
US011275613B2

(12) United States Patent (10) Patent No .: US 11,275,613 B2
(45) Date of Patent : Mar. 15 , 2022 Basu et al .

(56) References Cited (54) ENFORCING CENTRAL PROCESSING UNIT
QUALITY OF SERVICE GUARANTEES
WHEN SERVICING ACCELERATOR
REQUESTS

U.S. PATENT DOCUMENTS

8,286,139 B2 * 10/2012 Jones

2006/0161920 A1 * 7/2006 An (71) Applicant : Advanced Micro Devices , Inc. , Santa
Clara , CA (US) 2012/0047515 Al * 2/2012 Kanetomo

G06F 11/3419
717/127

G06F 9/485
718/102

G06F 9/4812
718/107

G06F 11/3466
718/102

G06F 9/4881

015/0234677 A1 * 8/2015 Bartley (72) Inventors : Arkaprava Basu , Bangalore (IN) ;
Joseph Lee Greathouse , Austin , TX
(US) 2017/0300357 A1 * 10/2017 Berg

(Continued)

(73) Assignee : Advanced Micro Devices , Inc. , Santa
Clara , CA (US)

OTHER PUBLICATIONS

1

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 33 days .

(21) Appl . No .: 15 / 954,382

(22) Filed : Apr. 16 , 2018

(65) Prior Publication Data

Soares et al . , FlexSC : Flexible System Call Scheduling with Exception
Less System Callls , University of Toronto , 2010 , 14 pages . *

(Continued)
Primary Examiner — Diem K Cao
(74) Attorney , Agent , or Firm - Kowert Hood Munyon
Rankin and Goetzel PC ; Rory D. Rankin
(57) ABSTRACT
Systems , apparatuses , and methods for enforcing processor
quality of service guarantees when servicing system service
requests (SSRs) are disclosed . A system includes a first
processor executing an operating system and a second
processor executing an application which generates SSRs
for the first processor to service . The first processor monitors
the number of cycles spent servicing SSRs over a previous
time interval , and if this number of cycles is above a
threshold , the first processor starts delaying the servicing of
subsequent SSRs . In one implementation , if the previous
delay was non - zero , the first processor increases the delay
used in the servicing of subsequent SSRs . If the number of
cycles is less than or equal to the threshold , then the first
processor services SSRs without delay . As the delay is
increased , the second processor begins to stall and its SSR
generation rate falls , reducing the load on the first processor .

20 Claims , 7 Drawing Sheets

US 2019/0317807 A1 Oct. 17 , 2019

(51) Int . Cl .
GO6F 9/46 (2006.01)
G06F 9/48 (2006.01)

(52) U.S. Cl .
CPC GO6F 9/4887 (2013.01) ; G06F 9/466

(2013.01)
(58) Field of Classification Search

CPC GO6F 9/4887 ; G06F 9/466
See application file for complete search history .

600

605
??

Monitor a Number of Cycles that
Threads of a First Processor Spend
Servicing Requests Generated by a
Second Processor during a Recent

Interval

610

No is the
Number of Cycles >

a Threshold ?

Yes 615

Add a First Amount of Delay to the Servicing of Subsequent Requests
from the Second Processor

620

Add a Second Amount of Delay to
the Servicing of Subsequent
Requests from the Second

Processor , wherein the Second
Amount of Delay is Less than the

First Amount of Delay

US 11,275,613 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2018/0069767 Al 3/2018 Basu et al .

OTHER PUBLICATIONS

Grabiec , Reducing latency spickes by tuning the CPU scheduler ,
SchyllaDB , Jun . 10 , 2016 , 19 pages . *
Haring , Ruud , “ The Blue Gene / Q Compute Chip ” , Hot Chips : A
Symposium on High Performance Chips , Aug. 18 , 2011 , 20 pages ,
https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/
HC23.18.1 - manycore / HC23.18.121.BlueGene - IBM_BQC_HC23_
20110818.pdf . [Retrieved May 9 , 2018] .
Herbert et al . , “ Scaling in the Linux Networking Stack ” , 6 pages ,
https://www.kernel.org/doc/Documentation networking / scaling.txt .
[Retrieved May 9 , 2018] .
“ Interrupt Moderation Using Intel® GbE Controllers ” , Intel Cor
poration , Apr. 2007 , 19 pages , Revision 1.2 , https://www.intel.co .
id / content / dam / doc / application - note / gbe - controllers - interrupt
moderation - appl - note.pdf . [Retrieved May 9 , 2018] .
León et al . , System Noise Revisited : Enabling Application Scal
ability and Reproducibility with Simultaneous Multithreading , Pro
ceedings of the International Parallel and Distributed Processing
Symposium , May 23 , 2016 , 12 pages , https://e-reports-ext.llnl.gov/
pdf / 791809.pdf . [Retrieved May 9 , 2018] .
Mogul et al . , “ Eliminating Receive Livelock in an Interrupt - driven
Kernel ” . Proceedings of the USENIX Annual Technical Confer

