
may be scheduled for execution in the processor core 205 . context information includes half of the complete context

Full or partial context information is moved between the information for the corresponding threads . Thus , reducing
registers 220 and the context buffer 225 based on informa - the fraction of the complete context information stored in the
tion stored in the active list 235 , the stall list 240 , or the registers 220 increases the number of threads that are
preempted list 245 . For example , as long as there is at least 10 available for scheduling by the scheduler 230 for execution
one thread identifier in the active list 235 , indicating that at by the processor core 205 . Virtual or architectural register to
least one thread is available for scheduling on the processor physical register translations may be used to support the use
core 205 , the scheduler 230 is able to schedule threads for of partial context information in the registers 220 . For
execution . However , if there are no thread identifiers in the example , translation may be performed by replacing instruc
active list 235 , indicating that all of the threads that have 15 tion stream operands in the instruction buffer for data
context information in the registers 220 have stalled , the parallel programs with repetitive patterns of memory access .
scheduler 230 checks the preempted list 245 for any pre Some embodiments of the scheduler 230 are configured to
empted threads that have become ready for execution . If one select groups of threads for execution in the processor core
or more preempted threads are ready for execution , the 205 based upon memory access patterns associated with the
scheduler 230 instructs the processor core 205 to move one 20 threads in the group . For example , threads may be allocated
or more threads from the registers 220 to the context buffer to a group if the threads are accessing the same portion of the
225 . The stalled threads may be selected for preemption main memory 215 , such as the same page , block , row , or
based on the wake - up time indicated in the stall list 240 . For other subset of the main memory 215 . The scheduler 230
example , the scheduler 230 may instruct the processor core may then instruct the processor core 205 to move context
205 to move the thread with the highest latency or latest 25 information for the threads in the group to the registers 220 .
wake - up time from the register 220 to the context buffer 225 . The processor core 205 may also move context information
The scheduler 230 then instructs the processor core 205 to for other threads out of the registers 220 and into the context
move one or more ready preempted threads from the context buffer 225 to make room for the group context information .
buffer 225 to the registers 220 so that the scheduler 230 can The group of threads may then be executed by the processor
schedule the ready preempted threads for execution by the 30 205 to reduce the number of memory access requests to the
processor core 205 . main memory 215 during execution of the coalesced group

The processor core 205 may also selectively move full or of threads . Coalescing the threads into a group in this
partial context information for a thread from the context manner may reduce collisions with requests to the main
buffer 225 to the registers 220 in response to events detected memory 215 from other threads . Threads may also be
by the processor core 205 . For example , the processor core 35 coalesced into a group based the applications that generated
205 can selectively move context information for a thread the threads or priorities of the threads . For example , threads
from the context buffer 225 to the registers 220 in response may be coalesced to provide preferential access to applica
to context information for another thread being moved from tions or kernels that are given higher priority at runtime .
the registers 220 to the context buffer 225 . The processor FIG . 3 is a diagram depicting the contents of registers 300
core 205 may also move context information from the 40 and a context buffer 305 according to some embodiments .
context buffer 225 to the registers 220 in response to one or The registers 300 and the context buffer 305 may correspond
more of the registers 220 being freed by completion of a to some embodiments of the register 220 and the context
thread . buffer 225 shown in FIG . 2 . The registers 300 include
Some embodiments of the scheduler 230 are configured to context information for Thread 1 , Thread 2 , and Thread 3 .

use prediction techniques to determine the portion of the 45 The context buffer 305 includes context information for
context information that is to be moved between the regis - Thread 4 and Thread 5 . Thus , a scheduler (such as the
ters 220 and the context buffer 225 . For example , a predic - scheduler 230 shown in FIG . 2) can schedule Thread 1 ,
tion algorithm may be used to determine a subset of the Thread 2 , and Thread 3 out of the registers 300 for execution
context information that needs to be moved from the context by a processor core (such as the processor core 205 shown
buffer 225 to the registers 220 so that the corresponding 50 in FIG . 2) but the scheduler is not able to schedule Thread
thread can be scheduled for execution on the processor core 4 and Thread 5 out of the context buffer 305 . In the
205 . The prediction algorithm can monitor the behavior of illustrated embodiment , the threads available for execution
context information previously utilized by other threads to in the processor core have stalled . The context information
build an average time series profile of the context informa - for Thread 3 is selected to be moved from the registers 300
tion that was used by the other threads during execution . The 55 to the context buffer 305 based on a latency of the pending
threads used by the prediction algorithm may be identified or (stalled) instruction associated with the thread , as indicated
grouped by application type , method , kernel , or other char - by the arrow 310 . Thread 4 is ready for execution and its
acteristics . Some embodiments of the prediction algorithm context information is selected to be moved from the context
may use a hashed version (or fingerprint) of the context buffer 305 to the registers 300 , as indicated by the arrow
information to determine if the required portions of the 60 315 . The context information for Thread 4 may be moved
context information are available in the registers 220 or the from the context buffer 305 to the registers 300 in response
context buffer 225 . to moving the context information for Thread 3 from the
Moving partial context information from the context registers 300 to the context buffer 305 .

