
| HAI LAMA ALTINA ALI ON AN AUTOMATA US010067710B2

(12) United States Patent
Greathouse et al .

(10) Patent No . : US 10 , 067 , 710 B2
(45) Date of Patent : Sep . 4 , 2018

(54) DETECTING BUFFER OVERFLOWS IN
GENERAL - PURPOSE GPU APPLICATIONS

(56) References Cited
U . S . PATENT DOCUMENTS

@ (71) Applicant : Advanced Micro Devices , Inc . ,
Sunnyvale , CA (US) 8 , 928 , 680 B1 *

2008 / 0140884 Al * @ (72) Inventors : Joseph L . Greathouse , Austin , TX
(US) ; Christopher D . Erb , Austin , TX
(US) ; Michael G . Collins , Austin , TX
(US)

1 / 2015 Sanketi GO6F 9 / 5011
345 / 541

6 / 2008 Enbody G06F 21 / 54
710 / 57

5 / 2013 Das . GO6F 11 / 1438
714 / 6 . 12

2013 / 0124917 A1 *

OTHER PUBLICATIONS (73) Assignee : ADVANCED MICRO DEVICES ,
INC . , Sunnyvale , CA (US)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .

Price , J . et al . , “ Oclgrind : An Extensible OpenCL Device Simula
tor , " Proceedings of the 3rd International Workshop on OpenCL ,
May 12 - 13 , 2015 , 7 pgs . , Article No . 12 , ACM , Palo Alto , CA ,
USA .
Pulo , K . , “ Fun with LD _ PRELOAD , ” Presented at linux . conf . au ,
Jan . 19 - 24 , 2009 , 153 pgs . , The Australian National University ,
Hobart , Tasmania .

(Continued)
(21) Appl . No . : 15 / 360 , 518

(22) Filed : Nov . 23 , 2016
(65) Prior Publication Data

US 2018 / 0143781 A1 May 24 , 2018
(51) Int . Ci .

G06F 3 / 06 (2006 . 01)
G06F 9 / 44 (2018 . 01)
G06T 1 / 20 (2006 . 01)
G06T 1 / 60 (2006 . 01)
GOOF 9 / 451 (2018 . 01)

(52) U . S . CI .
CPC G06F 3 / 0647 (2013 . 01) ; G06F 3 / 0619

(2013 . 01) ; G06F 370656 (2013 . 01) ; G06F
370685 (2013 . 01) ; G06F 9 / 4443 (2013 . 01) ;

G06F 9 / 451 (2018 . 02) ; G06T 1 / 20 (2013 . 01) ;
G06T 1 / 60 (2013 . 01)

(58) Field of Classification Search
??? . GO6F 21 / 52 ; G06F 21 / 54
See application file for complete search history .

Primary Examiner - Edward J Dudek , Jr .
(74) Attorney , Agent , or Firm — Volpe and Koenig , P . C .

(57) ABSTRACT
A processing apparatus is provided that includes a plurality
of memory regions each corresponding to a memory address
and configured to store data associated with the correspond
ing memory address . The processing apparatus also includes
an accelerated processing device in communication with the
memory regions and configured to determine a request to
allocate an initial memory buffer comprising a number of
contiguous memory regions , create a new memory buffer
comprising one or more additional memory regions adjacent
to the contiguous memory regions of the initial memory
buffer , assign one or more values to the one or more
additional memory regions and detect a change to the one or
more values at the one or more additional memory regions .

18 Claims , 4 Drawing Sheets

Return
Address

312 Canary
Value

buf + n

302 } buf + 1

buf

US 10 , 067 , 710 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Putnam , A . et al . , “ A Reconfigurable Fabric for Accelerating Large
Scale Datacenter Services , ” Proceedings of the 41st Annual Inter
national Symposium on Computer Architecture , Jun . 14 - 18 , 2014 ,
pp . 13 - 24 , IEEE Press , Minneapolis , MN , USA .
Serebryany , K . et al . , “ AddressSanitizer : A Fast Address Sanity
Checker , " Proceedings of the 2012 USENIX Annual Technical
Conference , Jun . 13 - 15 , 2012 , pp . 28 - 38 , USENIX Association ,
Boston , MA , USA .
Seward , J . et al . , “ Using Valgrind to Detect Undefined Value Errors
with Bit - Precision , ” Proceedings of the USENIX Annual Technical
Conference , Apr . 10 - 15 , 2005 , pp . 2 - 15 , USENIX Association ,
Anaheim , CA , USA .
Smith , R . “ HSA Foundation Update : More HSA Hardware Coming
Soon , ” http : / / www . anandtech . com / show / 9690 / hsa - foundation - up
date - more - hsa - hardware - coming - soon , Oct . 6 , 2015 , 4 pgs .
Accessed Feb . 13 , 2017 .
Stephenson , M . et al . , “ Flexible Software Profiling of GPU Archi
tectures , ” Proceedings of the 42nd Annual International Symposium
on Computer Architecture , Jun . 13 - 17 , 2015 , pp . 185 - 197 , ACM ,
Portland , OR , USA .
Stratton , J . et al . , “ Parboil : A Revised Benchmark Suite for Scien
tific and Commercial Throughput Computing , " Impact Technical
Report , IMPACT - 12 - 01 , University of Illinois at Urbana - Cham
paign , Center for Reliable and High - Performance Computing , Mar .
2 , 2012 , 12 pgs . , USA
Vesely , J . et al . , “ Observations and Opportunities in Architecting
Shared Virtual Memory for Heterogeneous Systems , ” 2016 IEEE
International Symposium on Performance Analysis of Systems and
Software , Apr . 17 - 19 , 2016 , pp . 161 - 171 , Uppsala , Sweden .
Watson , G . , “ Dmalloc — Debug Malloc Lilbrary , ” http : / / dmalloc .
com / , 1992 . Accessed Feb . 13 , 2017 .
Wu , L . et al . , “ Q100 : The Architecture and Design of a Database
Processing Unit , " Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operat
ing Systems , Mar . 1 - 5 , 2014 , pp . 255 - 268 , ACM , Salt Lake City ,
UT , USA .
Advanced Micro Devices , Inc . , “ Asynchronous Shaders : Unlocking
the Full Potential of the GPU ” , 2015 , 10 pgs . , White Paper , USA .
Advanced Micro Devices , Inc . , AMD APP SDK OpenCL Optimi
zation Guide , Rev . 1 . 0 , Aug . 2015 , 180 pgs . , USA .
Ahn , J . et al . , “ A Scalable Processing - in - Memory Accelerator for
Parallel Graph Processing ” , Proceedings of the International Sym
posium on Computer Architecture , Jun . 13 - 17 , 2015 , 13 pgs . , ACM ,
Portland , OR , USA .
Aingaran , K . et al . , “ Software in Silicon in the Oracle SPARC M7
Processor ” Presented at Hot Chips , Aug . 21 - 23 , 2016 , 31 pgs . ,
Cupertino , CA , USA .
One , Aleph , “ Smashing the Stack for Fun and Profit ” , Phrack 49 ,
Nov . 8 , 1996 , 25 pgs . , vol . 7 , Issue 49 , Phrack Magazine , USA .
Anderson , J . P . , " Computer Security Technology Planning Study ” ,
Technical Report ESD - TR - 73 - 51 , U . S . AirForce Electronic Systems
Division , Oct . 1972 , 142 pgs . , vol . II , Fort Washington , PA , USA .
Andryeyev , G . , " OpenCL with AMD FirePro W900 ” Presented at
Toronto SIGGRAPH , Nov . 2 - 5 , 2015 , 25 pgs . , AMD , Kobe , JP .
(Retrieved from : http : / / toronto . siggraph . org / wp - content / uploads /
2015 / 05 / uoft - ocl . pdf) .
Akritidis , P . et al . , “ Baggy Bounds Checking : An Efficient and
Backwards - Compatible Defense against Out - of - Bounds Errors ” , In
Proceedings of the USENIX Security Symposium , Aug . 10 - 14 ,
2009 , p . 51 - 100 , Montreal , CA .
Margiolas , C . et al . , “ Portable and Transparent Host - Device Com
munication Optimization for GPGPU Environments , " Proceedings
of the Int ' l Symp . on Code Generation and Optimization , Feb .
15 - 19 , 2014 , pp . 55 - 65 , ACM , Orlando , FL , USA .
Bessey , A . et al . , “ A Few Billion Lines of Code Later : Using Static
Analysis to Find Bugs in the Real World , ” Communications of the
ACM , Feb . 2010 , pp . 66 - 75 , vol . 53 , Issue 2 , ACM , New York , NY ,
USA .

