
A Runtime Metric of Design Confidence
EECS 578 Final Project, Fall 2006

Kenneth Zick
University of Michigan

kzick@umich.edu

Joseph Lee Greathouse
University of Michigan
jlgreath@umich.edu

ABSTRACT
We offer a series of statistical approaches that quantify confidence
in a digital system’s design at runtime. Using runtime checkers to
detect errors, we present a system to collate information about
these errors and assign a confidence number to both a design and
modules in the design. We then show methods for implicating
unchecked modules for failures deeper in the system. Using these
methods, we give a series of examples of a small system with
numerous errors among its modules. We show that even without
checking all modules, we can often find the modules in which
errors originate and replace these modules, resulting in the
betterment of the system as a whole.
Keywords
Runtime verification, reliability, design confidence, fault tolerant
computing.

1. INTRODUCTION
Verification engineers fight what seems like a losing battle with
the continuous rise of the complexity in digital systems.
Academia has responded by attempting to make new types of
verification schemes viable. These include a number of formal
methods for verifying the correctness of a circuit mathematically
[3]. These formal methods are often too computationally
intensive to use against whole commercial designs, but they may
be put to other uses. For instance, there are formally verified
runtime checking mechanisms that can detect failures in a system
while the system runs its normal programs [1].

The idea behind runtime verification schemes is watching the
system during its operation and finding/correcting errors as they
happen. These methods, if they can correct errors, often do so
silently, fixing the system during its operation so that the user
never sees the problem. While this seems like a panacea to the
problem of design complexity, the cost of fixing runtime errors is
reduced system performance during error-correction. Due to this
performance loss, system designers may require a design that has
very few failures in an effort to ensure high performance.

Similarly, real-time systems will have difficulties with a design
that suddenly changes its performance characteristics due to
errors. This does not, however, mean that a runtime checker

would not be useful for such designs. Tools such as formal
checkers [4] and onboard assertions [9] can be used to help debug
a design by finding errors and reporting them during operation.

1.1 Contribution Overview
We present a method for quantifying the confidence in a system’s
design based on runtime checking information. We assign a
confidence number to individual modules in a design based on the
error information obtained from onboard error-detection units.
This information can be returned to verification engineers for bug-
hunting purposes, or it can be used internally to help a system
detect and work around its own bugs.

We assign these confidence numbers using a metric based upon
the number of errors detected across the circuit. It is impossible,
however, to watch all outputs of all modules in a complex design.
As such, we need a method for assigning errors to modules that
we cannot monitor directly. We present a technique called
module-level probabilistic diagnosis to assign partial-errors to
unwatched modules. Additionally we analyze three different
methods of assigning failures.

1.2 Background Information
The idea of a runtime checking is central to this paper. Much of
the literature focuses on using runtime checkers to greatly reduce
the number of errors in a system, thereby allowing designs with
bugs to operate accurately in the field. We leverage the idea of a
module-level checker that watches the outputs of certain parts of
the design and checks them for accuracy. An example of this is
the formally verified checker processor presented in [13]. We
utilize design ideas like this as the core error-finding mechanism
for our metric.

We utilize statistical learning approaches in this paper to justify
our confidence metrics. Causal networks and probabilistic
methods are important for assigning errors across the system at
runtime. Techniques such as this are found in the literature [7],
but our method is based on both module- and system-level
runtime checking, rather than design-time bug categorization.
Causal reasoning has been used to perform automated diagnosis,
by identifying the next set of diagnostic tests [8]. Our approach
does not involve a sequence of tests or complete diagnosis, but
rather acts as a statistical estimate.

Some runtime techniques for fixing errors rely on the verification
engineer to find an error and describe it to the checker in order to
fix it [12]. We feel that the presented technique is compatible
with systems such as this because our work is focused on finding
which bugs are particularly crucial to repair and from where these
bugs originate.

While there is an entire field devoted to the reliability of systems,
the models presented in this paper are not meant to estimate the

reliability of a system over its lifetime. Instead, they are designed
to estimate the correctness of a system’s design.

1.3 Organization
We will begin this paper by discussing our runtime metric of
design confidence. We will describe what exactly we mean by
runtime confidence and detail the types of statistics needed to
obtain it. We will follow this with methods for obtaining these
statistics. This is contained in section 2.

Section 3 will explore our current methods for module-level
probabilistic diagnosis. We will explain a weighted-graph method
for assigning the blame for a detected failure. We will also
discuss the implication matrix method of holding these weights, as
well as two methods for determining these weights.

