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DETECTING BUFFER OVERFLOWS IN memory regions ( e . g . , canary regions ) are added adjacent to 
GENERAL - PURPOSE GPU APPLICATIONS the memory buffers ( e . g . , before an address at the beginning 

of the buffer or after an address at the end of the buffer ) . 
BACKGROUND Known values are stored into the additional memory 

5 regions . The extended regions are then monitored to deter 
Memory buffers are typically used to temporarily store mine changes to the known values . Buffer overflows ( e . g . , 

related data ( e . g . , a plurality of social security numbers ) in related data intended for the buffer is written outside the 
a contiguous address space or collection of contiguous buffer ) are detected when changes to the known values are 
memory regions to facilitate efficient access of the related determined . Indications of data written outside the buffer , as 
data during execution of a program . The buffers are imple - 10 well as information used to facilitate debugging of the data 
mented in portions of physical memory as well as virtual written outside the buffer , are provided when the buffer 
memory ( i . e . , in software ) which include memory regions overflows are detected . The apparatuses and methods also 
having virtual addresses mapped to physical addresses of the allow execution overhead to scale with the number of buffers 
physical memory . used during execution . 

Typically , the size of a memory buffer is not checked 15 Apparatuses and methods disclosed herein detect buffer 
when the buffer is accessed ( i . e . , the related data is written overflow caused by accelerator kernels ( e . g . , OpenCL ker 
to the buffer ) , allowing accesses to memory regions outside nels , CUDA kernels , C + + AMP or OpenMP device - side 
( e . g . , adjacent to the buffer . As a result of an address work ) . Application program interface ( API ) calls are 
calculation exceeding the bounds of a buffer , data is written wrapped in order to gather information about the buffers 
to the memory regions outside the buffer resulting in a buffer 20 ( e . g . , base address , lengths ) , and indications are provided for 
overflow . Buffer overflows contribute to a variety of unde writes outside of a memory buffer . The buffer overflow 
sirable events , such as program crashes , data corruption , and detection methods disclosed herein can utilize parallelism 
security issues . afforded by accelerated processors ( e . g . , compute units of a 

GPU ) to perform checks quickly and with decreased bus 
BRIEF DESCRIPTION OF THE DRAWINGS 25 accesses . Buffer overflow detection can slow down the 

program ( i . e . , cause execution time overhead ) , use more 
A more detailed understanding can be had from the power , and reduce application energy efficiency . The appa 

following description , given by way of example in conjunc ratuses and methods presented herein allow these overheads 
tion with the accompanying drawings wherein : to scale with the number of buffers used during execution . 

FIG . 1 is a block diagram of an example device in which 30 A processing apparatus is provided that includes a 
buffer overflow detection is implemented ; memory and an accelerated processing device . The memory 

FIG . 2 is a block diagram of exemplary processing includes a plurality of memory regions each corresponding 
apparatus components used to implement buffer overflow to one of a plurality of memory addresses and configured to 
detection ; store data associated with the one memory address . The 

FIGS . 3A and 3B are diagrams of a memory portion , 35 accelerated processing device includes a plurality of pro 
including a memory buffer , used to illustrate exemplary cessors each in communication with the memory . The accel 
memory buffer overflow ; erated processing device is configured to determine a request 

FIG . 3C is a diagram illustrating an exemplary new to allocate an initial memory buffer comprising a number of 
memory buffer which includes an additional memory region contiguous memory regions , create a new memory buffer 
adjacent to the contiguous memory regions of the initial 40 comprising one or more additional memory regions adjacent 
memory buffer ; and to the contiguous memory regions of the initial memory 

FIG . 4 is a flow diagram illustrating an exemplary method buffer , assign one or more values to the one or more 
of buffer overflow detection . additional memory regions and detect a change to the one or 

more values at the one or more additional memory regions . 
DETAILED DESCRIPTION 45 A computer implemented method is provided that 

includes storing data in a plurality of memory regions each 
Conventional buffer overflow detection methods include corresponding to one of a plurality of memory addresses and 

adding extra checks into a program to validate individual each in communication with a plurality of processors . The 
memory accesses . A compiler adds , for example , extra method also includes determining a request to allocate an 
checking instructions around buffer accesses . These conven - 50 initial memory buffer comprising a number of contiguous 
tional buffer overflow detection methods often lead to com memory regions and creating a new memory buffer com 
plex compiler changes and large overhead , such as for prising one or more additional memory regions adjacent to 
example , slowing program execution ( i . e . , execution time the contiguous memory regions of the initial memory buffer . 
overhead ) , using more power , and reducing application The method further includes assigning one or more values to 
energy efficiency . 55 the one or more additional memory regions and detecting a 

Further , heterogeneous processing systems , which change to the one or more values at the one or more 
include different processor types ( e . g . , CPU and GPU ) , additional memory regions . 
continue to develop tighter integration of memory sharing A non - transitory computer readable medium is provided 
between processor types , including integration of physical that includes instructions for causing a computer to execute 
as well as virtual memory sharing . This leads to increased 60 a method of buffer overflow detection . The instructions 
risk of buffer overflows caused by data processed by one comprise storing data in a plurality of memory regions each 
processor type ( e . g . , GPU ) corrupting data to be processed corresponding to one of a plurality of memory addresses and 
by a second processor type ( e . g . , CPU ) . each in communication with a plurality of processors , deter 