buffer 225 to the registers 220 conserves space in the FIG . 4 is a diagram depicting the contents of the registers
registers 220 and may allow context information for a larger 65 300 and the context buffer 305 after movement of threads
number of threads to be stored in the registers 220 , relative between the registers 300 and the context buffer 305 accord
to the number of threads that can be accommodated in the ing to some embodiments . The context information for

US 10 , 019 , 283 B2

Thread 3 has been moved out of the registers 300 and is now FIG . 6 is a diagram depicting the contents of the registers
stored in the context buffer 305 . The context information for 500 and the context buffer 505 after movement of threads
Thread 4 has been moved out of the context buffer 305 and between the registers 500 and the context buffer 505 accord
is now stored in the registers 300 . The scheduler may ing to some embodiments . The complete context informa
therefore schedule Thread 4 out of the registers 305 . Thread 5 tion for Thread 3 has been moved out of the registers 500
3 is no longer available for scheduling while it awaits and is now stored in the context buffer 505 . Partial context
completion of the instruction operation that caused it to stall . information for Thread 4 (referred to herein as Thread 4A)

FIG . 4 also illustrates the state of an active list 400 , a stall has been moved out of the context buffer 505 and is now
list 405 , and a preempted list 410 that may be maintained by stored in the registers 500 . The other portion of the context
the scheduler , as discussed herein with regard to FIG . 2 . The 10 information (Thread 4B) remains in the context buffer 505 .
active list 400 includes an identifier (ID 4) of Thread 4 to Partial context information for Thread 5 (referred to herein
indicate that Thread 4 is ready to be scheduled for execution as Thread 5A) has also been moved out of the context buffer
in the processor core . The stall list 405 includes identifiers 505 and is now stored in the registers 500 . The other portion
(ID 1 , ID 2) of Thread 1 and Thread 2 indicating that these of the context information (Thread 5B) remains in the
threads have stalled . The stall list 405 also includes infor - 15 context buffer 505 . The scheduler may therefore schedule
mation indicating the expected or predicted wake - up times Thread 4 and Thread 5 out of the registers 505 using the
(Z , X) of Thread 1 and Thread 2 , respectively . As discussed partial context information Thread 4A or Thread 5A .
herein , the wake - up times may be predicted or estimated FIG . 6 also illustrates the state of an active list 600 , a stall
based on latencies of the stalled instructions for Thread 1 list 605 , and a preempted list 610 that may be maintained by
and Thread 2 . The preempted list 410 includes identifiers (ID 20 the scheduler , as discussed herein with regard to FIG . 2 . The
3 , ID 5) of Thread 3 and Thread 5 indicating that the context active list 600 includes identifiers (ID 4 , ID 5) of Thread 4
information for these threads is stored in the context buffer and Thread 5 to indicate that Thread 4 and Thread 5 are
305 . The preempted list 410 also includes information ready to be scheduled for execution in the processor core .
indicating whether the threads are ready for execution . In the The stall list 605 includes identifiers (ID 1 , ID 2) of Thread
illustrated embodiment , neither Thread 3 nor Thread 5 is 25 1 and Thread 2 indicating that these threads have stalled . The
ready for execution . stall list 605 also includes information indicating the

FIG . 5 is a diagram depicting the contents of registers 500 expected or predicted wake - up times (Z , X) of Thread 1 and
and a context buffer 505 according to some embodiments . Thread 2 , respectively . As discussed herein , the wake - up
The registers 500 and the context buffer 505 may correspond times may be predicted or estimated based on latencies of
to some embodiments of the register 220 and the context 30 the stalled instructions for Thread 1 and Thread 2 . The
buffer 225 shown in FIG . 2 . The registers 500 include preempted list 610 includes an identifier (ID 3) of Thread 3
context information for Thread 1 , Thread 2 , and Thread 3 . indicating that the context information for Thread 3 is stored
The context buffer 505 includes context information for in the context buffer 505 . The preempted list 610 also
Thread 4 and Thread 5 . Thus , a scheduler (such as the includes information indicating whether the threads are
scheduler 230 shown in FIG . 2) can schedule Thread 1 , 35 ready for execution . In the illustrated embodiment , Thread 3
Thread 2 , and Thread 3 out of the registers 300 for execution is not ready for execution .
by a processor core (such as the processor core 205 shown FIG . 7 is a flow diagram of a method 700 for moving
in FIG . 2) but the scheduler is not able to schedule Thread context information between registers and a context buffer
4 and Thread 5 out of the context buffer 305 . The amount of according to some embodiments . The method 700 may be
context information stored in the registers 500 or the context 40 implemented in some embodiments of the processing system
buffer 505 is indicated by the size of the corresponding box . 100 shown in FIG . 1 or the portion 200 of the processing

