
clSPARSE:
A Vendor-Optimized Open-Source Sparse BLAS Library

Joseph L. Greathouse† Kent Knox† Jakub Poła‡§ Kiran Varaganti† Mayank Daga†
†Advanced Micro Devices, Inc. ‡University of Wrocław §Vratis Ltd.

{Joseph.Greathouse, Kent.Knox, Kiran.Varaganti, Mayank.Daga}@amd.com jakub.pola@gmail.com

ABSTRACT
Sparse linear algebra is a cornerstone of modern compu-
tational science. These algorithms ignore the zero-valued
entries found in many domains in order to work on much
larger problems at much faster rates than dense algorithms.
Nonetheless, optimizing these algorithms is not straightfor-
ward. Highly optimized algorithms for multiplying a sparse
matrix by a dense vector, for instance, are the subject of a
vast corpus of research and can be hundreds of times longer
than näıve implementations. Optimized sparse linear alge-
bra libraries are thus needed so that users can build appli-
cations without enormous effort.

Hardware vendors release proprietary libraries that are
highly optimized for their devices, but they limit interop-
erability and promote vendor lock-in. Open libraries often
work across multiple devices and can quickly take advantage
of new innovations, but they may not reach peak perfor-
mance. The goal of this work is to provide a sparse linear
algebra library that offers both of these advantages.

We thus describe clSPARSE, a permissively licensed open-
source sparse linear algebra library that offers state-of-the-
art optimized algorithms implemented in OpenCLTM. We
test clSPARSE on GPUs from AMD and Nvidia and show
performance benefits over both the proprietary cuSPARSE
library and the open-source ViennaCL library.

CCS Concepts

•Mathematics of computing→Computations on ma-
trices; Mathematical software performance;
•Computing methodologies → Linear algebra algo-
rithms; Graphics processors;
•Software and its engineering → Software libraries and
repositories;

Keywords
clSPARSE; OpenCL; Sparse Linear Algebra; GPGPU

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IWOCL ’16 April 19-21, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4338-1/16/04.

DOI: http://dx.doi.org/10.1145/2909437.2909442

1. INTRODUCTION
Modern high-performance computing systems, including

those used for physics [1] and engineering [5], rely on sparse
data containing many zero values. Sparse data is best ser-
viced by algorithms that store and rely only on the non-zero
values. Such algorithms enable faster solutions by skipping
many needless calculations and allow larger problems to fit
into memory. Towards this end, the Basic Linear Algebra
Subprograms (BLAS) specification dedicates a chapter to
sparse linear algebra [3].

The description of these sparse algorithms is straightfor-
ward. While simple serial implementation of sparse matrix-
dense vector multiplication (SpMV) can be described in six
lines of pseudocode [6], highly optimized implementations
require a great deal more effort. Langr and Tvrd́ık cite over
fifty SpMV implementations from the recent literature, each
ranging from hundreds to thousands of lines of code [8]. Su
and Keutzer found that the best algorithm depended both
on the input and on the target hardware [12].

Good sparse BLAS implementations must thus under-
stand not just the data structures and algorithms but also
the underlying hardware. Towards this end, hardware ven-
dors offer optimized sparse BLAS libraries, such as Nvidia’s
cuSPARSE. These libraries are proprietary and offer lim-
ited or no support for hardware from other vendors. Their
closed-source nature prevents even minor code or data struc-
ture modifications that would result in faster or more main-
tainable code.

In addition, the speed of advancement for these libraries
can be limited because the community has no control over
their code. Few (if any) of the algorithms described by Langr
and Tvrd́ık made their way into closed-source libraries, and
researchers do not know what optimizations or algorithms
the vendors use. While proprietary, vendor-optimized li-
braries offer good performance for a small selection of hard-
ware, they limit innovation and promote vendor lock-in.

Existing open-source libraries, such as ViennaCL [10], help
alleviate these issues. ViennaCL offers support for devices
from multiple vendors, demonstrating the benefits of open-
source software in preventing vendor lock-in [11]. As an ex-
ample of the benefits to open source innovation, ViennaCL
added support for the new CSR-Adaptive algorithm within
days of its publication [4], while additionally adding the new
SELL-C-σ algorithm [7].

Nonetheless, as a library that must sometimes trade per-
formance for portability concerns, ViennaCL can sometimes
leave performance on the ground [2]. There are potential
performance benefits to vendor-optimized libraries, includ-

http://dx.doi.org/10.1145/2909437.2909442


ing the ability to preemptively add optimizations for hard-
ware that is not yet released.