The present application provides apparatuses and meth - mining a request to allocate an initial memory buffer com 
ods for efficient buffer overflow detection . Function calls 65 prising a number of contiguous memory regions , creating a 
which allocate memory regions to memory buffers ( e . g . , new memory buffer comprising one or more additional 
OpenCL memory buffers ) are identified and additional memory regions adjacent to the contiguous memory regions 
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of the initial memory buffer , assigning one or more values to 102 . The kernel mode driver 122 controls operation of the 
the one or more additional memory regions , detecting a APD 116 by , for example , providing an API to software 
change to the one or more values at the one or more ( e . g . , applications 126 ) executing on the processor 102 to 
additional memory regions . access various functionality of the APD 116 . The kernel 

As used herein , programs include sequences of instruc - 5 mode driver 122 also includes a just - in - time compiler that 
tions to be executed using one or more processors to perform compiles programs for execution by processing components 
procedures or routines ( e . g . , operations , computations , func ( such as the SIMD units 138 discussed in further detail tions , processes , jobs ) . Processing of programmed instruc below ) of the APD 116 . tions includes one or more of a plurality of processing The APD 116 executes commands and programs for stages , such as but not limited to fetching , decoding , sched - 10 selected functions , such as graphics operations and non uling for execution and executing the programmed instruc graphics operations that are suited for parallel processing . tions . Programmed instructions include store instructions 
which , when executed , store data resulting from their execu The APD 116 is , for example , used for executing graphics 
tion ( also referred to hereinafter as output ) from registers to pipeline operations such as pixel operations , geometric 
memory . computations , and rendering an image to display device 118 

FIG . 1 is a block diagram of an exemplary device 100 . based on commands received from the processor 102 . The 
The device 100 includes , for example , a computer , a gaming APD 116 also executes compute processing operations that 
device , a handheld device , a set - top box , a television , a are not directly related to graphics operations , such as 
mobile phone , or a tablet computer . As shown in FIG . 1 , operations related to video , physics simulations , computa 
exemplary device 100 includes a processor 102 , memory 20 tional fluid dynamics , or other tasks , based on commands 
104 , a storage 106 , one or more input devices 108 , one or received from the processor 102 . 
more output devices 110 , an input driver 112 and an output Exemplary processor types for APD 116 include a CPU , 
driver 114 . It is understood that the device 100 can include a GPU , a CPU and GPU located on the same die , or one or 
additional components not shown in FIG . 1 . more processor cores ( i . e . , compute units ) 132 wherein each 

Exemplary processor types for processor 102 include a 25 processor core is a CPU or a GPU . Each compute unit ( i . e . , 
CPU , a GPU , an accelerated processing device , a CPU and compute core ) 132 includes one or more SIMD units 138 
GPU located on the same die , or one or more processor each configured to perform operations at the request of the 
cores , wherein each processor core is a CPU or a GPU . processor 102 in a parallel manner according to a SIMD Memory 104 is , for example , located on the same die as the paradigm . The SIMD paradigm is one in which multiple processor 102 or located separately from the processor 102 . 30 processing elements share a single program control flow unit Exemplary memory types for memory 104 include a volatile and program counter and thus execute the same program but memory , a non - volatile memory , for example , random are able to execute that program with different data . In one access memory ( RAM ) , dynamic RAM , a cache , a memory 

example , each SIMD unit 138 includes sixteen lanes , where buffer , physical memory . 
Exemplary storage types for storage 106 include a fixedor 35 each lane executes the same instruction at the same time as 

removable storage , for example , a hard disk drive , a solid the other lanes in the SIMD unit 138 but executes that 
state drive , an optical disk , or a flash drive . Exemplary input instruction with different data . Lanes are , for example , 
device types for input device 108 include a keyboard , a switched off with predication if not all lanes need to execute 
keypad , a touch screen , a touch pad , a detector , a micro a given instruction . Predication is also used , for example , to 
phone , an accelerometer , a gyroscope , a biometric scanner , 40 execute programs with divergent control flow . More spe 
or a network connection ( e . g . , a wireless local area network cifically , for programs with conditional branches or other 
card for transmission and / or reception of wireless IEEE 802 instructions where control flow is based on calculations 
signals ) . Exemplary output device types for output devices performed by an individual lane , predication of lanes cor 
110 include a display , a speaker , a printer , a haptic feedback responding to control flow paths not currently being 
device , one or more lights , an antenna , or a network con - 45 executed , and serial execution of different control flow paths 
nection ( e . g . , a wireless local area network card for trans - allows for arbitrary control flow . 
mission and / or reception of wireless IEEE 802 signals ) . The basic unit of execution in compute units 132 is a 

The input driver 112 communicates with the processor work - item . Each work - item represents a single instantiation 
102 and the input devices 108 , and permits the processor 102 of a program that is to be executed in parallel in a particular 
to receive input from the input devices 108 . The output 50 lane . Work - items are , for example , executed simultaneously 
driver 114 communicates with the processor 102 and the as a " wavefront ” on a single SIMD processing unit 138 . 
output devices 110 , and permits the processor 102 to send Multiple wavefronts are , for example , included in a " work 
output to the output devices 110 . It is noted that the input group , ” which includes a collection of work - items desig 
driver 112 is an optional component ( indicated by dashed nated to execute the same program . A work group is , for 
lines ) and that the device 100 will operate in the same 55 example , executed by executing each of the wavefronts that 
manner if the input driver 112 is not present . make up the work group . The wavefronts are , for example , 