Our experimental data is contained in section 4. We show our
confidence metric in action on a buggy design of small-to-
moderate size in simulation. The design is tested blindly and we
use our confidence estimations to decide which parts are most
likely causing failures at the system level.

In section 5 we discuss future work that could improve the ideas
presented here, as well as ideas for work that can utilize the idea
of dynamic design confidence.

2. DESIGN CONFIDENCE

2.1 Runtime Confidence
We present the idea of runtime design confidence in this section.
This is a scheme to quantify confidence in the correctness of a
design using runtime information. We define confidence in a
design as an estimated probability that a design will run correctly
(and continue to run correctly) when it is in a certain system
environment. As such, a confidence score is concerned with the
probability of failure, not the number bugs. While a design may
have many bugs, if they never appear, we can be confident that
the design will work correctly the majority of the time.

In contrast to reliability estimates, which predict the average time
a class of parts will take to fail, confidence estimates predict
whether a single product will continue to operate correctly for the
foreseeable future. This is based on the assumption that past
failures forecast future failures of the same type. Confidence
estimates cannot tell us how long it will be until a catastrophic
failure of the part. Rather, they are useful to answer “is this a
good design?”

We aim to make this confidence number useful for identifying
problematic regions in a design, indicating erroneous parts by
giving them lower module-level confidence scores. The scores
themselves should be comparable across systems of similar design
and modules of different complexity. Confidence scores should
be useful for comparing the correctness of similar designs in
similar environments. Finally, because these confidence numbers
are based on runtime information, they need to be constantly
updated during system operation.

2.2 Runtime Prediction of Failure Rates
It can be difficult to accurately model the future failure rate of a
complex design before it is deployed into the field. Traditional
methods such as ‘bug curves’ give an indication of how many
bugs are likely to be found before deployment, but provide little
guidance about whether subtle bugs will be exposed in the field,
nor do they estimate how often those bugs will cause a failure.

We propose a straightforward method of predicting failure rates
using the runtime statistics. First, we treat runtime failure
statistics as an estimate of a design’s inherent failure rate for a
given system environment. This is standard statistical parameter
learning, where the parameter in question is the inherent failure
rate [10]. Second, we use the observed failure rate as a prediction
of the future failure rate, according to the maximum likelihood
hypothesis. If a design has failed once every million instructions
in the past, maximum likelihood suggests that the actual failure
rate is one in a million. This hypothesis is only an approximation,
and it requires that we collect enough data. But it has proven to
be useful in many situations, and it acts as a valuable starting
point that is easy to implement in hardware.

To these ends, we give a rough formula for design confidence as
 1x xDesignConfidence FailureRate= − (1)

This yields a confidence that lies between zero and one. Zero
implies a completely broken design where every instruction fails.
One only implies that the design may not have any problems.
Note that even though we have full confidence in the design we
do not rule out the possibility of future failures. We can only say
that we have not seen any failures, so we believe that the part will
continue to function properly.

2.3 Failure Statistics

Figure 1. Modules may go unwatched by the checker

We must keep track of statistics about failures in the system in
order to calculate the failure rate of a design. This is done with
the help of runtime checkers that watch for failures. The source
module is marked with an error when a module failure is caught
by the onboard checker. We can keep track of these errors,
whether the checker fixes them or not, to give a failure rate for use
in design confidence calculation. In this manner we can calculate
design confidence not just for the system as a whole, but also for
individual modules in the design.

Because we base our failure statistics (and thus our design
confidence) on the number of errors seen, our confidence metric is
a function of the environment the system is in at runtime. This is
one of the benefits of runtime checker: the system may reach
many states that it would not see during normal lab tests.
Conversely, we cannot give a firm confidence in the design
because the design will never run through all types of programs.

An additional challenge of calculating failure statistics comes
from the inability to watch every output in a design. How should
we assign failure statistics to a circuit we cannot check directly?
See Figure 1 for an example of this situation. In this example, the
ROB module is completely contained in a watched module, but it

may still be erroneous. We present plans for assigning blame to
unwatched modules in the following section.

3. MODULE-LEVEL PROBABILISTIC
DIAGNOSIS

3.1 Overview
There are significant barriers to diagnosing design defects in an
automated fashion. In high-availability systems we can typically
not afford to take the system offline to perform a complete
diagnostic procedure. The same can be said for real-time systems.
Even for systems without these requirements, it can be difficult to
automatically pinpoint the root cause of a design defect and
institute a workaround.