In the illustrated embodiment , the threads available for system shown in FIG . 2 . At block 705 , a scheduler deter
execution in the processor core have stalled and the sched - mines whether active threads are available for scheduling for
uler determines that Thread 4 and Thread 5 can be executed execution by a processor core . As discussed herein , the
successfully using less than all of the context information for 45 scheduler may determine whether the active threads are
Thread 4 and Thread 5 . For example , as discussed herein , the available using an active list maintained by the scheduler . If
scheduler may implement a prediction algorithm that pre - one or more active threads are available for scheduling , the
dicts the portion of the context information that is needed for scheduler schedules one of the available active threads for
successful execution of the threads . In order to make room execution by the processor core at block 710 . If no active
in the registers 500 , the complete context information for 50 threads are available for scheduling , the scheduler deter
Thread 3 is selected to be moved from the registers 500 to mines (at decision block 715) whether one or more registers
the context buffer 505 based on a latency of the pending are available to store context information in the processor
(stalled) instruction associated with the thread , as indicated core .
by the arrow 510 . Thread 4 and Thread 5 are ready for If the scheduler determines that one or more registers are
execution and partial context information is selected to be 55 available , context information for a thread that is ready to
moved from the context buffer 505 to the registers 500 , as execute is moved from the context buffer to the available
indicated by the arrows 515 , 520 . The partial context infor - register or registers at block 720 . If no registers (or an
mation for Thread 4 and Thread 5 may be moved from the insufficient number of registers) are available for storing
context buffer 505 to the registers 500 in response to moving context information , context information for one or more
the context information for Thread 3 from the registers 500 60 stalled threads are moved from the registers to the context
to the context buffer 505 . Although the complete context buffer at block 725 . One or more of the stalled threads may
information for Thread 3 is moved out of the registers 500 , be selected for preemption based upon a latency or a
some embodiments may move partial context information wake - up time associated with the thread . In response to
for Thread 3 out of the registers 500 . For example , partial moving the context information for the stalled thread or
context information for Thread 3 can be moved out of the 65 threads to the context buffer , context information for the
registers 500 to make room for partial context information ready thread is moved from the context buffer to the avail
for one other thread , such as Thread 4 or Thread 5 . able register or registers at block 720 . As discussed herein ,

US 10 , 019 , 283 B2
11

the context information may include a complete context for thread , wherein the portion includes less than all of the
the thread or may be limited to partial context information first context for the first thread , and wherein the portion
for the thread . Once the full or partial context information of the first context is predicted based on portions of
for the ready thread has been moved to the registers , the contexts previously used by one or more other threads .
scheduler schedules the active thread for execution by the 5 2 . The apparatus of claim 1 , wherein the memory con
processor core at block 710 . troller circuit is to selectively move the portion of the first

In some embodiments , certain aspects of the techniques context from the registers to the context buffer in response
described above may implemented by one or more proces - to a latency of an instruction associated with the first thread
sors of a processing system executing software . The soft exceeding a first threshold .
ware comprises one or more sets of executable instructions 10 3 . The apparatus of claim 2 , wherein the memory con
stored or otherwise tangibly embodied on a non - transitory troller circuit is to selectively move the portion of the first
computer readable storage medium . The software can context from the registers to the context buffer in response
include the instructions and certain data that , when executed to a latency of a memory access request issued by the first
by the one or more processors , manipulate the one or more thread exceeding the first threshold .
processors to perform one or more aspects of the techniques 15 4 . The apparatus of claim 2 , wherein the memory con
described above . The non - transitory computer readable stor - troller circuit is to selectively move a portion of a second
age medium can include , for example , a magnetic or optical context for a second thread from the context buffer to the
disk storage device , solid state storage devices such as Flash registers .
memory , a cache , random access memory (RAM) or other 5 . The apparatus of claim 4 , wherein the memory con
non - volatile memory device or devices , and the like . The 20 troller circuit is to selectively move the portion of the second
executable instructions stored on the non - transitory com - context from the context buffer to the registers in response
puter readable storage medium may be in source code , to at least one of context information for another thread
assembly language code , object code , or other instruction being moved from the registers to the context buffer or a
format that is interpreted or otherwise executable by one or subset of the registers being freed by completion of at least
more processors . 25 one other thread .