FIG . 2 is a block diagram of the device 100 , illustrating executed sequentially on a single SIMD unit 138 or partially 
additional details related to execution of processing tasks on or fully in parallel on different SIMD units 138 . Wavefronts 
the APD 116 . The processor 102 maintains , in system are thought of , for example , as the largest collection of 
memory 104 , one or more control logic modules for execu - 60 work - items executed simultaneously on a single SIMD unit 
tion by the processor 102 . The control logic modules include 138 . Thus , if commands received from the processor 102 
an operating system 120 , a kernel mode driver 122 , and indicate that a particular program is to be parallelized to such 
applications 126 . These control logic modules control vari - a degree that the program cannot execute on a single SIMD 
ous aspects of the operation of the processor 102 and the unit 138 simultaneously , then that program is broken up into 
APD 116 . For example , the operating system 120 directly 65 wavefronts which are parallelized on two or more SIMD 
communicates with hardware and provides an interface to units 138 or serialized on the same SIMD unit 138 ( or both 
the hardware for other software executing on the processor parallelized and serialized as needed ) . A scheduler 136 is 
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configured to perform operations related to scheduling vari As shown in FIG . 3A , a first variable , corresponding to 
ous wavefronts on different compute units 132 and SIMD the array of entries at memory regions 304 of buffer 302 , is 
units 138 . allocated adjacent to the entry at memory region 306 , which 

The parallelism afforded by the compute units 132 is includes a second variable ( i . e . , the return address of the 
suitable for graphics related operations such as pixel value 5 function ) . 
calculations , vertex transformations , and other graphics As described above , buffer overflows result in values 
operations . A graphics pipeline 134 which accepts graphics being written into regions outside the buffer which are not 
processing commands from the processor 102 provides associated with the regions outside the buffer . For example , 
computation tasks to the compute units 132 to be executed , the regions in memory buffer 302 are allocated for related 
for example , in parallel by the compute units 132 . 10 data ( corresponding to " src " ) for n + 1 number of entries . As 

The compute units 132 are also used to perform compu - shown in FIG . 3B , when the related data intended for buffer 
tation tasks not related to graphics or not performed as part 302 is written to more than [ n + 1 ] number of entries , a buffer 
of the “ normal ” operation of a graphics pipeline 134 ( e . g . , overflow occurs and the return address is overwritten by data 
custom operations performed to supplement processing per ( i . e . , src [ n + 1 ] ) . The entries do not need to be accessed in a 
formed for operation of the graphics pipeline 134 ) . An 15 sequential order , however , in order for an overflow to occur . 
application 126 or other software executing on the processor That is , a buffer overflow also occurs , for example , when 
102 transmits programs that define such computation tasks memory adjacent to the buffer is accessed unintentionally or 
to the APD 116 for execution . deliberately without accessing the buffer in sequential order 

FIGS . 3A and 3B are diagrams of a memory portion 300 , ( e . g . , without accessing the buffer in the order " buf , buf + 1 , 
including a memory buffer 302 , used to illustrate exemplary 20 buf + 2 , . . . buf + n , buf + n + 1 ” ) . Depending on the structure of 
memory buffer overflow . Memory portion 300 is , for the program , writes relative to this buffer address and 
example , a non - volatile portion of memory 104 shown in outside of its boundaries are caused , for example , from other 
FIGS . 1 and 2 . As shown in FIG . 3A , memory buffer 302 inputs . 
includes a plurality of buffer memory entries 304 beginning Accordingly , the value src [ n + 1 ] written into the region 
with entry " buf ” ( corresponding to a first address of the 25 306 is not associated with the region 306 outside the buffer 
buffer memory portion 300 ) and ending with entry “ buf + n ” 302 , resulting in one or more potentially problematic con 
( corresponding to a last address of the buffer memory ditions ( e . g . , program crash , data corruption , or security 
portion 300 ) . As shown in FIG . 1 , entries 306 and 308 are issue ) . For example , when the data at region 306 is accessed 
outside the buffer 302 , with entry 306 being the entry a number of cycles after the buffer overflow occurs , incor 
adjacent to the last entry “ bufun . " Each entry in the exem - 30 rect data ( i . e . , data originally from src [ n + 1 ] ) is accessed 
plary memory portion 300 corresponds to a region of because the expected return address value is not at region 
memory ( e . g . , physical memory region or virtual memory 306 . The access of the incorrect data results , for example , in 
region ) and includes a memory address and data associated an error ( e . g . , the program returning to an incorrect location 
with the memory address . and running erroneous code ) which is difficult to observe 

Buffer overflows occur when related data ( e . g . , a plurality 35 and debug because the error manifests in ways or at loca 
of social security numbers ) intended to be stored in a buffer tions unrelated to the buffer . By detecting the buffer over 
( e . g . , buffer 302 ) is written to one or more memory regions flow ( e . g . , detecting a change to a canary value ) and pro 
( e . g . , regions corresponding to entries 306 and 308 in FIG . viding an indication of the buffer overflow before the 
3A ) outside of ( e . g . , adjacent to ) the memory buffer . For erroneous usage causes a crash or data corruption , the cause 
example , overflows occur when related data for a buffer is 40 ( i . e . , the buffer overflow ) of the error is more easily deter 
written to one or more memory regions after a last entry mined and results in less overhead than waiting until the 
( e . g . , at entry 308 after entry " buf + n " ) as shown in FIG . 3A occurrence of the error . 
or at one or more regions ( not shown ) prior to a region When the buffer overflow is determined after a kernel 
corresponding to entry “ buf ” shown in FIG . 3A . Buffer executing on a processor of one type ( e . g . , GPU or other 
overflows result from a variety of causes , such as incorrect 45 accelerator ) completes execution but before any additional 
programming instructions , exceeding a data limit ( e . g . , instruction are executed on a processor of another type ( e . g . , 
defined in a program ) to be accessed in a program , or a CPU ) , the occurrence of the buffer overflow is determined 
hacker giving an input to the program that is larger than the within seconds ( e . g . , within 5 seconds ) after the overflow 
predefined buffer meant to hold that input . occurs depending on the speed of the processor of the other 