Bosman , E . et al . , “ Minemu : The World ' s Fastest Taint Tracker , " >
Recent Advances in Intrusion Detection , Proceedings of the 14th
International Symposium , Sep . 20 - 21 , 2011 , pp . 1 - 20 , Menlo Park ,
CA , USA
Brookwood , Nathan , “ Everything You Always Wanted to Know
About HSA But Were Afraid to Ask , " Oct . 2013 , 8 pgs . , White
Paper , USA .
Bruening , D . et al . , “ Practical Memory Checking with Dr .
Memory , ” Proceedings of the 9th Annual IEEE / ACM International
Symposium on Code Generation and Optimization , Apr . 2 - 6 , 2011 ,
pp . 213 - 223 , IEEE Computer Society , Washington , DC , USA .
Che , S . et al . , “ Rodinia : A Benchmark Suite for Heterogeneous
Computing , ” Proceedings of the 2009 IEEE International Sympo
sium on Workload Characterization , Oct . 4 - 6 , 2009 , pp . 44 - 54 ,
IEEE Computer Society , Washington , DC , USA .
Che , S . et al . , “ Pannotia : Understanding Irregular GPGPU Graph
Applications , ” Proceedings of 2013 IEEE International Symposium
on Workload Characterization , Sep . 22 - 24 , 2013 , pp . 185 - 195 ,
IEEE , Portland , OR , USA .
Chen , T . et al . , “ DianNao : A Small - Footprint High - Throughput
Accelerator for Ubiquitous Machine - Learning , ” Proceedings of the
19th International Conference on Architectural Support for Pro
gramming Languages and Operating Systems , Mar . 1 - 5 , 2014 , pp .
269 - 284 , ACM , Salt Lake City , UT , USA .
Clemons , J . et al . , “ EVA : An Efficient Vision Architecture for
Mobile Systems , ” Proceedings of the 2013 International Conference
on Compilers , Architectures and Synthesis for Embedded Systems ,
Sep . 29 - Oct . 4 , 2013 , 10 pgs . , Article No . 13 , IEEE , Montreal , QC ,
CA .
Codrescu , L . , “ Qualcomm Hexagon DSP : An Architecture Opti
mized for Mobile Multimedia and Communications , ” Presented at
Hot Chips : A Symposium on High Performance Chips , Aug . 25 - 27 ,
2013 , 23 pgs . , Palo Alto , CA , USA .
Coombs , J . et al . , “ OpenCV on TI ' s DSP + ARM Plallorms : Miti
gating the Challenges of Porting OpenCV to Embedded Platforms , "
Jul . 2011 , 12 pgs . , Texas Instruments White Paper , USA .
Cowan , C . et al . , " StackGuard : Automatic Adaptive Detection and
Prevention of Buffer - Overflow Attacks , " Proceedings of the 7th
USENIX Security Symposium , Jan . 26 - 29 , 1998 , 15 pgs . , San
Antonio , TX , USA .
Danalis , A . et al . , “ The Scalable Heterogeneous Computing (SHOC)
Benchmark Suite , ” Proceedings of the 3rd Workshop on General
Purpose Computation on Graphics Processing Units , Mar . 14 , 2010 ,
pp . 63 - 74 , ACM , Pittsburgh , PA , USA .
Dang , T . et al . , “ The Performance Cost of Shadow Stacks and Stack
Canaries , ” Proceedings of the 10th ACM Symposium on Informa
tion , Computer and Communications Security , Apr . 14 - 17 , 2015 , pp .
555 - 566 , ACM , Singapore .
Devietti , J . et al . , “ HardBound : Architectural Support for Spatial
Safety of the C Programming Language , ” Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems , Mar . 1 - 5 , 2008 , pp . 103 - 114 ,
ACM , Seattle , WA , USA .
Ditty , M . et al . , “ Nvidia ' s Tegra K1 System - on - Chip , ” Presented at
Hot Chips : A Symposium on High Performance Chips , Aug . 10 - 12 ,
2014 , 26 pgs . , ACM , Cupertino , CA , USA .
Doweck , J . et al . , “ Inside 6th Generation Intel Core : New
Microarchitecture Code Named Skylake , ” Presented at Hot Chips :
A Symposium on High Performance Chips , Aug . 21 - 23 , 2016 , 39
pgs . , ACM , Cupertino , CA , USA .
Eigler , F . , “ Mudflap : Pointer Use Checking for C / C + + , " Proceed
ings of the GCC Developers Summit , May 25 - 27 , 2003 , pp . 57 - 70 ,
Ottawa , ON , CA .
Elteir , M . et al . , “ StreamMR : An Optimized MapReduce Frame
work for AMD GPUs , ” Proceedings for the 17th IEEE International
Conference on Parallel and Distributed Systems , Dec . 7 - 9 , 2011 , 8
pgs . , IEEE , Tainan , TW .
Feng , W . et al . , “ OpenCL and the 13 Dwarfs : A Work in Progress , "
Proceedings of the 3rd ACM / SPEC International Conference on
Performance Engineering , Apr . 22 - 25 , 2012 , pp . 291 - 294 , ACM ,
Boston , MA , USA .

US 10 , 067 , 710 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Grauer - Gray , S . et al . , “ Auto - tuning a High - Level Language to GPU
Codes , ” Innovative Parallel Computing , May 13 - 14 , 2012 , 10 pgs . ,
San Jose , CA , USA .
Harris , M . et al . , “ CUDA 8 and Beyond , ” Presented at the NVIDIA
GPU Technology Conference , Apr . 4 - 7 , 2016 , 39 pgs . , San Jose ,
CA , USA
Hasabnis , N . et al . , “ Light - weight Bounds Checking , ” Proceedings
of the Tenth International Symposium on Code Generation and
Optimization , Mar . 31 - Apr . 4 , 2012 , pp . 135 - 144 , ACM , San Jose ,
CA , USA .
HSA Foundation , “ Heterogenous System Architecture ” Retrieved
from : http : / / www . hsafoundation . com on Feb . 13 , 2017 .
Intel Corp . , “ Introduction to Intel Memory Protection Extensions , "
Technical Report , Jul . 16 , 2013 , 4 pgs . . Retrieved from : https : / /
software . intel . com / en - us / articles / introduction - to - intel - memory
protection - extensions on Feb . 12 , 2017 .
Intel Corp . , “ Intel Inspector 2017 , ” 5 pgs . , Retrieved from : https : / /
software . intel . com / en - us / intel - inspector - xe on Feb . 12 , 2017 .
Khronos Group , “ WebCL Validator , " https : / / github . com /
KhronosGroup / webcl - validator , 2014 , 4 pgs . Accessed Feb . 13 ,
2017 .
Krishnan , G . et al . , “ Energy Efficient Graphics and Multimedia in
28nm Carrizo APU , ” Presented at Hot Chips : A Symposium on
High Performance Chips , Aug . 23 - 25 , 2015 , 34 pgs . , ACM , Cuper
tino , CA , USA .
Larabel , M . et al . , “ Phoronix Test Suite , " http : / / www . phoronix - test
suite . com , 2011 , 5 pgs . Accessed Feb . 13 , 2017 .
Lepisto , M . et al . , “ WebCL Memory Protection : Source - to - Source
Instrumentation , " http : / / learningwebcl . com / wp - content / uploads /
2013 / 11 / WebCL MemoryProtection . pdf , 2013 , 32 pgs . Accessed
Feb . 13 , 2017 .
Lewis , B . T . , “ Performance and Programmability Trade - offs in the
OpenCL 2 . 0 SVM and Memory Model , ” Presented at the 5th
Workshop on Determinism and Correctness in Parallel Program
ming , Mar . 1 - 5 , 2014 , 39 pgs . , Salt Lake City , UT , USA .
Luk , C . et al . , “ Pin : Building Customized Program Analysis Tools
with Dynamic Instrumentation , ” Proceedings of the Conference on