ence , Jan. 1996 , 13 pages , https://pdos.csail.mit.edu/6.828/2008/
readings / mogu196usenix.pdf . [Retrieved May 9 , 2018] .
Mogul , Jeffrey C. , “ TCP Offload is a Dumb Idea Whose Time Has
Come ” . Proceedings of the 9th conference on Hot Topics in Oper
ating Systems , May 18 , 2003 , 6 pages , https : //pdfs.semanticscholar .
org / 70cd / ec 19f689049d85d9b421bdfeca19de4ca3a3.pdf . [Retrieved
May 9 , 2018] .
International Search Report and Written Opinion in International
Application No. PCT / US2019 / 017933 , dated May 14 , 2019 , 14
pages .
Cheng et al . , “ vBalance : Using Interrupt Load Balance To Improve
I / O Performance for SMP Virtual Machines ” , Proceedings of the
Third ACM Symposium on Cloud Computing , SOCC’12 , Oct.
14-17 , 2012 , 14 pages .
Stefanov et al . , “ Study of CPU Usage Data Properties for Using in
Performance Monitoring ” , Russian Supercomputing Days 2016 ,
Jan. 1 , 2016 , pp . 36-40 , http://russianscdays.org/files/pdf16/36.pdf .
[Retrieved May 2 , 2019] .
McDougall , Richard , " Chapter 3.11 : Interrupts ” , SolarisTM Internals :
Solaris 10 and OpenSolaris Kernel Architecture , Jul . 10 , 2006 , 7
pages , Second Edition , Prentice Hall .
" Exponential backoff ” , Wikipedia.org , Mar. 13 , 2018 , 3 pages ,
https://en.wikipedia.org/w/index.php?title=Exponential_backoff
& oldid = 830252246 . [Retrieved May 2 , 2019] .
Missimer et al . “ Mixed - Criticality Scheduling with I / O ” , 28th
Euromicro Conference on Real - Time Systems , Mar. 12 , 2016 , 13
pages , https://ieeexplore.ieee.org/ie17/7557819/7557852/07557874 .
pdf . [Retrieved May 2 , 2019] .

* cited by examiner

125

U.S. Patent

Processor 105A

1/0 Interfaces 120

Mar. 15 , 2022

Processor 105N

Memory Controller (s) 130

Memory Device (s)

Sheet 1 of 7

Network Interface 136

100

US 11,275,613 B2

FIG . 1

Top Half

Kernel Worker Thread

Bottom Half Interrupt Handler

Interrupt Handler

U.S. Patent

M

W

w

w

W

w

w

w

w

www

w

w

w

C ... + .

++++
C ... +

0 .. + . +

0 ... +

+++

C +++

C ... +

++

... +

C ... +

Core 210C

Core 210B

Core 210A

Queue Worker Thread

Ack Request

www

Schedule Bottom Half
5 205

Send Request

Accelerator

215

Mar. 15 , 2022

1

I

Handle Request

Set Up Work Queue

Set Up Arguments

XXX

AN

WRX

W

W

M

w

w

W

w

M

w

w

WWW

W

W

w

W

w

W

w

w

M

w

W

M

M

w

w

M

w

w

w

Sheet 2 of 7

220

D

225

2

1-230

Software Work Queue for Pending Requests

Queue for System Service Requests and Arguments

System Memory

w

M

w

W

w

W

W

W

w

w

w

M

w

w

M

M

M

w

w

M

WWW

www

w

w

US 11,275,613 B2

82 200

FIG . 2

370

WW
Accelerator 215

]

Stall

U.S. Patent

ACK

Interrupt 305

Response

310 315 320

325

Core 210A

X

Schedule

330

335

340

345

Core 210B

a

Mar. 15 , 2022

Queue

350

355

360

365

Core 2100

AKAN DATANG

Sheet 3 of 7

mm
wa

NU

VAUVA

RU

SUV

LR
VARU

MN

EN

MAK
*

Z

Indirect CPU Overhead for Transitioning Between User and Kernel Mode CPU Time Spent Servicing the SSR

1

Legend

1 1

CPU Time Spent in User Mode at a Lower IPC

1 1

1

US 11,275,613 B2

L

WWW

300

FIG . 3

Kernel Worker Thread

Bottom Half Interrupt Handler

Top Half Interrupt Handler

U.S. Patent

www
www

w

www

www
ww

w

www

w

w

M

w

w

W

M

w

w

w

Core 4100

Core 410B

Core 410A

1

Ack

Queue Worker Thread

Schedule Bottom Half
3 405

Request

.

DO

+++

O

+++

442

Send Request

Accelerator

1

Mar. 15 , 2022

Governor 440

415

I

Set Up Work Queue

Set Up Arguments

1

}

w

Sheet 4 of 7

w

w

www
W

M

www

w

W

M

M

w

w

M

M

w

WWW
M

w

w

M

M

M

w

w

M

420

425

430

W
Queue for System Service Requests and Arguments

Software Work Queue for Pending Requests

I I

System Memory

w

W

w

ww

M

w

w

US 11,275,613 B2

400

FIG . 4

U.S. Patent Mar. 15 , 2022 Sheet 5 of 7 US 11,275,613 B2

500

505
Is # of CPU

Cycles Spent on SSRS
> Threshold ? 510

Delay = 0
Yes

No Delay s 515 > O ?