Buffer overflows result in values being written into 50 type implementing the detection of the change to the canary 
regions outside the buffer which are not associated with the values . Accordingly , the overflow occurrence is determined 
regions outside the buffer . Because of this disassociation , before an occurrence of problematic condition ( e . g . , pro 
buffer overflows contribute to conditions which cause pro - gram crash , data corruption , or security issue ) resulting from 
gram crashes , data corruption , and security issues . An the overflow . 
example of one of these buffer overflow conditions is 55 When the buffer overflow is determined , due to the 
illustrated in FIGS . 3A and 3B , in which a return address of detection of the changed canary values , after a kernel 
a function is overwritten due to a memory buffer overflow . executing on a processor of one type ( e . g . , GPU or other 
The buffer overflow condition shown in FIGS . 3A and 3B is accelerator ) completes execution , but asynchronously , while 
merely exemplary . Other examples of memory buffer over - additional instructions are executing on a processor of 
flows , which contribute to conditions which cause program 60 another type ( e . g . , CPU ) , the occurrence of the buffer 
crashes , data corruption or create security issues , include but overflow is determined within a longer time range ( e . g . , 
are not limited to pointer corruption ( e . g . , re - directs memory within days ) after the overflow occurs than in the shorter 
accesses to reserved or inaccessible memory locations , time range describe above . Determination of the overflow 
resulting in program crashes ) , data corruption ( e . g . , incor - within this longer time range , however , provides for easier 
rectly altering control flow or program output results ) , and 65 identification of a cause ( i . e . , the overflow ) of a potentially 
function pointer corruption ( e . g . , leading to jumps to an problematic condition ( e . g . , program crash , data corruption , 
unexpected segment of a program ’ s execution ) . or security issue ) and potentially more useful debugging 
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information than in situations in which the problematic regions of the new memory buffers . A processor ( e . g . , APD 
condition does not arise for months or years after the 116 ) dynamically determines switching between detection 
occurrence of the overflow . For example , when , data cor - of buffer overflows of the different processor types by , for 
ruption , such as a changed value in a database used for an example switching between ( i ) a first detection process of 
annual financial report , resulting from a buffer overflow is 5 detecting a change to one or more values of corresponding 
determined months or years after the overflow , it becomes additional memory regions allocated to the processor of the 
difficult to trace the error back to its cause ( i . e . the overflow ) . first type ( e . g . , GPU ) and ( ii ) a second detection process of 
As shown in FIG . 3C , a new memory buffer 310 is created detecting a change to one or more values of corresponding 

which includes an additional memory region 312 adjacent to additional memory regions allocated to the processor of the 
the contiguous memory regions 304 of the initial memory 10 second type ( e . g . , CPU ) . The overflow of each of the new 
buffer 302 . As shown in FIG . 3C , a canary value is stored at memory buffers is determined ( e . g . , by APD 116 or by a user 
additional memory region 312 after the entry " buf + n ” of upon being provided an indication of the detected overflow ) , 
buffer 302 . Additional memory regions which store canary for example , based on the detected changes to the values of 
values , however also include one or more regions before the the corresponding additional memory regions allocated to 
" buf ” entry of buffer 302 . The canary value is a known or 15 the processor of the first type and the second type . It is 
calculable value that is monitored to determine if and when understood that switching is performed between any number 
the value changes . After the related data ( src [ 0 ] - src [ n + 1 ] ) is of processors of different types . 
copied , for example as shown in FIG . 3B , to buffer 302 , but Switching between the first detection process and the 
before the related data ( src [ 0 ] - src [ n + 1 ] ) is further used ( e . g . , second detection process includes , for example , determin 
accessed ) by a program , it is determined ( e . g . , by processor 20 ing : ( i ) a first estimated time to detect the change to the one 
102 ) whether the value in the canary region has changed . or more values of the one or more corresponding additional 
When a change to the canary value is detected , a buffer memory regions allocated to the processor of the first type ; 
overflow is determined . and ( ii ) a second estimated time to detect the change to the 

As described above , this detected value change is per - one or more values of the one or more corresponding 
formed : ( i ) asynchronously , in which work to perform the 25 additional memory regions allocated to the processor of the 
detection is assigned to one processor type ( e . g . , GPU ) while second type . 
the original program or application continues executing on The determination of the first estimated time and the 
another processor type ( e . g . , continues executing on the second estimated time is , for example , based on at least one 
CPU ) or ( ii ) after a kernel executing on a processor of one of : ( i ) a number of the initial buffers allocated to the 
type ( e . g . , GPU or other accelerator ) completes execution 30 processor of the first type ; ( ii ) a number of the initial buffers 
but before any additional instruction are executed on a allocated to the processor of the second type ; ( iii ) an 
processor of another type . identification of the processor of the first type ; ( iv ) an 