Programming Language Design and Implementation , Jun . 12 - 15 ,
2005 , pp . 190 - 200 , ACM , Chicago , IL , USA .
Lvin , V . et al . , “ Archipelago : Trading Address Space for Reliability
and Security , ” Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating
Systems , Mar . 1 - 5 , 2008 , 10 pgs . , ACM , Seattle , WA , USA .
Perens , B . “ Electric Fence Malloc Debugger , ” http : / / linux . die . net /
man / 3 / efence , 1987 , 7 pgs . , Berkeley , CA , USA . Accessed Feb . 13 ,
2017 .
Meer , H . , “ Memory Corruption Attacks : The (almost) Complete
History , ” BlackHat USA , Jun . 25 , 2010 , 35 pgs . Thinkst Applied
Research , USA .
Micro Focus , “ BoundsChecker , " http : / / www . borland . com / en - GB /
Products / Software - Testing Automated - Testing / Devpartner - Studio ,
2016 , 8 pgs . Accessed Feb . 13 , 2017 .
Miele , Andrea , “ Buffer Overflow Vulnerabilities in CUDA : A
Preliminary Analysis , " Journal of Computer Virology and Hacking
Techniques , May 2016 , pp . 113 - 120 , vol . 12 , Issue 2 , Springer Paris ,
USA .
Mukherjee , S . et al . , “ Exploring the Features of OpenCL 2 . 0 , "
Proceedings of the 3rd International Workshop on OpenCL , May
12 - 13 , 2015 , 4 pgs . , Article No . 5 , ACM , Palo Alto , CA , USA .
Nagarakatte , S . et al . , " SoftBound : Highly Compatible and Com
plete Spatial Memory Safety for C , ” Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and
Implementation , Jun . 15 - 21 , 2009 , pp . 245 - 258 , ACM , Dublin ,
Ireland .
Nethercote , N . et al . , “ Valgrind : A Framework for Heavyweight
Dynamic Binary Instrumentation , ” Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation , Jun . 10 - 13 , 2007 , pp . 89 - 100 , ACM , San Diego ,
CA , USA .
Newsome , J . et al . , “ Dynamic Taint Analysis for Automatic Detec
tion , Analysis , and Signature Generation of Exploits on Commodity
Software , ” Proceedings of the 12th Annual Network and Distributed
System Security Symposium , Feb . 3 - 4 , 2005 , 17 pgs . , San Diego ,
CA , USA

* cited by examiner

- 106

U . S . Patent Lisrien

100

Storage

104

-

102 .

Sep . 4 , 2018

Input Driver

Processor

Memory

in

Output Driver
N APD

Sheet 1 of 4

Input Devices

116

801

Output Devices

Display Device

so

FIG . 1

110

|

US 10 , 067 , 710 B2

- 118

U . S . Patent

Memory
104

Operating System
120

Kernel Mode

122

Applications
126

Sep . 4 , 2018

Accelerated Processing Device

116

Graphics Processing Pipeline

134

Scheduler 136

132

132

132

Compute Unit
SIMD Unit

Compute Unit
SIMD Unit

Compute Unit
SIMD Unit

Sheet 2 of 4

138

138

138

SIMD Unit
138

SIMD Unit
138

SIMD Unit
138

FIG . 2

US 10 , 067 , 710 B2

300

U . S . Patent

306

308

.

Return Address

Return Address src (n + 1)

312 -

306

Return Address

Canary Value

Sep . 4 , 2018

buftning

- 304

src [n]

buf + n

302

NNNN

$ 310

302

Sheet 3 of 4

buf * 1

- 304

src [1]

302 buf + 1

buf

buf

buf

7 - 304

src [0]

- 304

memcpy (buf , src , n + 5)

FIG . 3A

FIG . 3B

FIG . 3C

US 10 , 067 , 710 B2

U . S . Patent

Determine Initial Memory Buffer Call

manera 402

400 400

Create New Memory Buffer

404 h404

Sep . 4 , 2018

Assign Values to Additional Memory Regions of New Memory Buffer

- 406

Monitor Additional Memory Regions

h

408

Sheet 4 of 4

416

7410

No Buffer Overflow

No ,

Change to Values ?

Yes

Buffer Overflow Indicate Overflow
h414

FIG . 4

US 10 , 067 , 710 B2

US 10 , 067 , 710 B2

DETECTING BUFFER OVERFLOWS IN memory regions (e . g . , canary regions) are added adjacent to
GENERAL - PURPOSE GPU APPLICATIONS the memory buffers (e . g . , before an address at the beginning

of the buffer or after an address at the end of the buffer) .
BACKGROUND Known values are stored into the additional memory

5 regions . The extended regions are then monitored to deter
Memory buffers are typically used to temporarily store mine changes to the known values . Buffer overflows (e . g . ,

related data (e . g . , a plurality of social security numbers) in related data intended for the buffer is written outside the
a contiguous address space or collection of contiguous buffer) are detected when changes to the known values are
memory regions to facilitate efficient access of the related determined . Indications of data written outside the buffer , as
data during execution of a program . The buffers are imple - 10 well as information used to facilitate debugging of the data
mented in portions of physical memory as well as virtual written outside the buffer , are provided when the buffer
memory (i . e . , in software) which include memory regions overflows are detected . The apparatuses and methods also
having virtual addresses mapped to physical addresses of the allow execution overhead to scale with the number of buffers
physical memory . used during execution .

Typically , the size of a memory buffer is not checked 15 Apparatuses and methods disclosed herein detect buffer
when the buffer is accessed (i . e . , the related data is written overflow caused by accelerator kernels (e . g . , OpenCL ker
to the buffer) , allowing accesses to memory regions outside nels , CUDA kernels , C + + AMP or OpenMP device - side
(e . g . , adjacent to the buffer . As a result of an address work) . Application program interface (API) calls are
calculation exceeding the bounds of a buffer , data is written wrapped in order to gather information about the buffers
to the memory regions outside the buffer resulting in a buffer 20 (e . g . , base address , lengths) , and indications are provided for
overflow . Buffer overflows contribute to a variety of unde writes outside of a memory buffer . The buffer overflow
sirable events , such as program crashes , data corruption , and detection methods disclosed herein can utilize parallelism
security issues . afforded by accelerated processors (e . g . , compute units of a

GPU) to perform checks quickly and with decreased bus
BRIEF DESCRIPTION OF THE DRAWINGS 25 accesses . Buffer overflow detection can slow down the

program (i . e . , cause execution time overhead) , use more
A more detailed understanding can be had from the power , and reduce application energy efficiency . The appa

following description , given by way of example in conjunc ratuses and methods presented herein allow these overheads
tion with the accompanying drawings wherein : to scale with the number of buffers used during execution .