520
Delay = Initial

Value Yes

Set New Delay >
Previous Delay

525

Receive a New SSR L 530
from an Accelerator

Sleep for a Duration
Equal to " Delay 535

Service the New
SSR and Return

Results
540

FIG . 5

U.S. Patent Mar. 15 , 2022 Sheet 6 of 7 US 11,275,613 B2

600

605
wered

Monitor a Number of Cycles that
Threads of a First Processor Spend
Servicing Requests Generated by a
Second Processor during a Recent

Interval

610

No Is the
Number of Cycles >

a Threshold ?

Yes 615

Add a First Amount of Delay to the
Servicing of Subsequent Requests

from the Second Processor

620
???

Add a Second Amount of Delay to
the Servicing of Subsequent
Requests from the Second

Processor , wherein the Second
Amount of Delay is Less than the

First Amount of Delay

FIG . 6

U.S. Patent Mar. 15 , 2022 Sheet 7 of 7 US 11,275,613 B2

700

705
???

Receive , by a First Processor , a
SSR from a Second Processor

710
Has a first

Condition been
Detected ?

Yes 715

Wait for a First Amount of Time
Prior to initiating Servicing of the

SSR

720
??

Wait for a Second Amount of Time
Prior to initiating Servicing of the
SSR , wherein the Second Amount

of Time is Less than the First
Amount of Time

FIG . 7

10

a

US 11,275,613 B2
1 2

ENFORCING CENTRAL PROCESSING UNIT implementations may be practiced without these specific
QUALITY OF SERVICE GUARANTEES details . In some instances , well - known structures , compo
WHEN SERVICING ACCELERATOR nents , signals , computer program instructions , and tech

REQUESTS niques have not been shown in detail to avoid obscuring the
5 approaches described herein . It will be appreciated that for

This invention was made with Government support under simplicity and clarity of illustration , elements shown in the
the PathForward Project with Lawrence Livermore National figures have not necessarily been drawn to scale . For
Security , Prime Contract No. DE - AC52-07NA27344 , Sub example , the dimensions of some of the elements may be
contract No. 3620717 awarded by the United States Depart exaggerated relative to other elements .
ment of Energy . The United States Government has certain Various systems , apparatuses , methods , and computer
rights in this invention . readable mediums for enforcing central processing unit

(CPU) quality of service (QoS) guarantees in the face of
BACKGROUND accelerator system service requests are disclosed herein . In

one implementation , a system includes at least a CPU and an
Description of the Related Art 15 accelerator . The accelerator is a graphics processing unit

(GPU) or other type of processing unit . In some implemen
Modern system on chips (SoCs) often integrate large tations , the system includes multiple accelerators . In one

numbers of different types of components on a single chip or implementation , the CPU executes an operating system (OS)
on multi - chip modules . For example , a typical SoC includes and the accelerator executes an application . When the accel
a main processor (e.g. , a central processing unit (CPU)) 20 erator application needs assistance from the OS , the accel
along with accelerators such as integrated graphics process erator application sends a system service request (SSR) to
ing units (GPUs) and media engines . As these accelerators the CPU for servicing . For certain applications , the accel
become progressively more capable , they are expected to erator sends a large number of SSRs to the CPU for
directly invoke complex operating system (OS) services like servicing . The CPU is configured to monitor the amount of
page faults , file system accesses , or network accesses . How- 25 time that the OS spends in servicing SSRs from the accel
ever , the OS does not run on the accelerators . Therefore , erator (s) . In various implementations , the amount of time is
these accelerator system service requests (SSRs) need to be measured in terms of cycles . In other implementations , a
serviced by the OS running on the CPU . These accelerator different measure of time is used . For ease of discussion ,
SSRs severely interfere with contemporaneous CPU appli- tracking of time in terms of cycles will be used herein . In one
cations . Often times , significant performance and energy 30 implementation , the OS routines that are engaged in servic
efficiency degradation in contemporaneous CPU applica ing SSRs track their CPU usage cycles .
tions occur due to destructive interference from the servicing In one implementation , a kernel background thread wakes
of SSRs from accelerators . up periodically to determine if the number of CPU cycles

spent servicing SSRs in a previous time interval is greater
BRIEF DESCRIPTION OF THE DRAWINGS 35 than a specified limit . In one implementation , the limit is

specified by an administrator . In another implementation , a
The advantages of the methods and mechanisms software application dynamically adjusts the value of the

described herein may be better understood by referring to limit based on operating conditions . In one implementation ,
the following description in conjunction with the accompa- a kernel worker thread adds an adjustable amount of delay
nying drawings , in which : 40 to the processing of a newly received SSR , with the delay

FIG . 1 is a block diagram of one implementation of a calculated based on the CPU overhead (e.g. , percentage of
computing system . CPU time) spent servicing SSRs over the previous time

FIG . 2 is a block diagram of one implementation of a interval . For example , in one implementation , at the start of
computing system with a CPU and an accelerator . processing an SSR , the kernel worker thread checks if the