Because the value changes are detected , procedures for identification of the processor of the second type , ( v ) 
correcting ( i . e . , debugging ) errors resulting from the buffer whether the image is a flat memory region of a multi 
overflow are , for example , less difficult , less time consuming 35 dimensional image type , ( vi ) the size of the buffers , ( vii ) the 
and more efficient to implement . Examples of these proce - size of the canary regions , ( viii ) the speed of the connection 
dures for correcting the errors associated with buffer over - between the processors , and ( ix ) the estimated performance 
flow include increasing the size of the buffer , limiting the of each of the processors . 
amount of data stored in the buffer , modifying code , and Based on the first estimated time and the second estimated 
checking for particular inputs to determine if a hack has 40 time , a determination is made as to whether to : ( i ) detect the 
occurred . change to the one or more values of the one or more 

Buffer overflow detection includes , for example , detec - corresponding additional memory regions allocated to the 
tion of overflow of buffers associated with memories shared processor of the first type or ( ii ) detect the change to the one 
by a plurality of processor types , such as processors of APD or more values of the one or more corresponding additional 
116 . Detection of a buffer overflow of a buffer allocated to 45 memory regions allocated to the processor of the second 
a first processor type ( e . g . , a GPU ) is used to prevent type . For example , a determination is made to detect the 
undesirable conditions to the first processor type , such as the change to the one or more values of the one or more 
injection of code ( i . e . , hacking ) to control operation of the corresponding additional memory regions allocated to the 
first processor type ( e . g . , operation of the GPU ) . Detection processor of the first type when the first estimated time is 
of a buffer overflow of a buffer allocated to the first 50 equal to or less than the second estimated time . Alterna 
processor type ( e . g . , the GPU ) is also used to prevent tively , a determination is made to detect the change to the 
undesirable conditions to the second processor type ( e . g . , the one or more values of the one or more corresponding 
CPU ) having buffers accessible by the GPU ( e . g . , via additional memory regions allocated to the processor of the 
interconnects ) , such as data corruption in CPU memory second type when the first estimated time is greater than the 
from a buffer overflow in a GPU kernel . 55 second estimated time . 

Buffer overflow detection includes dynamically switching The APD 116 dynamically determines the switching 
between detecting buffer overflows of buffers of different based on one or more factors , such as for example , a number 
processor types , such as a GPU ( or other accelerator ) and a of initial buffers allocated to the processor of the first type 
CPU . A plurality of requests to allocate initial memory and the second type . The number of initial buffers is used to 
buffers is determined , for example , each comprising con - 60 determine the switch , for example , by comparing the num 
tiguous memory regions allocated to one of a processor of a ber of buffers of each type to each other or a threshold . The 
first type ( e . g . , GPU ) and a processor of a second type ( e . g . , one or more factors also include , for example , an identifi 
CPU ) . A plurality of new memory buffers are created , each cation of the processor of the first type and the second type 
comprising one or more additional memory regions adjacent ( e . g . , whether a processor is a CPU , a GPU , or another type 
to contiguous memory regions allocated to the processor of 65 of accelerator ) . Other factors for dynamically determining 
the first type or the processor of the second type . Values the switching include the use of a memory region ( e . g . 
( e . g . , canary values ) are assigned to the additional memory whether the region holds a flat buffer or a multi - dimensional 



US 10 , 067 , 710 B2 
10 

image ) , the size of a buffer , the size of the additional copy is extended with the additional regions , and , upon 
memory regions , the speed of any connections between the completion of the kernel , the data in the shadow buffer ( but 
processor types , and the estimated performance of each of not in the canary regions ) is copied back to the original host 
the processors . memory portion . For example , OpenCL allows OpenCL 

The APD 116 is configured to perform any of the tasks 5 implementations to cache buffer contents of host pointer 
described above based on estimations of overheads ( e . g . , regions . Accordingly , the buffer updates are cached until 
runtimes , bus transfer times , and storage sp ace ) . after the canary values of the additional regions are moni 

In applications such as those that use the OpenCL pro - tored for changes . 
gramming standard , “ Global ” buffers are typically first allo Information about the new memory buffer is stored in 
cated , using functions ( e . g . , " clCreateBuffer ” or “ clCre - 10 memory . The information includes , for example , informa 
ateImage ” ) , into a first processor ( e . g . , GPU ) memory tion indicating the addresses of the additional memory 
without pointers , but stored , for example , into memory regions having the assigned canary values , information 
associated with a second processor ( e . g . , CPU ) , which indicating the canary values , information indicating limita 
accesses the OpenCL buffer from the GPU by copying the tions for the canary values , and information indicating 
data into its memory ( e . g . , memory associated with the 15 whether the memory buffer is a write buffer or read buffer . 
CPU ) . These buffers are also stored , for example , in the It should be understood that many variations are possible 
memory of the first processor ( e . g . GPU ) and accessed by based on the disclosure herein . Although features and ele 
the second processor ( e . g . CPU ) and additionally or alter - ments are described above in particular combinations , each 
natively in the memory of the second processor ( e . g . CPU ) feature or element is , for example , used alone without the 
and directly accessed by the first processor ( e . g . GPU ) . 20 other features and elements or in various combinations with 
Accordingly , buffer overflow detection methods and appa - or without other features and elements . 
ratuses described herein include detection of buffer over The call to allocate the initial buffer memory is deter 
flows in these memory portions by wrapping calls to func - mined , for example , by determining when an API call is 
tions that create memory buffers and expanding the made . Monitoring of the API calls to libraries varies by 
requested size to include additional portions ( e . g . , canary 25 operating systems . For example , some operating systems 
regions ) . utilize shimming or library interposing mechanisms to 