We propose a method of estimating the cause of design failures
when a complete diagnosis is not feasible. In our method, a
partial high-level diagnosis is performed while the system remains
online; modules are identified as faulty with certain probabilities.
These probabilistic failures are tracked by the failure statistics,
just as with actual failures. Thus the statistics provide an indirect
measure of a design’s level of defectiveness, which in turn
determines our level of confidence. It is important to measure
confidence at the module level in order to feed information back
to module designers and verification team, and just as important,
to allow reconfiguration of systems where modules act as the field
replaceable units.

3.2 Weighted-Graph Representation
To enable module-level probabilistic diagnosis we build a directed
weighted graph of the system, similar to a causal network [8].
The nodes of the graph represent modules, and links represent
signals flowing from one module to another. In our contribution,
the links are weighted to indicate the importance of the
interconnection. In other words, they indicate how much
responsibility a source module is assumed to have for failures
detected at the destination module. Some methods for
determining the weights are discussed in the following section.

Figure 2. Directed weighted graph model of an example

system. Nodes have an implied link to themselves.

3.3 Methods for Determining Weights
We propose a systematic calculation of weights based upon an
analysis of the design structure. In particular, we recommend
computing the contributions of each module to the logic cone that
feeds a checker. As a heuristic, we treat each module as a black
box and tally the number of signals connecting each pair of
modules. The weighting function for a link between module i
(source) and module j (destination) is as follows.

(2)

1 if module j has a checker and i=j

X (don’t-care) if module j has no checker

∑ 1 / (FOs × (# inputs to j)) for all inputs si→j

wij =

If a module has a checker, it is implicated with an integer weight
of 1 whenever a fail is detected by that checker. If a module has
no checker, the weight of an incoming link is a don’t-care because
fails can never be detected at that destination.

The most interesting case is for links from a module without a
checker to another module that has one. In such a case, we
compute the proportion of responsibility associated with the
source module, by computing the proportion of signals feeding
into the destination module. If 30% of the inputs to module j
come from module i, then module i will be implicated at a level of
0.30 for every failure caught at module j. There is one more
modification we must make, and that is to divide by the fan-out of
each input. If a line fans out to 3 modules with checkers, then its
individual contribution to the weight is divided by 3, so the
module will not get implicated multiple times. Finally, we
perform a summation over all of the inputs to determine the
weight for the link.

3.4 Implication Matrices
The full set of weights can be stored in an implication matrix.
Table 1 illustrates an example matrix for a system with 3 modules
(A,B,C). Module C does not have a checker, so the implication
column for C is a don’t-care. The columns for A and B indicate
how much the source modules are implicated for failures detected
in A and B. As an example, when a failure is detected at module
A, module C is implicated at a level of 0.8.

Table 1. Implication matrix for a system with 3 modules.
Only modules A and B have associated checkers.

 Src \ Dest A B C

A 1 0.9 X

B 0.2 1 X

C 0.8 0.1 X

In the general case of a system with more than 1 checker per
module, the matrix would contain m rows for the modules and c
columns for the checkers.

As long as a system’s interconnections are static, then the
implication matrix can be accurately determined at design time.
The matrix values would then be encoded into the confidence
logic for use at runtime.

4. EXPERIMENTAL DATA

4.1 Experimental Setup of a Small Design
We tested our confidence estimate ideas against a small-to-
moderate sized Verilog design run in simulation. The design
itself was a five-stage pipeline split into a module for each stage
and an encompassing module for the pipeline and its registers. To
simulate a runtime checker, we kept a known-good version of
each stage in the pipeline and compared its outputs to the DUT
version of that respective stage. If there were differences in the
output signals we would flag that stage and propagate the error
along with the instruction until commit. Figure 3 shows this
setup.

Our test designs were modeled on the known-good design with a
range of errors manually inserted by the authors. Some errors
were modeled after bugs found in the original design of the
pipeline, while others were more general. Two versions of each
of the five pipeline stages were made, leading to 32 possible
configurations of the whole system.

The design was run through a 50,000 instruction suite of small
tests, and the 32 designs ranged from 33 to 177 erroneous
instructions. The same 50,000 instruction test was run for every
configuration during these tests.