FIG . 1 is a block diagram of an example device in which 30 A processing apparatus is provided that includes a
buffer overflow detection is implemented ; memory and an accelerated processing device . The memory

FIG . 2 is a block diagram of exemplary processing includes a plurality of memory regions each corresponding
apparatus components used to implement buffer overflow to one of a plurality of memory addresses and configured to
detection ; store data associated with the one memory address . The

FIGS . 3A and 3B are diagrams of a memory portion , 35 accelerated processing device includes a plurality of pro
including a memory buffer , used to illustrate exemplary cessors each in communication with the memory . The accel
memory buffer overflow ; erated processing device is configured to determine a request

FIG . 3C is a diagram illustrating an exemplary new to allocate an initial memory buffer comprising a number of
memory buffer which includes an additional memory region contiguous memory regions , create a new memory buffer
adjacent to the contiguous memory regions of the initial 40 comprising one or more additional memory regions adjacent
memory buffer ; and to the contiguous memory regions of the initial memory

FIG . 4 is a flow diagram illustrating an exemplary method buffer , assign one or more values to the one or more
of buffer overflow detection . additional memory regions and detect a change to the one or

more values at the one or more additional memory regions .
DETAILED DESCRIPTION 45 A computer implemented method is provided that

includes storing data in a plurality of memory regions each
Conventional buffer overflow detection methods include corresponding to one of a plurality of memory addresses and

adding extra checks into a program to validate individual each in communication with a plurality of processors . The
memory accesses . A compiler adds , for example , extra method also includes determining a request to allocate an
checking instructions around buffer accesses . These conven - 50 initial memory buffer comprising a number of contiguous
tional buffer overflow detection methods often lead to com memory regions and creating a new memory buffer com
plex compiler changes and large overhead , such as for prising one or more additional memory regions adjacent to
example , slowing program execution (i . e . , execution time the contiguous memory regions of the initial memory buffer .
overhead) , using more power , and reducing application The method further includes assigning one or more values to
energy efficiency . 55 the one or more additional memory regions and detecting a

Further , heterogeneous processing systems , which change to the one or more values at the one or more
include different processor types (e . g . , CPU and GPU) , additional memory regions .
continue to develop tighter integration of memory sharing A non - transitory computer readable medium is provided
between processor types , including integration of physical that includes instructions for causing a computer to execute
as well as virtual memory sharing . This leads to increased 60 a method of buffer overflow detection . The instructions
risk of buffer overflows caused by data processed by one comprise storing data in a plurality of memory regions each
processor type (e . g . , GPU) corrupting data to be processed corresponding to one of a plurality of memory addresses and
by a second processor type (e . g . , CPU) . each in communication with a plurality of processors , deter

The present application provides apparatuses and meth - mining a request to allocate an initial memory buffer com
ods for efficient buffer overflow detection . Function calls 65 prising a number of contiguous memory regions , creating a
which allocate memory regions to memory buffers (e . g . , new memory buffer comprising one or more additional
OpenCL memory buffers) are identified and additional memory regions adjacent to the contiguous memory regions

US 10 , 067 , 710 B2

of the initial memory buffer , assigning one or more values to 102 . The kernel mode driver 122 controls operation of the
the one or more additional memory regions , detecting a APD 116 by , for example , providing an API to software
change to the one or more values at the one or more (e . g . , applications 126) executing on the processor 102 to
additional memory regions . access various functionality of the APD 116 . The kernel

As used herein , programs include sequences of instruc - 5 mode driver 122 also includes a just - in - time compiler that
tions to be executed using one or more processors to perform compiles programs for execution by processing components
procedures or routines (e . g . , operations , computations , func (such as the SIMD units 138 discussed in further detail tions , processes , jobs) . Processing of programmed instruc below) of the APD 116 . tions includes one or more of a plurality of processing The APD 116 executes commands and programs for stages , such as but not limited to fetching , decoding , sched - 10 selected functions , such as graphics operations and non uling for execution and executing the programmed instruc graphics operations that are suited for parallel processing . tions . Programmed instructions include store instructions
which , when executed , store data resulting from their execu The APD 116 is , for example , used for executing graphics
tion (also referred to hereinafter as output) from registers to pipeline operations such as pixel operations , geometric
memory . computations , and rendering an image to display device 118

FIG . 1 is a block diagram of an exemplary device 100 . based on commands received from the processor 102 . The
The device 100 includes , for example , a computer , a gaming APD 116 also executes compute processing operations that
device , a handheld device , a set - top box , a television , a are not directly related to graphics operations , such as
mobile phone , or a tablet computer . As shown in FIG . 1 , operations related to video , physics simulations , computa
exemplary device 100 includes a processor 102 , memory 20 tional fluid dynamics , or other tasks , based on commands
104 , a storage 106 , one or more input devices 108 , one or received from the processor 102 .
more output devices 110 , an input driver 112 and an output Exemplary processor types for APD 116 include a CPU ,
driver 114 . It is understood that the device 100 can include a GPU , a CPU and GPU located on the same die , or one or
additional components not shown in FIG . 1 . more processor cores (i . e . , compute units) 132 wherein each

Exemplary processor types for processor 102 include a 25 processor core is a CPU or a GPU . Each compute unit (i . e . ,
CPU , a GPU , an accelerated processing device , a CPU and compute core) 132 includes one or more SIMD units 138
GPU located on the same die , or one or more processor each configured to perform operations at the request of the
cores , wherein each processor core is a CPU or a GPU . processor 102 in a parallel manner according to a SIMD Memory 104 is , for example , located on the same die as the paradigm . The SIMD paradigm is one in which multiple processor 102 or located separately from the processor 102 . 30 processing elements share a single program control flow unit Exemplary memory types for memory 104 include a volatile and program counter and thus execute the same program but memory , a non - volatile memory , for example , random are able to execute that program with different data . In one access memory (RAM) , dynamic RAM , a cache , a memory

example , each SIMD unit 138 includes sixteen lanes , where buffer , physical memory .
Exemplary storage types for storage 106 include a fixedor 35 each lane executes the same instruction at the same time as

removable storage , for example , a hard disk drive , a solid the other lanes in the SIMD unit 138 but executes that
state drive , an optical disk , or a flash drive . Exemplary input instruction with different data . Lanes are , for example ,
device types for input device 108 include a keyboard , a switched off with predication if not all lanes need to execute
keypad , a touch screen , a touch pad , a detector , a micro a given instruction . Predication is also used , for example , to
phone , an accelerometer , a gyroscope , a biometric scanner , 40 execute programs with divergent control flow . More spe
or a network connection (e . g . , a wireless local area network cifically , for programs with conditional branches or other
card for transmission and / or reception of wireless IEEE 802 instructions where control flow is based on calculations
signals) . Exemplary output device types for output devices performed by an individual lane , predication of lanes cor
110 include a display , a speaker , a printer , a haptic feedback responding to control flow paths not currently being
device , one or more lights , an antenna , or a network con - 45 executed , and serial execution of different control flow paths
nection (e . g . , a wireless local area network card for trans - allows for arbitrary control flow .
mission and / or reception of wireless IEEE 802 signals) . The basic unit of execution in compute units 132 is a

The input driver 112 communicates with the processor work - item . Each work - item represents a single instantiation
102 and the input devices 108 , and permits the processor 102 of a program that is to be executed in parallel in a particular
to receive input from the input devices 108 . The output 50 lane . Work - items are , for example , executed simultaneously
driver 114 communicates with the processor 102 and the as a " wavefront ” on a single SIMD processing unit 138 .
output devices 110 , and permits the processor 102 to send Multiple wavefronts are , for example , included in a " work
output to the output devices 110 . It is noted that the input group , ” which includes a collection of work - items desig
driver 112 is an optional component (indicated by dashed nated to execute the same program . A work group is , for
lines) and that the device 100 will operate in the same 55 example , executed by executing each of the wavefronts that
manner if the input driver 112 is not present . make up the work group . The wavefronts are , for example ,