FIG . 3 is a timing diagram illustrating the overhead 45 percentage of CPU time spent handling SSRs is above a
associated with processing accelerator SSRs in accordance specified threshold . The kernel worker thread performs this
with one implementation . check using the information gathered by the kernel back
FIG . 4 block diagram of another implementation of a ground thread . If the percentage of CPU time spent handling

scheme for handling accelerator SSRs . SSRs is below the specified threshold , the kernel worker
FIG . 5 is a generalized flow diagram illustrating one 50 thread sets the desired delay to zero and continues to process

implementation of a method for enforcing quality of service SSRs immediately . Otherwise , if the percentage of CPU
guarantees on a CPU while processing requests from an time spent handling SSRs is greater than the specified
accelerator . threshold , then the kernel worker thread sets the amount of

is a generalized flow diagram illustrating one delay in processing SSRs based on an exponential back - off .
implementation of a method for dynamically adjusting a 55 For example , in one implementation , if the desired delay
delay added to the servicing of requests . was previously more than zero , the kernel worker thread
FIG . 7 is a generalized flow diagram illustrating one increases the delay to a value greater than the previous delay

implementation of a method for processing system service value . For example , in various implementations the new
requests (SSRs) . delay value may be a multiple of the previous value (e.g. , 2x ,

60 3x , etc.) . In other implementations , the new delay value may
DETAILED DESCRIPTION OF be a greater value that is not a multiple of the previous delay

IMPLEMENTATIONS value . Otherwise , if the desired delay was previously zero ,
then the kernel worker thread sets the new delay to an initial ,

In the following description , numerous specific details are nominal value (e.g. , 10 usec) . The processing of the SSR is
set forth to provide a thorough understanding of the methods 65 then delayed by this amount .
and mechanisms presented herein . However , one having As the delay is increased , the accelerator (s) will begin to
ordinary skill in the art should recognize that the various stall and the SSR rate will eventually drop . When the CPU

a
a

.

US 11,275,613 B2
3 4

overhead falls below the set limit , the SSRs will once again number of components of computing system 100 varies
be serviced without any artificial delay . In addition , in one from implementation to implementation . For example , in
implementation , servicing of accelerator SSRs is automati- other implementations there are more or fewer of each
cally throttled only when this servicing interferes with the component than the number shown in FIG . 1. It is also noted
CPU application (s) . In this implementation , if the CPU is 5 that in other implementations , computing system 100
otherwise idle , the SSRs are serviced as quickly as possible includes other components not shown in FIG . 1. Addition
even if the CPU overhead is above the limit . In one ally , in other implementations , computing system 100 is
implementation , this check is implemented by querying the structured in other ways than shown in FIG . 1 .
OS scheduler about other processes that are waiting in the Turning now to FIG . 2 , a block diagram of one imple
runlist . 10 mentation of a system 200 with a CPU and an accelerator is

Referring now to FIG . 1 , a block diagram of one imple- shown . CPU 205 is coupled to accelerator 215 , with both
mentation of a computing system 100 is shown . In one CPU 205 and accelerator 215 coupled to system memory
implementation , computing system 100 includes at least 220. CPU 205 includes cores 210A - C , which are represen
processors 105A - N , input / output (I / O) interfaces 120 , bus tative of any number of cores . Cores 210A - C are also be
125 , memory controller (s) 130 , network interface 135 , and 15 referred to herein as “ execution units ” . One example of the
memory device (s) 140. In other implementations , comput- flow of CPU 205 handling system service requests (SSRs)
ing system 100 includes other components and / or comput- generated by accelerator 215 is shown in FIG . 2. Accelerator
ing system 100 is arranged differently . Processors 105A - N 215 starts by setting up arguments in queue 230 in system
are representative of any number of processors which are memory 220. Then , accelerator 215 sends a SSR to core
included in system 100 . 20 210A . In one implementation , core 210A executes a top half

In one implementation , processor 105A is a general interrupt handler which schedules a bottom half interrupt
purpose processor , such as a central processing unit (CPU) . handler on core 210B . The bottom half interrupt handler sets
In this implementation , processor 105N is an accelerator up a work queue in software work queue 225 and queue 230
engine . For example , in one implementation , processor and queues a kernel worker thread on core 210C . The kernel
105N is a data parallel processor with a highly parallel 25 worker thread handles the SSR by accessing software work
architecture . Data parallel processors include graphics pro- queue 225. Then , the kernel worker thread processes the
cessing units (GPUs) , digital signal processors (DSPs) , field SSR and generates and conveys a system service response to
programmable gate arrays (FPGAs) , application specific accelerator 215 .
integrated circuits (ASICs) , and so forth . In some imple- It should be understood that FIG . 2 illustrates one
mentations , processors 105A - N include multiple accelerator 30 example of handling accelerator SSRs in accordance with
engines . These multiple accelerator engines are configured one implementation . In other implementations , other
to send system service requests (SSRs) to processor 105A schemes for handling accelerator SSRs that include other
for processing . Processor 105A is configured to monitor the steps and / or other orders of steps are used . One of the
overhead associated with processing these SSRs . Depending disadvantages of the approach illustrated in FIG . 2 is that
on the implementation , processor 105A monitors the over- 35 CPU 205 lacks the ability to throttle requests generated by
head in terms of a number of CPU cycles , a percentage of accelerator 215 if the number of requests starts to impact
total CPU cycles , an amount of time , and / or based on other performance of CPU 205. For example , in another imple
metrics . If the overhead over a previous time interval mentation , CPU 205 is coupled to multiple accelerators ,
exceeds a threshold , processor 105A delays processing of each of which generates a large number of SSRs in a short
SSRs and / or otherwise decreases the amount of resources 40 period of time .
devoted to processing SSRs . Referring now to FIG . 3 , one implementation of a timing
Memory controller (s) 130 are representative of any num- diagram 300 illustrating the overhead associated with pro