To expedite the large number of test runs required of these
experiments, we created a Java program which implemented our
refinement heuristic. The program utilized the failure data that
was generated by our Verilog simulations. The program would
start with a given system configuration and track the failure
statistics (and design confidence values) for each of the 10
versions (2 versions of each module). It would then execute our
reconfiguration decision procedure (heuristic) and move on to the
next step with a new system configuration. The decision
procedure would continue for 15 steps. Finally, this same
procedure was run for all possible starting configurations, and the
results were averaged over all runs.

4.2 Experiment 1
4.2.1 Hypothesis
Starting from any system configuration, our design confidence
scheme and refinement procedure will lead to an improved system
design in a small number of refinement steps. The number of
steps will be much less than the number of unique system
configurations; it will linear in the total number of module
versions.

Table 2. Example refinement sequence. By improving
module-level confidence, the system-level pass rate also

improves, after temporary decreases at steps 2 & 3.

Step System
config.

System
pass/fail rate

Figure 3. Experimental Setup. The known good designs at
the top are compared to the DUT at bottom

Refinement
decision

0 00000 0.9968 WB: v0->v1

1 00001 0.9980 ID: v0->v1

2 01001 0.9979 MEM: v0->v1

3 01011 0.9978 EX: v0->v1

4 01111 0.9986 IF: v0->v1

5 11111 0.9991 no change

4.2.2 Description
This experiment shows that if a module’s outputs are monitored, it
is possible to accurately find the most erroneous individual
modules in most cases. Beginning at any of the possible 32
starting configurations we would switch out the single module
that would increase the overall system confidence the most. Table
2 shows an example refinement sequence starting from
configuration 0000 while Figure 4 shows the confidence in a pair
of modules from the starting sequence 01010.

We test the idea that even though bugs in one module may cause
failures in subsequent modules, we can correctly identify the
worst modules eventually and find a good system configuration.

This experiment shows the best-case situation for our method of
switching modules. It will be useful in future tests to compare
their correctness over time versus this case.

4.2.3 Results
Figure 5 details the results of experiment 1 averaged over all
starting states. The average correctness of the designs rises over
the course of the refinement, and by steady-state, 2/3rds of designs
are in the optimal configuration. Of those that are left, their
correctness has still improved from their initial configurations.
The average system performance converges after about 10 steps,
which matches the total number of design versions.

0.9980

0.9985

0.9990

0.9995

1.0000

0 1 2 3 4 5 6 7 8 9 10

Refinement steps

D
es

ig
n

co
nf

id
en

ce

Confidence: EX version 0

Confidence: EX version 1

Switch to
version 0

Switch back
to version 1

Initial config:
version 1

Figure 4. Confidence in two module versions over time

4.3 Experiment 2
4.3.1 Hypothesis
In a system with only partial checking, probabilistic diagnosis
(with implication weights=1) will provide better system reliability
than an alternative method without any back-propagation of
errors.

4.3.2 Description
In this experiment we test the efficacy of probabilistic diagnosis in
a system with only partial checking. Specifically, checkers are
enabled for only three of the five stages (EX, MEM, and WB).
Two of stages (IF and ID) have no checker, so the confidence of
the respective design versions must be inferred indirectly.

Similar to Experiment 1, we simulated the system for all possible
starting configurations, using the given refinement heuristic. We
did this with probabilistic diagnosis turned off (e.g. zero
implication, weights of unchecked modules are 0), and again with
probabilistic diagnosis turned on (implication with weights of 1).

4.3.3 Results
The results indicate that system reliability is in fact improved with
probabilistic diagnosis. Please refer to Figure 6. Without
probabilistic diagnosis, the overall system fail rate converges to
62.78 fails per test, while with probabilistic diagnosis, the system
fail rate reaches 47.97, a 24% improvement.

Note that the reliability with zero implication initially outperforms
unit implication. We feel that this is because a locally optimum
configuration can be found more quickly, due to the smaller
search space. Specifically, without implication, the IF and ID
modules never encounter any failures, and retain full design
confidence (1.0). Thus the system never reconfigures those
modules, and only needs to reconfigure the remaining three
modules. As a result, with no implication, the system can achieve
a local optimum in fewer than 8 refinement steps. With unit
implication, the system is able to estimate the design confidence
of the IF and ID versions, and has a larger space of system
configurations. Unit implication performs better than no

implication after about 8 refinement steps, which matches our
intuition.

4.4 Experiment 3
4.4.1 Hypothesis
Proportional weighting will provide better system reliability than
unit or zero weighting.