FIG . 2 is a block diagram of the device 100 , illustrating executed sequentially on a single SIMD unit 138 or partially
additional details related to execution of processing tasks on or fully in parallel on different SIMD units 138 . Wavefronts
the APD 116 . The processor 102 maintains , in system are thought of , for example , as the largest collection of
memory 104 , one or more control logic modules for execu - 60 work - items executed simultaneously on a single SIMD unit
tion by the processor 102 . The control logic modules include 138 . Thus , if commands received from the processor 102
an operating system 120 , a kernel mode driver 122 , and indicate that a particular program is to be parallelized to such
applications 126 . These control logic modules control vari - a degree that the program cannot execute on a single SIMD
ous aspects of the operation of the processor 102 and the unit 138 simultaneously , then that program is broken up into
APD 116 . For example , the operating system 120 directly 65 wavefronts which are parallelized on two or more SIMD
communicates with hardware and provides an interface to units 138 or serialized on the same SIMD unit 138 (or both
the hardware for other software executing on the processor parallelized and serialized as needed) . A scheduler 136 is

US 10 , 067 , 710 B2

configured to perform operations related to scheduling vari As shown in FIG . 3A , a first variable , corresponding to
ous wavefronts on different compute units 132 and SIMD the array of entries at memory regions 304 of buffer 302 , is
units 138 . allocated adjacent to the entry at memory region 306 , which

The parallelism afforded by the compute units 132 is includes a second variable (i . e . , the return address of the
suitable for graphics related operations such as pixel value 5 function) .
calculations , vertex transformations , and other graphics As described above , buffer overflows result in values
operations . A graphics pipeline 134 which accepts graphics being written into regions outside the buffer which are not
processing commands from the processor 102 provides associated with the regions outside the buffer . For example ,
computation tasks to the compute units 132 to be executed , the regions in memory buffer 302 are allocated for related
for example , in parallel by the compute units 132 . 10 data (corresponding to " src ") for n + 1 number of entries . As

The compute units 132 are also used to perform compu - shown in FIG . 3B , when the related data intended for buffer
tation tasks not related to graphics or not performed as part 302 is written to more than [n + 1] number of entries , a buffer
of the “ normal ” operation of a graphics pipeline 134 (e . g . , overflow occurs and the return address is overwritten by data
custom operations performed to supplement processing per (i . e . , src [n + 1]) . The entries do not need to be accessed in a
formed for operation of the graphics pipeline 134) . An 15 sequential order , however , in order for an overflow to occur .
application 126 or other software executing on the processor That is , a buffer overflow also occurs , for example , when
102 transmits programs that define such computation tasks memory adjacent to the buffer is accessed unintentionally or
to the APD 116 for execution . deliberately without accessing the buffer in sequential order

FIGS . 3A and 3B are diagrams of a memory portion 300 , (e . g . , without accessing the buffer in the order " buf , buf + 1 ,
including a memory buffer 302 , used to illustrate exemplary 20 buf + 2 , . . . buf + n , buf + n + 1 ”) . Depending on the structure of
memory buffer overflow . Memory portion 300 is , for the program , writes relative to this buffer address and
example , a non - volatile portion of memory 104 shown in outside of its boundaries are caused , for example , from other
FIGS . 1 and 2 . As shown in FIG . 3A , memory buffer 302 inputs .
includes a plurality of buffer memory entries 304 beginning Accordingly , the value src [n + 1] written into the region
with entry " buf ” (corresponding to a first address of the 25 306 is not associated with the region 306 outside the buffer
buffer memory portion 300) and ending with entry “ buf + n ” 302 , resulting in one or more potentially problematic con
(corresponding to a last address of the buffer memory ditions (e . g . , program crash , data corruption , or security
portion 300) . As shown in FIG . 1 , entries 306 and 308 are issue) . For example , when the data at region 306 is accessed
outside the buffer 302 , with entry 306 being the entry a number of cycles after the buffer overflow occurs , incor
adjacent to the last entry “ bufun . " Each entry in the exem - 30 rect data (i . e . , data originally from src [n + 1]) is accessed
plary memory portion 300 corresponds to a region of because the expected return address value is not at region
memory (e . g . , physical memory region or virtual memory 306 . The access of the incorrect data results , for example , in
region) and includes a memory address and data associated an error (e . g . , the program returning to an incorrect location
with the memory address . and running erroneous code) which is difficult to observe

Buffer overflows occur when related data (e . g . , a plurality 35 and debug because the error manifests in ways or at loca
of social security numbers) intended to be stored in a buffer tions unrelated to the buffer . By detecting the buffer over
(e . g . , buffer 302) is written to one or more memory regions flow (e . g . , detecting a change to a canary value) and pro
(e . g . , regions corresponding to entries 306 and 308 in FIG . viding an indication of the buffer overflow before the
3A) outside of (e . g . , adjacent to) the memory buffer . For erroneous usage causes a crash or data corruption , the cause
example , overflows occur when related data for a buffer is 40 (i . e . , the buffer overflow) of the error is more easily deter
written to one or more memory regions after a last entry mined and results in less overhead than waiting until the
(e . g . , at entry 308 after entry " buf + n ") as shown in FIG . 3A occurrence of the error .
or at one or more regions (not shown) prior to a region When the buffer overflow is determined after a kernel
corresponding to entry “ buf ” shown in FIG . 3A . Buffer executing on a processor of one type (e . g . , GPU or other
overflows result from a variety of causes , such as incorrect 45 accelerator) completes execution but before any additional
programming instructions , exceeding a data limit (e . g . , instruction are executed on a processor of another type (e . g . ,
defined in a program) to be accessed in a program , or a CPU) , the occurrence of the buffer overflow is determined
hacker giving an input to the program that is larger than the within seconds (e . g . , within 5 seconds) after the overflow
predefined buffer meant to hold that input . occurs depending on the speed of the processor of the other

Buffer overflows result in values being written into 50 type implementing the detection of the change to the canary
regions outside the buffer which are not associated with the values . Accordingly , the overflow occurrence is determined
regions outside the buffer . Because of this disassociation , before an occurrence of problematic condition (e . g . , pro
buffer overflows contribute to conditions which cause pro - gram crash , data corruption , or security issue) resulting from
gram crashes , data corruption , and security issues . An the overflow .
example of one of these buffer overflow conditions is 55 When the buffer overflow is determined , due to the
illustrated in FIGS . 3A and 3B , in which a return address of detection of the changed canary values , after a kernel
a function is overwritten due to a memory buffer overflow . executing on a processor of one type (e . g . , GPU or other
The buffer overflow condition shown in FIGS . 3A and 3B is accelerator) completes execution , but asynchronously , while
merely exemplary . Other examples of memory buffer over - additional instructions are executing on a processor of
flows , which contribute to conditions which cause program 60 another type (e . g . , CPU) , the occurrence of the buffer
crashes , data corruption or create security issues , include but overflow is determined within a longer time range (e . g . ,
are not limited to pointer corruption (e . g . , re - directs memory within days) after the overflow occurs than in the shorter
accesses to reserved or inaccessible memory locations , time range describe above . Determination of the overflow
resulting in program crashes) , data corruption (e . g . , incor - within this longer time range , however , provides for easier
rectly altering control flow or program output results) , and 65 identification of a cause (i . e . , the overflow) of a potentially
function pointer corruption (e . g . , leading to jumps to an problematic condition (e . g . , program crash , data corruption ,
unexpected segment of a program ’ s execution) . or security issue) and potentially more useful debugging