ber and type of memory controllers accessible by processors cessing accelerator SSRs is shown . The timing diagram 300
105A - N and I / O devices (not shown) coupled to I / O inter- of FIG . 3 corresponds to the steps shown in FIG . 2 for CPU
faces 120. Memory controller (s) 130 are coupled to any 45 205 processing the SSR generated by accelerator 215. The
number and type of memory devices (s) 140. Memory top row of timing diagram 300 illustrates the timing of
device (s) 140 are representative of any number and type of events for accelerator 215. In one implementation , accelera
memory devices . For example , the type of memory in tor 215 generates interrupt 305 which is processed by core
memory device (s) 140 includes Dynamic Random Access 210A . Area 310 represents an indirect CPU overhead for
Memory (DRAM) , Static Random Access Memory 50 CPU 205 to spend transitioning between user and kernel
(SRAM) , NAND Flash memory , NOR flash memory , Fer- mode . Area 315 represents the time spent scheduling the
roelectric Random Access Memory (FeRAM) , or others . bottom half interrupt handler . After scheduling the bottom

I / O interfaces 120 are representative of any number and half interrupt handler , area 320 represents another indirect
type of I / O interfaces (e.g. , peripheral component intercon- CPU overhead for the transition between kernel and user
nect (PCI) bus , PCI - Extended (PCI - X) , PCIE (PCI Express) 55 mode . Area 325 represents time spent in user mode running
bus , gigabit Ethernet (GBE) bus , universal serial bus at a lower instruction per cycle (IPC) rate due to the kernel's
(USB)) . Various types of peripheral devices are coupled to use of various resources of the processor , such as cache and
I / O interfaces 120. Such peripheral devices include (but are translation lookaside buffer (TLB) space , in the processing
not limited to) displays , keyboards , mice , printers , scanners , of the SSR . This ends up reducing the resources available for
joysticks or other types of game controllers , media recording 60 other CPU tasks . In one implementation , when a worker
devices , external storage devices , network interface cards , thread calculates the CPU overhead spent servicing SSRs ,
and so forth . Network interface 135 is used to receive and the worker thread includes the indirect CPU overhead asso
send network messages across a network . ciated with transitioning between user and kernel mode and

In various implementations , computing system 100 is a time spent in user mode running at a lower IPC rate in the
computer , laptop , mobile device , game console , server , 65 calculation of the overhead .
streaming device , wearable device , or any of various other For the row shown for core 210B , area 330 represents an
types of computing systems or devices . It is noted that the indirect CPU overhead which is spent transitioning from

US 11,275,613 B2
5 6

user to kernel mode . Area 335 represents the time spent cally (e.g. , every 10 us) to calculate if the number of CPU
executing the bottom half interrupt handler . Area 340 rep- cycles spent on servicing SSRs in the period is over the
resents another indirect CPU overhead which is spent tran- specified limit . In one implementation , the limit is specified
sitioning from kernel to user mode . Area 345 represents an by an administrator . In another implementation , the limit is
indirect CPU overhead spent in user mode running at a lower 5 dynamically set by the OS based on characteristics of the
IPC rate due to the kernel's use of various resources of the applications running at any given time .
processor in the processing of the SSR . Additionally , a kernel worker thread processes SSRs as

The bottom half interrupt handler initiates the kernel shown in FIG . 4. At the start of processing an SSR , the
worker thread on core 210C . Area 350 represents an indirect worker thread checks if the CPU cycles spent processing
CPU overhead which is spent transitioning from user to 10 SSRs is above the specified threshold . The worker thread
kernel mode . Area 355 represents the time spent by the utilizes the information gathered by the background thread
kernel worker thread servicing the accelerator's SSR . After to determine if the CPU cycles spent processing SSRs is
servicing the accelerator's SSR , the kernel worker thread above the specified threshold . If the number of CPU cycles
experiences an indirect overhead transitioning from kernel spent processing SSR is less than or equal to the specified
to user mode (represented by area 360) and time spent in 15 threshold , then the worker thread sets the desired delay to
user mode running at a lower IPC rate (represented by area zero and continues to process SSRs immediately . Otherwise ,
365) . if the CPU time spent processing SSRs is above the specified

In addition to the time spent by CPU 205 in processing the threshold , then the worker thread determines an amount of
SSR , accelerator 215 experiences a stall due to the latency delay to add to the processing of SSRs . The worker thread
of CPU 205 handling the SSR as shown by duration 370. 20 then waits for this amount of delay prior to processing a
While accelerator 215 has latency hiding capabilities , the subsequent SSR . By delaying the servicing of SSRs , gov
latency of CPU 205 handling the SSR might be longer than ernor 440 causes accelerator 415 to throttle its SSR genera
is able to be hidden by accelerator 215. As is seen by the tion rate . For example , accelerator 415 typically has limited
events represented by timing diagram 300 , accelerator SSRs space to store the state associated with each SSR . Hence ,
directly and indirectly affect CPU performance , and the 25 delaying SSRs results in accelerator 415 reducing its rate of
CPU's handling of SSRs also affects the accelerator's per- SSR generation .
formance . In one implementation , the worker thread uses an expo