Shared virtual memory ( SVM ) includes memory buffers implement API wrappers . The API calls used to allocate 
associated with a processor ( e . g . , GPU ) which contains , for memory buffers are different for each library implementa 
example , pointers to their own buffer and to other SVM tion ( e . g . , OpenCL , CUDA or other library ) . For example , 
buffers associate with another processor ( e . g . , CPU ) . 30 for OpenCL implementation , function calls to buffer cre 
Coarse - grained SVM buffers are mapped into CPU memory ation APIs ( e . g . , " CISVMAlloc , “ clCreateBuffer , " and 
to access the buffers on the CPU . When the buffer is mapped “ clCreateImage " ) are monitored . APIs that are used to assign 
to one processor type ( e . g . GPU ) or another ( e . g . CPU ) , the arguments to OpenCL kernels ( e . g . , " clSetKernelArg ” and 
pointers remain valid . Fine - grained SVM buffers contain “ clSet KernelArgSVMPointer ” ) are detected , using the infor 
pointers that are valid on both the CPU and the GPU without 35 mation about each new memory buffer , as described above . 
using manual mapping . Accordingly , buffer overflow detec - A list of each buffer accessible by each kernel is stored and 
tion methods and apparatuses described herein monitors used when the kernel is launched to know which buffers are 
buffer overflows in these regions by wrapping calls to SVM monitored for overflows . For each global memory buffer 
buffers and expanding the requested allocation size to argument , a list of buffer sizes , canary values , and pointers 
include additional portions ( e . g . , canary regions ) . 40 to the buffers ' meta - data is maintained . 

Images include memory buffers associated with a proces . As shown in block 404 of method 400 , when the call to 
sor ( e . g . , GPU ) which represents multi - dimensional data . allocate the initial memory buffer is detected , a new memory 
For example , when a 2D image is accessed by giving the buffer , such as buffer 310 shown in FIG . 3C , is created by 
horizontal and vertical coordinates into the image , calcula - allocating one or more additional memory regions , such as 
tions are performed , via hardware or software ) to decide 45 region 312 in FIG . 3C , adjacent to the contiguous memory 
where the address is located in the image buffer . Multi - regions 302 of the initial memory buffer 302 . For example , 
dimensional images include , for example , buffer overflows a new memory buffer is allocated having a size ( e . g . , 
within the image . An overflow address is , for example , memory buffer of size 110 entries ) that is larger than the size 
calculated to be lying within the buffer even when a row ( e . g . , memory buffer of size 100 entries ) of an initial buffer . 
overflow occurs . Accordingly , buffer overflow detection 50 Accordingly , using this example , 5 additional regions are 
methods and apparatuses described herein monitor buffer added adjacent to each end ( e . g . , before and after ) the 
overflows in these regions by wrapping calls to image buffer contiguous regions of the initial buffer . The contiguous 
creation and kernels that use images to expand the requested regions are stored , for example , at the same portion of 
allocation size to include additional portions ( e . g . , canary memory when 10 additional contiguous regions adjacent to 
regions ) , potentially by expanded the image to include 55 the initial buffer are available and , alternatively , at a different 
canaries in multiple dimensions . portion of memory which has 110 contiguous regions avail 

FIG . 4 is a flow diagram illustrating an exemplary method able . It is understood that creation of new memory buffers 
400 of buffer overflow detection . As shown in block 402 of includes creating buffers having any number of additional 
method 400 , a call to allocate an initial buffer memory is regions adjacent to initial memory buffers . 
determined . For example , the call is made to allocate an 60 For multi - dimensional arrays ( such as 2D images ) , canary 
initial memory buffer of a certain size ( e . g . , memory buffer regions are , for example , allocated at locations within the 
of size 100 entries ) having a number of contiguous memory buffer that correspond to locations beyond the end of a row 
regions , such as for example , memory regions “ buf ” to or column ( e . g . , a 2D image having multiple canary regions , 
“ buf + n ” shown in FIG . 1A . such as regions beyond the end of rows and other regions 

When the detected buffer is limited to a fixed size ( e . g . , a 65 beyond the end of columns ) . 
configuration flag preventing resizing of the memory buf - As shown in block 406 of method 400 , values are 
fer ) , an extended shadow copy of the buffer is created , the assigned to each of the one or more additional memory 
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regions , such as region 312 shown in FIG . 3C . The assigned used at runtime to decide whether to check a series of canary 
values are known or calculable canary values . The canary regions on one processor type or another processor type . 
values assigned to each additional memory region are , for Checks on accelerators ( e . g . , GPUs ) are performed , for 
example , initialized with a known data pattern , initialized example , asynchronously from other work in the program , 
with the same values , or initialized with values different 5 allowing the checks to take place while other useful work 
from each other . proceeds on host processors ( e . g . , CPUs ) . 
As shown in block 408 of method 400 , the one or more The methods provided include implementation in a gen 

additional memory regions adjacent to the memory buffer eral purpose computer , a processor , or a processor core . 
are monitored and , at decision block 410 , a determination is Suitable processors include , by way of example , a general 
made as to whether a change occurs to the values at the 10 purpose processor , a special purpose processor , a conven 
additional memory regions . If a change of a value is deter - tional processor , a digital signal processor ( DSP ) , a plurality 
mined to occur , a buffer overflow is determined to occur at of microprocessors , one or more microprocessors in asso 
block 412 and an indication of the determined buffer over - ciation with a DSP core , a controller , a microcontroller , 
flow is provided at block 414 . Application Specific Integrated Circuits ( ASICs ) , Field Pro 