US 10 , 067 , 710 B2

information than in situations in which the problematic regions of the new memory buffers . A processor (e . g . , APD
condition does not arise for months or years after the 116) dynamically determines switching between detection
occurrence of the overflow . For example , when , data cor - of buffer overflows of the different processor types by , for
ruption , such as a changed value in a database used for an example switching between (i) a first detection process of
annual financial report , resulting from a buffer overflow is 5 detecting a change to one or more values of corresponding
determined months or years after the overflow , it becomes additional memory regions allocated to the processor of the
difficult to trace the error back to its cause (i . e . the overflow) . first type (e . g . , GPU) and (ii) a second detection process of
As shown in FIG . 3C , a new memory buffer 310 is created detecting a change to one or more values of corresponding

which includes an additional memory region 312 adjacent to additional memory regions allocated to the processor of the
the contiguous memory regions 304 of the initial memory 10 second type (e . g . , CPU) . The overflow of each of the new
buffer 302 . As shown in FIG . 3C , a canary value is stored at memory buffers is determined (e . g . , by APD 116 or by a user
additional memory region 312 after the entry " buf + n ” of upon being provided an indication of the detected overflow) ,
buffer 302 . Additional memory regions which store canary for example , based on the detected changes to the values of
values , however also include one or more regions before the the corresponding additional memory regions allocated to
" buf ” entry of buffer 302 . The canary value is a known or 15 the processor of the first type and the second type . It is
calculable value that is monitored to determine if and when understood that switching is performed between any number
the value changes . After the related data (src [0] - src [n + 1]) is of processors of different types .
copied , for example as shown in FIG . 3B , to buffer 302 , but Switching between the first detection process and the
before the related data (src [0] - src [n + 1]) is further used (e . g . , second detection process includes , for example , determin
accessed) by a program , it is determined (e . g . , by processor 20 ing : (i) a first estimated time to detect the change to the one
102) whether the value in the canary region has changed . or more values of the one or more corresponding additional
When a change to the canary value is detected , a buffer memory regions allocated to the processor of the first type ;
overflow is determined . and (ii) a second estimated time to detect the change to the

As described above , this detected value change is per - one or more values of the one or more corresponding
formed : (i) asynchronously , in which work to perform the 25 additional memory regions allocated to the processor of the
detection is assigned to one processor type (e . g . , GPU) while second type .
the original program or application continues executing on The determination of the first estimated time and the
another processor type (e . g . , continues executing on the second estimated time is , for example , based on at least one
CPU) or (ii) after a kernel executing on a processor of one of : (i) a number of the initial buffers allocated to the
type (e . g . , GPU or other accelerator) completes execution 30 processor of the first type ; (ii) a number of the initial buffers
but before any additional instruction are executed on a allocated to the processor of the second type ; (iii) an
processor of another type . identification of the processor of the first type ; (iv) an

Because the value changes are detected , procedures for identification of the processor of the second type , (v)
correcting (i . e . , debugging) errors resulting from the buffer whether the image is a flat memory region of a multi
overflow are , for example , less difficult , less time consuming 35 dimensional image type , (vi) the size of the buffers , (vii) the
and more efficient to implement . Examples of these proce - size of the canary regions , (viii) the speed of the connection
dures for correcting the errors associated with buffer over - between the processors , and (ix) the estimated performance
flow include increasing the size of the buffer , limiting the of each of the processors .
amount of data stored in the buffer , modifying code , and Based on the first estimated time and the second estimated
checking for particular inputs to determine if a hack has 40 time , a determination is made as to whether to : (i) detect the
occurred . change to the one or more values of the one or more

Buffer overflow detection includes , for example , detec - corresponding additional memory regions allocated to the
tion of overflow of buffers associated with memories shared processor of the first type or (ii) detect the change to the one
by a plurality of processor types , such as processors of APD or more values of the one or more corresponding additional
116 . Detection of a buffer overflow of a buffer allocated to 45 memory regions allocated to the processor of the second
a first processor type (e . g . , a GPU) is used to prevent type . For example , a determination is made to detect the
undesirable conditions to the first processor type , such as the change to the one or more values of the one or more
injection of code (i . e . , hacking) to control operation of the corresponding additional memory regions allocated to the
first processor type (e . g . , operation of the GPU) . Detection processor of the first type when the first estimated time is
of a buffer overflow of a buffer allocated to the first 50 equal to or less than the second estimated time . Alterna
processor type (e . g . , the GPU) is also used to prevent tively , a determination is made to detect the change to the
undesirable conditions to the second processor type (e . g . , the one or more values of the one or more corresponding
CPU) having buffers accessible by the GPU (e . g . , via additional memory regions allocated to the processor of the
interconnects) , such as data corruption in CPU memory second type when the first estimated time is greater than the
from a buffer overflow in a GPU kernel . 55 second estimated time .

Buffer overflow detection includes dynamically switching The APD 116 dynamically determines the switching
between detecting buffer overflows of buffers of different based on one or more factors , such as for example , a number
processor types , such as a GPU (or other accelerator) and a of initial buffers allocated to the processor of the first type
CPU . A plurality of requests to allocate initial memory and the second type . The number of initial buffers is used to
buffers is determined , for example , each comprising con - 60 determine the switch , for example , by comparing the num
tiguous memory regions allocated to one of a processor of a ber of buffers of each type to each other or a threshold . The
first type (e . g . , GPU) and a processor of a second type (e . g . , one or more factors also include , for example , an identifi
CPU) . A plurality of new memory buffers are created , each cation of the processor of the first type and the second type
comprising one or more additional memory regions adjacent (e . g . , whether a processor is a CPU , a GPU , or another type
to contiguous memory regions allocated to the processor of 65 of accelerator) . Other factors for dynamically determining
the first type or the processor of the second type . Values the switching include the use of a memory region (e . g .
(e . g . , canary values) are assigned to the additional memory whether the region holds a flat buffer or a multi - dimensional

US 10 , 067 , 710 B2
10

image) , the size of a buffer , the size of the additional copy is extended with the additional regions , and , upon
memory regions , the speed of any connections between the completion of the kernel , the data in the shadow buffer (but
processor types , and the estimated performance of each of not in the canary regions) is copied back to the original host
the processors . memory portion . For example , OpenCL allows OpenCL

The APD 116 is configured to perform any of the tasks 5 implementations to cache buffer contents of host pointer
described above based on estimations of overheads (e . g . , regions . Accordingly , the buffer updates are cached until
runtimes , bus transfer times , and storage sp ace) . after the canary values of the additional regions are moni

In applications such as those that use the OpenCL pro - tored for changes .
gramming standard , “ Global ” buffers are typically first allo Information about the new memory buffer is stored in
cated , using functions (e . g . , " clCreateBuffer ” or “ clCre - 10 memory . The information includes , for example , informa
ateImage ”) , into a first processor (e . g . , GPU) memory tion indicating the addresses of the additional memory
without pointers , but stored , for example , into memory regions having the assigned canary values , information
associated with a second processor (e . g . , CPU) , which indicating the canary values , information indicating limita
accesses the OpenCL buffer from the GPU by copying the tions for the canary values , and information indicating
data into its memory (e . g . , memory associated with the 15 whether the memory buffer is a write buffer or read buffer .
CPU) . These buffers are also stored , for example , in the It should be understood that many variations are possible
memory of the first processor (e . g . GPU) and accessed by based on the disclosure herein . Although features and ele
the second processor (e . g . CPU) and additionally or alter - ments are described above in particular combinations , each
natively in the memory of the second processor (e . g . CPU) feature or element is , for example , used alone without the
and directly accessed by the first processor (e . g . GPU) . 20 other features and elements or in various combinations with
Accordingly , buffer overflow detection methods and appa - or without other features and elements .
ratuses described herein include detection of buffer over The call to allocate the initial buffer memory is deter
flows in these memory portions by wrapping calls to func - mined , for example , by determining when an API call is
tions that create memory buffers and expanding the made . Monitoring of the API calls to libraries varies by
requested size to include additional portions (e . g . , canary 25 operating systems . For example , some operating systems
regions) . utilize shimming or library interposing mechanisms to