Turning now to FIG . 4 , a block diagram of another nential backoff scheme to set the amount of delay for
implementation of a scheme for handling accelerator SSRS processing SSRs . One example of the worker thread using
is shown . Similar to the scheme shown in FIG . 2 , CPU 405 30 an exponential backoff scheme is described in more detail
is coupled to accelerator 415 , with both CPU 405 and below in the discussion regarding method 500 of FIG . 5. For
accelerator 415 coupled to system memory 420. CPU 405 example , in one implementation , if the desired delay was
includes cores 410A - C , which are representative of any previously more than zero , the worker thread increases the
number of cores . Accelerator 415 starts by setting up argu- delay . Otherwise , if the desired delay was previously zero ,
ments in queue 430 in system memory 420. Then , accelera- 35 the worker thread sets the delay to an initial value (e.g. , 5
tor 415 sends a SSR to core 410A . In one implementation , us) . The processing of the SSR is then delayed by the
core 410A executes a top half interrupt handler which amount determined by the worker thread . As the delay is
schedules a bottom half interrupt handler on core 410B . The increased , accelerator 415 begins to stall and the SSR
bottom half interrupt handler sets up a work queue in generation rate eventually drops . When the overhead falls
software work queue 425 and queue 430 and queues a kernel 40 below the threshold , the SSRs will once again be serviced
worker thread on core 410C . However , in contrast to the without any artificial delay .
scheme illustrated in FIG . 2 , governor 440 determines how In other implementations , governor 440 uses other tech
long to delay the kernel worker thread prior to the kernel niques to implement the QoS guarantee mechanism . For
worker thread servicing the SSR . In one implementation , example , in another implementation , governor 440 main
governor 440 uses counter 442 to implement the delay . 45 tains a lookup table to determine how much delay to add to
Counter 442 may be implemented using a count of clock the servicing of a SSR . In this implementation , when the
cycles or any other suitable measure of time . After this delay , number of CPU cycles spent servicing SSRs is calculated ,
the kernel worker thread services the SSR and generates and this number is used as the input to the lookup table to
conveys a system service response to accelerator 415 . retrieve a corresponding delay value to add to the servicing
Depending on the implementation , governor 440 is imple- 50 of a subsequent SSR . In other implementations , governor
mented as an OS thread , as part of a driver , or as any suitable 440 implements other suitable types of QoS guarantee
combination of hardware and / or software . mechanisms .

In one implementation , the SSR rate is moderated by Referring now to FIG . 5 , one implementation of a method
delaying processing of already arrived SSRs when the 500 for enforcing QoS guarantees on a CPU while process
amount of CPU time spent processing SSRs is higher than 55 ing requests from an accelerator is shown . For purposes of
a desired rate . This delay will eventually back - pressure discussion , the steps in this implementation and those of
accelerator 415 to stop generating new SSR requests . By FIG . 6-7 are shown in sequential order . However , it is noted
adding a delay to the servicing SSRs instead of rejecting that in various implementations of the described methods ,
accelerator SSRs outright , this scheme is implemented with- one or more of the elements described are performed con
out requiring any modification to how accelerators generate 60 currently , in a different order than shown , or are omitted
SSRs . In one implementation , governor 440 decides whether entirely . Other additional elements are also performed as
to delay processing of SSRs based on the amount of CPU desired . Any of the various systems or apparatuses described
time spent processing SSRs . In one implementation , gover- herein are configured to implement method 500 .
nor 440 is implemented as a kernel worker thread . A CPU determines if the number of CPU cycles spent

In one implementation , all OS routines involved in ser- 65 servicing system service requests (SSRs) from an accelera
vicing SSRs track their CPU cycles . This information is then tor is greater than a threshold (conditional block 505) . It is
used by a kernel background thread that wakes up periodi- noted that the CPU is referred to herein as a first processor