4.4.2 Description

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

Av
er

ag
e

sy
st

em
 p

as
s

ra
te

Ideal
Actual

0.9980

0.9985

0.9990

0.9995

1.0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

Av
er

ag
e

sy
st

em
 p

as
s

ra
te

Unit implication
No implication
Ideal

Figure 6. Experiment 2 Results. Unit implication

outperforms zero implication after just a few steps. Figure 5. Experiment 1 Results. Pass-rate of system on
average from all 32 start-states increases over refinements

We simulated two proportional weighting schemes and compared
the results to unit and zero weighting (experiment 2). As before,
for each scheme we simulated all possible starting configurations,
and used the given heuristic for refinement decisions.

The first weighting scheme counts the numbers of input lines
(individual bits) feeding a module with a checker. The second
scheme counts the number of input signals, where data busses are
treated as a single signal. The idea is that not all lines are created
equal; it is counterproductive to give disproportionate weighting
to data busses when small control lines are often more important
to the correct operation of the design.

Table 3. Implication matrix for proportional weighting by
individual bits

Src\Dst IF ID EX MEM WB

IF X X 0.321 0 0.474

ID X X 0.465 0.015 0.044

EX X X 1 0.985 0.007

MEM X X 0.214 1 0.474

WB X X 0 0 1

Table 4. Implication matrix for proportional weighting by
signals (data busses collapsed to 1 signal)

Src\Dst IF ID EX MEM WB

IF X X 0.702 0 0.111

ID X X 0.277 0.4 0.667

EX X X 1 0.6 0.111

MEM X X 0.021 1 0.111

WB X X 0 0 1

4.4.3 Results
The results indicate that both proportional weighting schemes
outperform unit and zero weighting. Furthermore, the scheme
with proportional weighting by signals (40.41 fails per test)
performs better than weighting by individual lines (45.56 fails per
test) by 11.3%.

5. FUTURE WORK
We feel there are opportunities for additional research into the
types of design defects that tend to escape verification and are
uncovered at runtime. Specifically, we would like to have a better
taxonomy of these defects, including local and interoperability
defects, and a better understanding of frequencies of occurrence
on leading-edge systems. While we have anecdotal evidence and
first-hand experience with these types of defects, low-level
systematic data is lacking [2].

We would like to see our approach applied to non-processor
systems in the future. ASICs with a modular design and a method
of runtime verification would be prime candidates. The particular
method of checking could be a checker processor, assertions,
watchdog timers, etc. Deriving implication values for the
checkers would be more challenging than in the system analyzed
here.

Further study would be required to understand the possibilities for
proportional weighting heuristics. For instance, our scheme
depends on signal fan-out, so systematic experiments could be

performed on signals with various fan-outs. Additionally, we
believe our proportional weighting heuristic could be significantly
extended, for instance by analyzing a logic cone at finer levels of
granularity (i.e. levels lower than a module).

We feel that the techniques presented in this paper would be well
suited for research into hardware design diversity. The idea of
design diversity is to employ redundancy at the design level (via
multiple unique variants of a design) to protect against design
defects. Prior research has demonstrated that certain types of
systems can benefit from design diversity, including systems with
strict requirements for high-availability, safety, or autonomy. One
incarnation of diversity called N-version programming [5] has the
drawbacks of high cost and a possibility of correlated errors in
multiple variants. For modern distributed systems, a more
promising technique is N-self-checking, which allows N variants
to operate independently, each performing checking locally. It
remains to be seen whether the cost of developing N variants can
be mitigated by the greater availability of IP libraries, open-source
designs, and the like. While typically used for software, design
diversity holds promise for reconfigurable hardware designs as
well [11][6]. A method is required for evaluating the utility of the
various designs; the methods presented here may be along the
lines of what is needed.

0.9980

0.9985

0.9990

0.9995

1.0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

Av
er

ag
e

sy
st

em
 p

as
s

ra
te

Proportional by input signals

Proportional by input bits

Ideal

Figure 6. Experiment 3 Results. Collapsing data busses into
a single signal results in a better final design.

Finally, while focused on design defects, out techniques may be
just as applicable to measuring a design’s inherent predisposition
to soft errors. Future work could determine the feasibility of our
high-level runtime confidence and refinement, as an alternative to
existing techniques that deal with soft errors at lower levels.

6. CONCLUSIONS
We have presented a method for estimating the correctness of a
processor-based design and its constituent modules based on
runtime error information. Our experiments have shown that by
watching the outputs of less than all modules we are able to
estimate which modules in a design are erroneous and give a
quantified confidence in them.