Shared virtual memory (SVM) includes memory buffers implement API wrappers . The API calls used to allocate
associated with a processor (e . g . , GPU) which contains , for memory buffers are different for each library implementa
example , pointers to their own buffer and to other SVM tion (e . g . , OpenCL , CUDA or other library) . For example ,
buffers associate with another processor (e . g . , CPU) . 30 for OpenCL implementation , function calls to buffer cre
Coarse - grained SVM buffers are mapped into CPU memory ation APIs (e . g . , " CISVMAlloc , “ clCreateBuffer , " and
to access the buffers on the CPU . When the buffer is mapped “ clCreateImage ") are monitored . APIs that are used to assign
to one processor type (e . g . GPU) or another (e . g . CPU) , the arguments to OpenCL kernels (e . g . , " clSetKernelArg ” and
pointers remain valid . Fine - grained SVM buffers contain “ clSet KernelArgSVMPointer ”) are detected , using the infor
pointers that are valid on both the CPU and the GPU without 35 mation about each new memory buffer , as described above .
using manual mapping . Accordingly , buffer overflow detec - A list of each buffer accessible by each kernel is stored and
tion methods and apparatuses described herein monitors used when the kernel is launched to know which buffers are
buffer overflows in these regions by wrapping calls to SVM monitored for overflows . For each global memory buffer
buffers and expanding the requested allocation size to argument , a list of buffer sizes , canary values , and pointers
include additional portions (e . g . , canary regions) . 40 to the buffers ' meta - data is maintained .

Images include memory buffers associated with a proces . As shown in block 404 of method 400 , when the call to
sor (e . g . , GPU) which represents multi - dimensional data . allocate the initial memory buffer is detected , a new memory
For example , when a 2D image is accessed by giving the buffer , such as buffer 310 shown in FIG . 3C , is created by
horizontal and vertical coordinates into the image , calcula - allocating one or more additional memory regions , such as
tions are performed , via hardware or software) to decide 45 region 312 in FIG . 3C , adjacent to the contiguous memory
where the address is located in the image buffer . Multi - regions 302 of the initial memory buffer 302 . For example ,
dimensional images include , for example , buffer overflows a new memory buffer is allocated having a size (e . g . ,
within the image . An overflow address is , for example , memory buffer of size 110 entries) that is larger than the size
calculated to be lying within the buffer even when a row (e . g . , memory buffer of size 100 entries) of an initial buffer .
overflow occurs . Accordingly , buffer overflow detection 50 Accordingly , using this example , 5 additional regions are
methods and apparatuses described herein monitor buffer added adjacent to each end (e . g . , before and after) the
overflows in these regions by wrapping calls to image buffer contiguous regions of the initial buffer . The contiguous
creation and kernels that use images to expand the requested regions are stored , for example , at the same portion of
allocation size to include additional portions (e . g . , canary memory when 10 additional contiguous regions adjacent to
regions) , potentially by expanded the image to include 55 the initial buffer are available and , alternatively , at a different
canaries in multiple dimensions . portion of memory which has 110 contiguous regions avail

FIG . 4 is a flow diagram illustrating an exemplary method able . It is understood that creation of new memory buffers
400 of buffer overflow detection . As shown in block 402 of includes creating buffers having any number of additional
method 400 , a call to allocate an initial buffer memory is regions adjacent to initial memory buffers .
determined . For example , the call is made to allocate an 60 For multi - dimensional arrays (such as 2D images) , canary
initial memory buffer of a certain size (e . g . , memory buffer regions are , for example , allocated at locations within the
of size 100 entries) having a number of contiguous memory buffer that correspond to locations beyond the end of a row
regions , such as for example , memory regions “ buf ” to or column (e . g . , a 2D image having multiple canary regions ,
“ buf + n ” shown in FIG . 1A . such as regions beyond the end of rows and other regions

When the detected buffer is limited to a fixed size (e . g . , a 65 beyond the end of columns) .
configuration flag preventing resizing of the memory buf - As shown in block 406 of method 400 , values are
fer) , an extended shadow copy of the buffer is created , the assigned to each of the one or more additional memory

US 10 , 067 , 710 B2

regions , such as region 312 shown in FIG . 3C . The assigned used at runtime to decide whether to check a series of canary
values are known or calculable canary values . The canary regions on one processor type or another processor type .
values assigned to each additional memory region are , for Checks on accelerators (e . g . , GPUs) are performed , for
example , initialized with a known data pattern , initialized example , asynchronously from other work in the program ,
with the same values , or initialized with values different 5 allowing the checks to take place while other useful work
from each other . proceeds on host processors (e . g . , CPUs) .
As shown in block 408 of method 400 , the one or more The methods provided include implementation in a gen

additional memory regions adjacent to the memory buffer eral purpose computer , a processor , or a processor core .
are monitored and , at decision block 410 , a determination is Suitable processors include , by way of example , a general
made as to whether a change occurs to the values at the 10 purpose processor , a special purpose processor , a conven
additional memory regions . If a change of a value is deter - tional processor , a digital signal processor (DSP) , a plurality
mined to occur , a buffer overflow is determined to occur at of microprocessors , one or more microprocessors in asso
block 412 and an indication of the determined buffer over - ciation with a DSP core , a controller , a microcontroller ,
flow is provided at block 414 . Application Specific Integrated Circuits (ASICs) , Field Pro

For example , the detector first analyzes the list of argu - 15 grammable Gate Arrays (FPGAs) circuits , any other type of
ments associated with a kernel . If the kernel has no global integrated circuit (IC) , and / or a state machine . Such proces
memory buffers , the kernel cannot cause global memory sors are , for example , manufactured by configuring a manu
buffer overflows . If buffers are passed to the kernel , how facturing process using the results of processed hardware
ever , the values of the additional regions are later verified as description language (HDL) instructions and other interme
not being changed . If a buffer is allocated with a flag that 20 diary data including netlists (such instructions capable of
indicates the memory region is not increasable in size (e . g . , being stored on a computer readable media) . The results of
the memory region exists and includes useful values in such processing are , for example , maskworks that are then
adjacent regions which precludes expanding the buffer) , used in a semiconductor manufacturing process to manu
temporary shadow copies , which contain space for the facture a processor which implements buffer overflow detec
additional regions , are provided and assigned as kernel 25 tion .
arguments . The kernel is launched and , while executing , a The methods or flow charts provided herein are , for
checker kernel (e . g . , checks for changes in values) is example , implemented in a computer program , software , or
enqueued that executes after the original kernel finishes . firmware incorporated in a non - transitory computer - read
This checker kernel is implemented , for example , on pro - able storage medium for execution by a general purpose
cessors of various types (e . g . , CPUs or GPUs) . This kernel 30 computer or a processor . Examples of non - transitory com
verifies additional accessible regions of the memory buffers puter - readable storage mediums include a read only memory
which were not accessed by the kernel . (ROM) , a random access memory (RAM) , a register , cache
SVM buffers add extra complexity . When any argument memory , semiconductor memory devices , magnetic media

to a kernel is to an SVM buffer , other SVM buffers are such as internal hard disks and removable disks , magneto
accessed by the kernel because , for example , SVM regions 35 optical media , and optical media such as CD - ROM disks ,
contain pointers to SVM buffers that are not in the kernel and digital versatile disks (DVDs) .
argument list . As such , if a kernel ' s arguments give the What is claimed is :
kernel access to an SVM buffer , the additional regions for 1 . A processing apparatus comprising :
SVM buffers in the application are verified . memory , comprising a plurality of memory regions each