Note that not all of the activities or elements described 6 . The apparatus of claim 1 , wherein the memory con
above in the general description are required , that a portion troller circuit is to selectively move a complete context for
of a specific activity or device may not be required , and that a third thread between the context buffer and the registers .
one or more further activities may be performed , or elements 7 . The apparatus of claim 1 , further comprising :
included , in addition to those described . Still further , the 30 a second memory , wherein the first memory has at least
order in which activities are listed are not necessarily the one of a higher memory access bandwidth and a lower
order in which they are performed . Also , the concepts have memory access latency than the second memory , and
been described with reference to specific embodiments . wherein the memory controller circuit is to selectively
However , one of ordinary skill in the art appreciates that move a portion of a third context stored in the second
various modifications and changes can be made without 35 memory to the context buffer in the first memory .
departing from the scope of the present disclosure as set 8 . The apparatus of claim 7 , wherein the memory con
forth in the claims below . Accordingly , the specification and troller circuit is to selectively move context information for
figures are to be regarded in an illustrative rather than a a thread group including more than one thread in response
restrictive sense , and all such modifications are intended to to determining that the threads in the thread group access a
be included within the scope of the present disclosure . 40 region in the second memory .

Benefits , other advantages , and solutions to problems 9 . A method , comprising :
have been described above with regard to specific embodi executing one or more threads using context information
ments . However , the benefits , advantages , solutions to prob stored in registers of a processor core ; and
lems , and any feature (s) that may cause any benefit , advan selectively moving a portion of a first context for a first
tage , or solution to occur or become more pronounced are 45 thread between a context buffer in a first memory and
not to be construed as a critical , required , or essential feature the registers based on a latency of the first thread ,
of any or all the claims . Moreover , the particular embodi wherein the portion includes less than all of the first
ments disclosed above are illustrative only , as the disclosed context , wherein the portion of the first context is
subject matter may be modified and practiced in different but predicted based on previous portions of contexts pre
equivalent manners apparent to those skilled in the art 50 viously used by one or more other threads .
having the benefit of the teachings herein . No limitations are 10 . The method of claim 9 , wherein selectively moving
intended to the details of construction or design herein the portion of the first context comprises moving the portion
shown , other than as described in the claims below . It is of the first context from the registers to the context buffer in
therefore evident that the particular embodiments disclosed response to a latency of an instruction associated with the
above may be altered or modified and all such variations are 55 first thread exceeding a first threshold .
considered within the scope of the disclosed subject matter . 11 . The method of claim 10 , wherein moving the portion
Accordingly , the protection sought herein is as set forth in of the first context comprises moving the portion of the first
the claims below . context from the registers to the context buffer in response
What is claimed is : to a latency of a memory access request issued by the first
1 . An apparatus , comprising : 60 thread exceeding the first threshold .
a first memory comprising a context buffer ; 12 . The method of claim 9 , further comprising :
a processor core to execute threads based on context moving a portion of a second context for a second thread

information stored in registers of the processor core ; from the context buffer to the registers .
and 13 . The method of claim 12 , wherein moving the portion

a memory controller circuit to selectively move a portion 65 of the second context comprises moving the portion of the
of a first context for a first thread between the context second context from the context buffer to the registers in
buffer and the registers based on a latency of the first response to at least one of context information for another

US 10 , 019 , 283 B2
13 14

thread being moved from the registers to the context buffer
or a subset of the registers being freed by completion of at
least one other thread .

14 . The method of claim 9 , further comprising :
moving a complete context for a third thread between the 5

context buffer and the registers .
15 . The method of claim 9 , further comprising :
moving fourth context information stored in a second
memory to the context buffer in the first memory ,
wherein the first memory has at least one of a higher
memory access bandwidth and a lower memory access
latency than the second memory .

16 . The method of claim 15 , further comprising :
selectively moving context information for a thread group group

including more than one thread in response to deter
mining that the threads in the thread group access a 13
region in the second memory .

17 . A non - transitory computer readable medium embody
ing a set of executable instructions , the set of executable
instructions to manipulate a computer system to perform a
portion of a process to fabricate at least part of a processor , 20
the processor comprising :

a first memory comprising a context buffer ;
a processor core to execute threads based on context

information stored in registers of the processor core ;
and

a memory controller circuit to selectively move a portion
of a first context for a first thread between the context
buffer and the registers based on a latency of the first
thread , wherein the portion includes less than all of the
first context , and wherein the portion of the first context
is predicted based on previous portions of contexts
previously used by one or more threads .

18 . The non - transitory computer readable medium of
claim 17 , the processor further comprising :

a second memory , wherein the first memory has at least
one of a higher memory access bandwidth and a lower
memory access latency than the second memory , and
wherein the memory controller circuit is to selectively
move context information stored in the second memory
to the context buffer in the first memory . 20

* * * * *