For example , the detector first analyzes the list of argu - 15 grammable Gate Arrays ( FPGAs ) circuits , any other type of 
ments associated with a kernel . If the kernel has no global integrated circuit ( IC ) , and / or a state machine . Such proces 
memory buffers , the kernel cannot cause global memory sors are , for example , manufactured by configuring a manu 
buffer overflows . If buffers are passed to the kernel , how facturing process using the results of processed hardware 
ever , the values of the additional regions are later verified as description language ( HDL ) instructions and other interme 
not being changed . If a buffer is allocated with a flag that 20 diary data including netlists ( such instructions capable of 
indicates the memory region is not increasable in size ( e . g . , being stored on a computer readable media ) . The results of 
the memory region exists and includes useful values in such processing are , for example , maskworks that are then 
adjacent regions which precludes expanding the buffer ) , used in a semiconductor manufacturing process to manu 
temporary shadow copies , which contain space for the facture a processor which implements buffer overflow detec 
additional regions , are provided and assigned as kernel 25 tion . 
arguments . The kernel is launched and , while executing , a The methods or flow charts provided herein are , for 
checker kernel ( e . g . , checks for changes in values ) is example , implemented in a computer program , software , or 
enqueued that executes after the original kernel finishes . firmware incorporated in a non - transitory computer - read 
This checker kernel is implemented , for example , on pro - able storage medium for execution by a general purpose 
cessors of various types ( e . g . , CPUs or GPUs ) . This kernel 30 computer or a processor . Examples of non - transitory com 
verifies additional accessible regions of the memory buffers puter - readable storage mediums include a read only memory 
which were not accessed by the kernel . ( ROM ) , a random access memory ( RAM ) , a register , cache 
SVM buffers add extra complexity . When any argument memory , semiconductor memory devices , magnetic media 

to a kernel is to an SVM buffer , other SVM buffers are such as internal hard disks and removable disks , magneto 
accessed by the kernel because , for example , SVM regions 35 optical media , and optical media such as CD - ROM disks , 
contain pointers to SVM buffers that are not in the kernel and digital versatile disks ( DVDs ) . 
argument list . As such , if a kernel ' s arguments give the What is claimed is : 
kernel access to an SVM buffer , the additional regions for 1 . A processing apparatus comprising : 
SVM buffers in the application are verified . memory , comprising a plurality of memory regions each 

If a change of a value is not determined , a buffer overflow 40 corresponding to one memory address of a plurality of 
is not determined to occur at block 416 and monitoring of memory addresses and configured to store data asso 
the additional memory regions is continued at block 408 . For ciated with the one memory address ; and 
example , when a verification function determines an over an accelerated processing device comprising a processor 
flow , a message indicating the buffer overflow is displayed of a first type and a processor of a second type each in 
and , optionally , execution is halted . A debug message is 45 communication with the memory , the accelerated pro 
provided which , for example , shows the kernel name , the cessing device configured to : 
argument name , and in which region of the additional determine a plurality of requests to allocate initial 
regions the first corruption occurred . The function argu memory buffers , each comprising a number of con 
ment ' s name is determined by using a function , ( e . g . , tiguous memory regions allocated to one of : ( i ) the 
“ clGetKernel ArgInfo " ) because the argument index of the 50 processor of the first type ; and ( ii ) the processor of 
overflow buffer is known . the second type ; 

Monitoring 408 is implemented , for example , on proces create a plurality of new memory buffers each com 
sors of various types ( e . g . , a CPU or a GPU ) . While prising one or more additional memory regions adja 
accelerators run slower and take longer to check each canary cent to the contiguous memory regions allocated to 
value , depending on the number of canary values to check , 55 one of : ( i ) the processor of the first type ; and ( ii ) the 
bringing the canary values from the accelerator memory to processor of the second type ; 
CPU memory includes amortization of bus transfers . assign one or more values to the one or more additional 
Because the relative location of the additional canary region memory regions ; and 
checks affects the performance of the detector , buffer over switch between : ( i ) a first detection process of detecting 
flow detection also includes overhead associated with deter - 60 a change to the one or more values at the one or more 
mining whether to monitor values in the additional memory additional memory regions allocated to the processor 
regions of memory buffers allocated to on a first processor of the first type ; and ( ii ) a second detection process 
type ( e . g . , a CPU ) or a second processor type ( e . g . , a GPU ) . of detecting the change to the one or more values of 
The determination includes , for example , comparing the the one or more corresponding additional memory 
CPU and GPU overheads of checking canary values as we 65 regions allocated to the processor of the second type . 
vary the number of buffers . Micro benchmarks are imple - 2 . The processing apparatus of claim 1 , wherein the 
mented , for example , to determine a series of parameters accelerated processing device is further configured to deter 
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mine the request to allocate the initial memory buffer by switching between : ( i ) a first detection process of detect 
determining when a call is made to allocate the initial ing a change to the one or more values at the one or 
memory buffer . more additional memory regions allocated to the pro 

3 . The processing apparatus of claim 1 , wherein the cessor of the first type ; and ( ii ) a second detection 
accelerated processing device is further configured to deter - 5 process of detecting the change to the one or more 
mine the request to allocate the initial memory buffer by values of the one or more corresponding additional determining when an application programming interface memory regions allocated to the processor of the sec ( API ) call is made to allocate the initial memory buffer . ond type . 4 . The processing apparatus of claim 1 , wherein the 11 . The method of claim 10 , further comprising deter accelerated processing device is further configured to deter - 10 mining the request to allocate the initial memory buffer by mine an overflow of the memory buffer by detecting the determining when a call is made to allocate the initial change to the one or more values after the change to the one 
or more values occurs . memory buffer . 