a

9

US 11,275,613 B2
7 8

and the accelerator is referred to herein as a second proces- (block 705) . In one implementation , the first processor is a
sor . In another implementation , the CPU tracks whether the CPU and the second processor is an accelerator (e.g. , GPU) .
number of CPU cycles spent servicing SSRs from multiple In other implementations , the first and second processors are
accelerators in conditional block 505. If the number of CPU other types of processors . In response to receiving the SSR
cycles spent servicing SSRs is less than or equal to the 5 from the second processor , the first processor determines
threshold (conditional block 505 , “ no ” leg) , then the CPU whether a first condition has been detected (conditional sets a delay equal to zero (block 510) . Otherwise , if the block 710) . In one implementation , the first condition is the number of CPU cycles spent servicing SSRs is greater than overhead on the first processor for servicing SSRs from the the threshold (conditional block 505 , “ yes ” leg) , then the second processor (and optionally from one or more other thread determines if the delay is currently greater than zero 10 processors) over a previous time interval being greater than (conditional block 515) . a threshold . The overhead includes cycles spent actually If the delay is currently equal to zero (conditional block servicing SSRs , cycles spent transitioning between user and 515 , “ no ” leg) , then the thread sets the delay to an initial
value (e.g. , 10 usec) (block 520) . The initial value varies kernel mode before and after servicing SSRs , cycles spent in
from implementation to implementation . Otherwise , if the 15 user mode running at a lower IPC rate due to degradation of
delay is currently greater than zero (conditional block 515 , microarchitectural state (e.g. , consumption of processor
“ yes ” leg) , then the thread increases the value of the delay resources such that fewer resources are available) , and so on .
(block 525) . Next , after blocks 520 or 525 , the thread In other implementations , the first condition is any of
receives a new SSR from an accelerator (block 530) . Prior various other types of conditions or a combination of
to servicing the new SSR , the thread sleeps for a duration 20 multiple conditions .
equal to the current value of delay (block 535) . It is noted If the first condition has been detected (conditional block
that the term “ sleep ” used in block 535 refers to waiting for 710 , “ yes ” leg) , then the first processor waits for first
an amount of time equal to the current value of delay before amount of time prior to initiating servicing of the SSR (block
starting to service the new SSR . After sleeping for the 715) . Alternatively , the first processor assigns a first priority
duration equal to " delay " , the thread services the new SSR 25 to the servicing of the SSR implementation when the first
and returns results to the accelerator (block 540) . After block condition has been detected . If the first condition has not
540 , method 500 ends . been detected (conditional block 710 , “ no ” leg) , then the Turning now to FIG . 6 , one implementation of a method first processor waits for a second amount of time prior to 600 for dynamically adjusting a delay added to the servicing
of requests is shown . A first processor monitors a number of 30 of time is less than the first amount of time (block 720) . In initiating servicing of the SSR , wherein the second amount
cycles that threads of the first processor spend servicing some cases , the second amount of time is zero , such that the requests generated by a second processor during a previous
time interval (block 605) . In another implementation , rather first processor services the SSR immediately . Alternatively ,

in another implementation , the first processor assigns a than just monitoring the number of cycles , the first processor monitors the overhead involved in servicing requests by the 35 second priority to the servicing of the SSR when the first
second processor , with the overhead including multiple condition has not been detected , wherein the second priority
components . For example , the overhead includes the time is higher than the first priority . After blocks 715 and 720 ,
spent actually servicing the request , indirect CPU overhead method 700 ends .
spent transitioning between user and kernel mode , time In various implementations , program instructions of a
spent in user mode running at a lower IPC rate due to the 40 software application are used to implement the methods
kernel's use of various resources of the processor . In one and / or mechanisms described herein . For example , program
implementation , the first processor is a CPU and the second instructions executable by a general or special purpose
processor is an accelerator (e.g. , GPU) . In other implemen- processor are contemplated . In various implementations ,
tations , the first and second processors are other types of such program instructions are represented by a high level
processors . The duration of the interval over which the 45 programming language . In other implementations , the pro
number of cycles is counted varies from implementation to gram instructions are compiled from a high level program
implementation . ming language to a binary , intermediate , or other form .

If the number of cycles that the first processor threads Alternatively , program instructions are written that describe
spend servicing requests generated by the second processor the behavior or design of hardware . Such program instruc
during the previous time interval is greater than a threshold 50 tions are represented by a high - level programming language ,
(conditional block 610 , “ yes ” leg) , then the first processor such as C. Alternatively , a hardware design language (HDL)
adds a first amount of delay to the servicing of subsequent such as Verilog is used . In various implementations , the
requests from the second processor (block 615) . Otherwise , program instructions are stored on any of a variety of
if the number of cycles that the first processor threads spend non - transitory computer readable storage mediums . The
servicing requests generated by the second processor during 55 storage medium is accessible by a computing system during
the previous time interval is less than or equal to the use to provide the program instructions to the computing
threshold (conditional block 610 , “ no ” leg) , then the first system for program execution . Generally speaking , such a
processor adds a second amount of delay to the servicing of computing system includes at least one or more memories
subsequent requests from the second processor , wherein the and one or more processors configured to execute program
second amount of delay is less than the first amount of delay 60 instructions .
(block 620) . In some cases , the second amount of delay is It should be emphasized that the above - described imple
zero , such that the first processor services subsequent mentations are only non - limiting examples of implementa
requests immediately . After blocks 615 and 620 , method 600 tions . Numerous variations and modifications will become
ends . apparent to those skilled in the art once the above disclosure

Referring now to FIG . 7 , one implementation of a method 65 is fully appreciated . It is intended that the following claims
700 for processing system service requests (SSRs) is shown . be interpreted to embrace all such variations and modifica
A first processor receives a SSR from a second processor tions .

a

5

10

15

US 11,275,613 B2
9 10

What is claimed is : 8. A method comprising :
1. A system comprising : monitoring , by a first processor , a number of cycles that
a first processor comprising circuitry configured to threads executing on the first processor have spent

execute a plurality of threads of an operating system servicing system service requests generated by a sec
kernel ; and ond processor over a previous time interval ; and

a second processor coupled to the first processor , wherein dynamically adjusting , by the first processor , an amount
the second processor comprises circuitry configured to of delay that is added to servicing of a given system
execute an application and send system service requests service request based on a determination of whether the
to the first processor for servicing ; number of cycles that threads of the first processor have

wherein the first processor is configured to : spent servicing system service requests over the previ
ous time interval exceeds a threshold . monitor a number of cycles that threads executing on 9. The method as recited in claim 8 , wherein dynamically the first processor have spent servicing system ser adjusting the amount of delay that is added to servicing of vice requests over a previous time interval ; and the given system service request comprises : dynamically adjust an amount of delay that is added to adding a first amount of delay responsive to determining servicing of a given system service request based on that the number of cycles is greater than a threshold ; a determination of whether the number of cycles and

exceeds a threshold . adding a second amount of delay responsive to determin
2. The system as recited in claim 1 , wherein dynamically ing that the number of cycles is less than or equal to the

adjusting the amount of delay that is added to servicing of 20 threshold , wherein the second amount of delay is less
the given system service request comprises : than the first amount of delay .