Based on our experimental data we feel that our metric for design
confidence will be useful in a number of endeavors from design
verification to autonomous system reconfiguration.

Our module-level implication weighting is a method for assigning
partial blame to modules which are not under direct test. This will
allow our confidence metric to be used in systems without full
checker coverage. We hope in future work to find better
weighting schemes to more accurately model the complexities of
designs with many interactions.

7. ACKNOWLEDGMENTS
We would like to thank Professor Valeria Bertacco and the
students of the EECS 578 course for the opportunity to pursue this
project. We thank Prof. Mark Brehob and the EECS 470 students
for the Verilog code which acted as our starting point. Ken would
like to acknowledge the support of the NASA GSRP Fellowship.

8. REFERENCES
[1] Austin, T., “DIVA: A Reliable Substrate for Deep

Submicron Microarchitecture Design”, Micro-32 (Nov 1999)
[2] Avizienis, A., and Yutao He, “Microprocessor entomology: a

taxonomy of design faults in COTS microprocessors”,
Dependable Computing for Critical Applications 7, 3 – 23
(1999)

[3] Bertacco, V. Scalable Hardware Verification with Symbolic
Simulation, 1st ed., Springer, New York (2005)

[4] Chatterjee, S., Weaver, C., and Austin, T., “Efficient
Checker Processor Design”, Micro-33 (Nov 2000)

[5] Chen, L., Avizienis, A., “N-version Programming: A Fault
Tolerance Approach to Reliability of Software Operation”,
Fault-Tolerant Computing, Twenty-Fifth International
Symposium on, 113-119 (Jun 1995)

[6] Greco, J., Cieslewski, G., Jacobs, A., Troxel, I.A., and
George, A.D., “Hardware/software Interface for High-
performance Space Computing with FPGA Coprocessors”,
Aerospace Conference, 2006 IEEE (2006)

[7] Malka, Y., A. Ziz, “Design Reliability-Estimation through
Statistical Analysis of Bug Discovery Data”, Proc. Design
Automation Conference (June, 1998)

[8] McDermott, R. M., and Stern, D., “Switch Directed Dynamic
Causal Networks – A Paradigm for Electronic System
Diagnosis”, 24th ACM/IEEE Design Automation
Conference (1987)

[9] Nacif, J.A.M., et al., “The Chip is Ready. Am I done? On-
chip Verification using Assertion Processors”, Proc. VLSI-
SOC’03 (2003)

[10] Russell, S., and Norvig, P., “Artificial Intelligence: A
Modern Approach”, 2nd ed., Prentice Hall (2003)

[11] Shriver, P. M., Gokhale, M.B., Briles, S.D., Kang, D.-I., M.
Cai, McCabe, K., Crago, S.P., and J. Suh, "A Power-Aware,
Satellite-Based Parallel Signal Processing Scheme," Power
Aware Computing, Series in Computer Science, Kluwer
Academic/Plenum Publishers, New York, NY (2002

[12] Wagner, I., Bertacco, V., and Austin, T., “Shielding against
design flaws with field repairable control logic”, Design
Automation Conference, 2006 43rd ACM/IEEE.
Page(s):344 – 347 (July 2006)

[13] Weaver, C., and T. Austin, “A Fault Tolerant Approach to
Microprocessor Design”, Proc. Dependable Systems and
Networks. 411-420 (2001)

	1. INTRODUCTION
	1.1 Contribution Overview
	1.2 Background Information
	1.3 Organization

	2. DESIGN CONFIDENCE
	2.1 Runtime Confidence
	2.2 Runtime Prediction of Failure Rates
	Failure Statistics

	3. MODULE-LEVEL PROBABILISTIC DIAGNOSIS
	3.1 Overview
	3.2 Weighted-Graph Representation
	3.3 Methods for Determining Weights
	3.4 Implication Matrices

	4. EXPERIMENTAL DATA
	4.1 Experimental Setup of a Small Design
	4.2 Experiment 1
	4.2.1 Hypothesis
	4.2.2 Description
	4.2.3 Results

	4.3 Experiment 2
	4.3.1 Hypothesis
	4.3.2 Description
	4.3.3 Results

	4.4 Experiment 3
	4.4.1 Hypothesis
	4.4.2 Description
	4.4.3 Results

	5. FUTURE WORK
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