5 . The processing apparatus of claim 4 , wherein the 12 . The method of claim 10 , further comprising deter 
accelerated processing device is further configured to pro - 15 min 15 mining the request to allocate the initial memory buffer by 
vide an indication of the determined overflow of the memory determining when an application programming interface 

buffer . ( API ) call is made to allocate the initial memory buffer . 
6 . The processing apparatus of claim 1 , wherein the value 13 . The method of claim 10 , further comprising deter 

is a known or calculable canary value . mining an overflow of the memory buffer by detecting the 
7 . The processing apparatus of claim 1 , wherein the 20 change to the one or more values after the change to the one 

accelerated processing device is further configured to create or more values occurs . 
the new memory buffer by at least one of : ( i ) adding the one 14 . The method of claim 13 , further comprising providing 
or more additional memory regions before the contiguous an indication of the determined overflow of the memory 
memory regions of the initial memory buffer ; and ( ii ) adding buffer . 
the one or more additional memory regions after the con - 25 15 . The method of claim 10 , wherein the value is a known 
tiguous memory regions of the initial memory buffer . or calculable canary value . 

8 . The processing apparatus of claim 1 , wherein the 16 . The method of claim 10 , further comprising creating 
accelerated processing device is further configured to switch the new memory buffer by at least one of : ( i ) adding the one 
between the first detection process and the second detection or more additional memory regions before the contiguous 
process by : 30 Bu memory regions of the initial memory buffer ; and ( ii ) adding determining : ( i ) a first estimated time to detect the change the one or more additional memory regions after the con 

to the one or more values of the one or more corre tiguous memory regions of the initial memory buffer . sponding additional memory regions allocated to the 
processor of the first type ; and ( ii ) a second estimated 17 . The method of claim 16 , further comprising switching 
time to detect the change to the one or more values of 35 bel of 35 between the first detection process and the second detection 
the one or more corresponding additional memory process by : 
regions allocated to the processor of the second type . determining : ( i ) a first estimated time to detect the change 

9 . The processing apparatus of claim 8 , wherein the to the one or more values of the one or more corre 
accelerated processing device is further configured to : sponding additional memory regions allocated to the 

detect the change to the one or more values of the one or 40 processor of the first type ; and ( ii ) a second estimated 
more corresponding additional memory regions allo time to detect the change to the one or more values of 
cated to the processor of the first type when the first the one or more corresponding additional memory 
estimated time is equal to or less than the second regions allocated to the processor of the second type ; 
estimated time ; and detecting the change to the one or more values of the one 

detect the change to the one or more values of the one or 45 or more corresponding additional memory regions allo 
more corresponding additional memory regions allo cated to the processor of the first type when the first 
cated to the processor of the second type when the first estimated time is equal to or less than the second 
estimated time is greater than the second estimated estimated time ; and 
time . detecting the change to the one or more values of the one 

10 . A computer implemented buffer overflow detection 50 or more corresponding additional memory regions allo 
method comprising : cated to the processor of the second type when the first 

storing data in a plurality of memory regions each corre estimated time is greater than the second estimated 
sponding to one of a plurality of memory addresses and time . 
each in communication with a processor of a first type 18 . A non - transitory computer readable medium compris 
and a processor of a second type ; 55 ing instructions for causing a computer to execute a method 

determining a plurality of requests to allocate initial of buffer overflow detection , the instructions comprising : 
memory buffers , each comprising a number of contigu storing data in a plurality of memory regions each corre 
ous memory regions allocated to one of : ( i ) the pro sponding to one of a plurality of memory addresses and 
cessor of the first type ; and ( ii ) the processor of the each in communication with a processor of a first type 
second type ; and a processor of a second type ; 

creating a plurality of new memory buffers each compris determining a plurality of requests to allocate initial 
ing one or more additional memory regions adjacent to memory buffer each comprising a number of contigu 
the contiguous memory regions allocated to one of : ( i ) ous memory regions allocated to one of : ( i ) the pro 
the processor of the first type ; and ( ii ) the processor of cessor of the first type ; and ( ii ) the processor of the 
the second type ; second type ; 

assigning one or more values to the one or more additional creating a plurality of new memory buffers each compris 
memory regions ; and ing one or more additional memory regions adjacent to 
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the contiguous memory regions allocated to one of : ( i ) 
the processor of the first type ; and ( ii ) the processor of 
the second type ; 

assigning one or more values to the one or more additional 
memory regions ; and 

switching between : ( i ) a first detection process of detect 
ing a change to the one or more values at the one or 
more additional memory regions allocated to the pro 
cessor of the first type ; and ( ii ) a second detection 
process of detecting the change to the one or more 10 
values of the one or more corresponding additional 
memory regions allocated to the processor of the sec 
ond type . 

* * * * 