adding a first amount of delay responsive to determining 10. The method as recited in claim 9 , further comprising
that the number of cycles is greater than the threshold ; setting the first amount of delay to a value greater than a
and previous amount of delay responsive to the number of cycles

adding a second amount of delay responsive to determin- 25 being greater than the threshold and the previous amount of
ing that the number of cycles is less than or equal to the delay being greater than zero .
threshold , wherein the second amount of delay is less 11. The method as recited in claim 8 , wherein dynamically
than the first amount of delay . adjusting the amount of delay that is added to servicing of

3. The system as recited in claim 2 , wherein the circuitry the given system service request comprises :
of the first processor is configured to set the first amount of 30 waiting a first duration prior to initiating servicing of the
delay to a value greater than a previous amount of delay given system service request responsive to determining
responsive to the number of cycles being greater than the that the number of cycles is greater than a threshold ;
threshold and the previous amount of delay being greater and
than zero . waiting a second duration prior to initiating servicing of

4. The system as recited in claim 1 , wherein dynamically 35 the given system service request responsive to deter
adjusting the amount of delay that is added to servicing of mining that the number of cycles is less than or equal
the given system service request comprises : to the threshold , wherein the second duration is less

waiting a first duration prior to initiating servicing of the than the first duration .
given system service request responsive to determining 12. The method as recited in claim 11 , wherein the
that the number of cycles is greater than the threshold ; 40 threshold is set by an operating system kernel .
and 13. The method as recited in claim 8 , further comprising :

waiting a second duration prior to initiating servicing of calculating an overhead associated with servicing system
the given system service request responsive to deter- service requests over the previous time interval ; and
mining that the number of cycles is less than or equal dynamically adjusting an amount of delay that is added to
to the threshold , wherein the second duration is less 45 servicing of a given system service request based on the
than the first duration . overhead .

5. The system as recited in claim 4 , wherein the threshold 14. The method as recited in claim 8 , further comprising :
is dynamically adjusted by the operating system kernel . calculating an overhead associated with servicing system

6. The system as recited in claim 1 , wherein the first service requests over the previous time interval ,
processor is further configured to : wherein the overhead comprises one or more of cycles

calculate an overhead associated with servicing system spent servicing system service requests , cycles spent
service requests over the previous time interval ; and transitioning between user and kernel mode , and cycles

dynamically adjust an amount of delay that is added to spent in user mode running at a lower instruction per
servicing of a given system service request based on the cycle (IPC) rate ; and
overhead . dynamically adjusting an amount of delay that is added to

7. The system as recited in claim 1 , wherein the circuitry servicing of a given system service request based on the
of the first processor is further configured to : overhead .

calculate an overhead associated with servicing system 15. An apparatus comprising :
service requests over the previous time interval , one or more execution units ;
wherein the overhead comprises one or more of cycles 60 wherein the apparatus is configured to :
spent servicing system service requests , cycles spent monitor , by a first processor , a number of cycles that
transitioning between user mode and kernel mode , and threads executing on the one or more execution units
cycles spent in user mode running at a lower instruction have spent servicing system service requests ,
per cycle (IPC) rate ; and received from a second processor , over a previous

dynamically adjust an amount of delay that is added to 65 time interval ; and
servicing of a given system service request based on the dynamically adjust , by the first processor , an amount of
overhead . delay that is added to servicing of a given system

50

55

5

a

US 11,275,613 B2
11 12

service request based on a determination of whether waiting a first duration prior to initiating servicing of the
the number of cycles exceeds a threshold . given system service request responsive to determining

16. The apparatus as recited in claim 15 , wherein dynami- that the number of cycles is greater than a threshold ;
cally adjusting the amount of delay that is added to servicing and
of the given system service request comprises : waiting a second duration prior to initiating servicing of adding a first amount of delay responsive to determining

that the number of cycles is greater than a threshold ; the given system service request responsive to deter
and mining that the number of cycles is less than or equal

adding a second amount of delay responsive to determin to the threshold , wherein the second duration is less
than the first duration . ing that the number of cycles is less than or equal to the

threshold , wherein the second amount of delay is less 19. The apparatus as recited in claim 18 , wherein the
than the first amount of delay . threshold is set by an operating system .

17. The apparatus as recited in claim 16 , wherein the 20. The apparatus as recited in claim 15 , wherein the
apparatus is further configured to set the first amount of apparatus is further configured to :
delay to a value greater than a previous amount of delay calculate an overhead associated with servicing system responsive to the number of cycles being greater than the service requests over the previous time interval ; and threshold and the previous amount of delay being greater
than zero . dynamically adjust an amount of delay that is added to

18. The apparatus as recited in claim 15 , wherein dynami servicing of a given system service request based on the
overhead . cally adjusting the amount of delay that is added to servicing

of the given system service request comprises :

10

15