If a change of a value is not determined , a buffer overflow 40 corresponding to one memory address of a plurality of
is not determined to occur at block 416 and monitoring of memory addresses and configured to store data asso
the additional memory regions is continued at block 408 . For ciated with the one memory address ; and
example , when a verification function determines an over an accelerated processing device comprising a processor
flow , a message indicating the buffer overflow is displayed of a first type and a processor of a second type each in
and , optionally , execution is halted . A debug message is 45 communication with the memory , the accelerated pro
provided which , for example , shows the kernel name , the cessing device configured to :
argument name , and in which region of the additional determine a plurality of requests to allocate initial
regions the first corruption occurred . The function argu memory buffers , each comprising a number of con
ment ' s name is determined by using a function , (e . g . , tiguous memory regions allocated to one of : (i) the
“ clGetKernel ArgInfo ") because the argument index of the 50 processor of the first type ; and (ii) the processor of
overflow buffer is known . the second type ;

Monitoring 408 is implemented , for example , on proces create a plurality of new memory buffers each com
sors of various types (e . g . , a CPU or a GPU) . While prising one or more additional memory regions adja
accelerators run slower and take longer to check each canary cent to the contiguous memory regions allocated to
value , depending on the number of canary values to check , 55 one of : (i) the processor of the first type ; and (ii) the
bringing the canary values from the accelerator memory to processor of the second type ;
CPU memory includes amortization of bus transfers . assign one or more values to the one or more additional
Because the relative location of the additional canary region memory regions ; and
checks affects the performance of the detector , buffer over switch between : (i) a first detection process of detecting
flow detection also includes overhead associated with deter - 60 a change to the one or more values at the one or more
mining whether to monitor values in the additional memory additional memory regions allocated to the processor
regions of memory buffers allocated to on a first processor of the first type ; and (ii) a second detection process
type (e . g . , a CPU) or a second processor type (e . g . , a GPU) . of detecting the change to the one or more values of
The determination includes , for example , comparing the the one or more corresponding additional memory
CPU and GPU overheads of checking canary values as we 65 regions allocated to the processor of the second type .
vary the number of buffers . Micro benchmarks are imple - 2 . The processing apparatus of claim 1 , wherein the
mented , for example , to determine a series of parameters accelerated processing device is further configured to deter

US 10 , 067 , 710 B2
13 14

mine the request to allocate the initial memory buffer by switching between : (i) a first detection process of detect
determining when a call is made to allocate the initial ing a change to the one or more values at the one or
memory buffer . more additional memory regions allocated to the pro

3 . The processing apparatus of claim 1 , wherein the cessor of the first type ; and (ii) a second detection
accelerated processing device is further configured to deter - 5 process of detecting the change to the one or more
mine the request to allocate the initial memory buffer by values of the one or more corresponding additional determining when an application programming interface memory regions allocated to the processor of the sec (API) call is made to allocate the initial memory buffer . ond type . 4 . The processing apparatus of claim 1 , wherein the 11 . The method of claim 10 , further comprising deter accelerated processing device is further configured to deter - 10 mining the request to allocate the initial memory buffer by mine an overflow of the memory buffer by detecting the determining when a call is made to allocate the initial change to the one or more values after the change to the one
or more values occurs . memory buffer .

5 . The processing apparatus of claim 4 , wherein the 12 . The method of claim 10 , further comprising deter
accelerated processing device is further configured to pro - 15 min 15 mining the request to allocate the initial memory buffer by
vide an indication of the determined overflow of the memory determining when an application programming interface

buffer . (API) call is made to allocate the initial memory buffer .
6 . The processing apparatus of claim 1 , wherein the value 13 . The method of claim 10 , further comprising deter

is a known or calculable canary value . mining an overflow of the memory buffer by detecting the
7 . The processing apparatus of claim 1 , wherein the 20 change to the one or more values after the change to the one

accelerated processing device is further configured to create or more values occurs .
the new memory buffer by at least one of : (i) adding the one 14 . The method of claim 13 , further comprising providing
or more additional memory regions before the contiguous an indication of the determined overflow of the memory
memory regions of the initial memory buffer ; and (ii) adding buffer .
the one or more additional memory regions after the con - 25 15 . The method of claim 10 , wherein the value is a known
tiguous memory regions of the initial memory buffer . or calculable canary value .

8 . The processing apparatus of claim 1 , wherein the 16 . The method of claim 10 , further comprising creating
accelerated processing device is further configured to switch the new memory buffer by at least one of : (i) adding the one
between the first detection process and the second detection or more additional memory regions before the contiguous
process by : 30 Bu memory regions of the initial memory buffer ; and (ii) adding determining : (i) a first estimated time to detect the change the one or more additional memory regions after the con

to the one or more values of the one or more corre tiguous memory regions of the initial memory buffer . sponding additional memory regions allocated to the
processor of the first type ; and (ii) a second estimated 17 . The method of claim 16 , further comprising switching
time to detect the change to the one or more values of 35 bel of 35 between the first detection process and the second detection
the one or more corresponding additional memory process by :
regions allocated to the processor of the second type . determining : (i) a first estimated time to detect the change

9 . The processing apparatus of claim 8 , wherein the to the one or more values of the one or more corre
accelerated processing device is further configured to : sponding additional memory regions allocated to the

detect the change to the one or more values of the one or 40 processor of the first type ; and (ii) a second estimated
more corresponding additional memory regions allo time to detect the change to the one or more values of
cated to the processor of the first type when the first the one or more corresponding additional memory
estimated time is equal to or less than the second regions allocated to the processor of the second type ;
estimated time ; and detecting the change to the one or more values of the one

detect the change to the one or more values of the one or 45 or more corresponding additional memory regions allo
more corresponding additional memory regions allo cated to the processor of the first type when the first
cated to the processor of the second type when the first estimated time is equal to or less than the second
estimated time is greater than the second estimated estimated time ; and
time . detecting the change to the one or more values of the one

10 . A computer implemented buffer overflow detection 50 or more corresponding additional memory regions allo
method comprising : cated to the processor of the second type when the first

storing data in a plurality of memory regions each corre estimated time is greater than the second estimated
sponding to one of a plurality of memory addresses and time .
each in communication with a processor of a first type 18 . A non - transitory computer readable medium compris
and a processor of a second type ; 55 ing instructions for causing a computer to execute a method

determining a plurality of requests to allocate initial of buffer overflow detection , the instructions comprising :
memory buffers , each comprising a number of contigu storing data in a plurality of memory regions each corre
ous memory regions allocated to one of : (i) the pro sponding to one of a plurality of memory addresses and
cessor of the first type ; and (ii) the processor of the each in communication with a processor of a first type
second type ; and a processor of a second type ;

creating a plurality of new memory buffers each compris determining a plurality of requests to allocate initial
ing one or more additional memory regions adjacent to memory buffer each comprising a number of contigu
the contiguous memory regions allocated to one of : (i) ous memory regions allocated to one of : (i) the pro
the processor of the first type ; and (ii) the processor of cessor of the first type ; and (ii) the processor of the
the second type ; second type ;

assigning one or more values to the one or more additional creating a plurality of new memory buffers each compris
memory regions ; and ing one or more additional memory regions adjacent to

5

US 10 , 067 , 710 B2
15

the contiguous memory regions allocated to one of : (i)
the processor of the first type ; and (ii) the processor of
the second type ;

assigning one or more values to the one or more additional
memory regions ; and

switching between : (i) a first detection process of detect
ing a change to the one or more values at the one or
more additional memory regions allocated to the pro
cessor of the first type ; and (ii) a second detection
process of detecting the change to the one or more 10
values of the one or more corresponding additional
memory regions allocated to the processor of the sec
ond type .

* * * *