In summary, existing sparse BLAS libraries offer either
limited closed-source support with high performance or broad
open source support that is not necessarily completely op-
timized. This work sets out to solve these problems. We
describe and test clSPARSE, a vendor-optimized, permis-
sively licensed, open-source sparse BLAS library built using
OpenCLTM. clSPARSE was built in a collaboration between
Advanced Micro Devices, Inc. and Vratis Ltd., and it is
available at:
http://github.com/clMathLibraries/clSPARSE/

2. CLSPARSE
As part of AMD’s GPUOpen initiative to bring strong

open-source library support to GPUs, we recently released
clSPARSE, an OpenCLTM sparse BLAS library optimized
for GPUs. Like the clBLAS, clFFT, and clRNG libraries,
clSPARSE is permissively licensed, works on GPUs from
multiple vendors, and includes numerous performance opti-
mizations, both from engineers within AMD and elsewhere.
clSPARSE is built to work on both Linux R© and Microsoft
Windows R© operating systems.

clSPARSE started as a collection of OpenCL routines de-
veloped by AMD and Vratis Ltd. to perform format conver-
sions, level 1 vector operations, general SpMV, and solvers
such as conjugate-gradient and biconjugate gradient. Fur-
ther development led to the integration of AMD’s CSR-
Adaptive algorithm for SpMV [4, 2], a CSR-Adaptive-based
sparse matrix-dense matrix multiplication algorithm, and
a high-performance sparse matrix-sparse matrix multiplica-
tion developed by the University of Copenhagen [9].

clSPARSE has numerous benefits over proprietary libraries
such as Nvidia’s cuSPARSE. First and foremost, it works
across devices from multiple vendors. As we will demon-
strate in Section 3, clSPARSE achieves high performance
on GPUs from both AMD and Nvidia, and the algorithms
are portable to other OpenCL devices. In addition, the al-
gorithms in clSPARSE, due to their open-source nature, are
visible to users and easy to change. Even if users do not di-
rectly link against clSPARSE, these implementations can be
directly used and modified by application developers. Such
problem-specific kernel modifications has proven beneficial
for techniques such as kernel fusion [11].

Compared to other open-source libraries, such as Vien-
naCL, clSPARSE offers significant performance benefits. For
example, while ViennaCL uses an early version of the CSR-
Adaptive algorithm for SpMV, the newer version used in
clSPARSE performs better across a wider range of matri-
ces [2]. We demonstrate this in Section 3.

If performance benefits alone do not outweigh application
porting costs, the algorithms in clSPARSE could instead
be directly brought into libraries like ViennaCL due to its
permissive open-source licensing. Other libraries, such as
ViennaCL and SciPy, are more general and include other
algorithms besides those for sparse linear algebra. We feel
that clSPARSE is a more focused effort dedicated to high-
performance sparse linear algebra. It could easily serve as
the basis for sparse BLAS in these libraries. In addition,
unlike ViennaCL, clSPARSE includes a C interface to ease
linking with complex C and FORTRAN software.

Table 1: Test Platforms

GPU
AMD Nvidia

RadeonTM Fury X GeForce GTX TITAN X
CPU Intel Core i5-4690K Intel Core i7-5960X

DRAM
16 GB Dual-channel 64GB Quad-channel

DDR3-2133 DDR4-2133
OS Ubuntu 14.04.4 LTS
Driver fglrx 15.302 352.63
SDK AMD APP SDK 3.0 CUDA 7.5

Library
ViennaCL v1.7.1 cuSPARSE v7.5

clSPARSE v0.11

3. PERFORMANCE COMPARISON
This section shows performance comparisons of our library

against both a popular proprietary library, cuSPARSE, and
a popular open-source library, ViennaCL. Our test platforms
are described in Table 1. We test ViennaCL and clSPARSE
on an AMD RadeonTM Fury X GPU, currently AMD’s top-
of-the-line consumer device. To show that clSPARSE works
well on GPUs from multiple vendors, we also test an Nvidia
GeForce GTX TITAN X, currently Nvidia’s top-of-the-line
consumer device. Due to space constraints, we only test this
GPU on clSPARSE and cuSPARSE.

The inputs used in our tests are shown in Tables 2 and 3.
Some of the matrices include explicit zero values from the
input files. We measure runtime by taking a timestamp be-
fore calling the library’s API, waiting for the work to finish,
and then take another timestamp. We execute each kernel
1000 times on each input and take an average of the runtime.
GFLOPs are calculated using the widely accepted metric of
estimating 2 FLOPs for every output value.

Figure 1 shows the performance benefit of the clSPARSE
SpMV compared to the cuSPARSE csrmv() algorithm. This
data shows that clSPARSE on the AMD GPU yields an av-
erage performance increase of 5.4× over cuSPARSE running
on the Nvidia GPU. While this demonstrates the benefits of
AMD-optimized software on AMD hardware, it’s also inter-
esting to note that clSPARSE results in a performance in-
crease of 4.5× on the Nvidia GPU when compared against
the proprietary Nvidia library. This shows that clSPARSE
is beneficial across vendors.

Figure 2 illustrates the performance of the SpMV algo-
rithm in clSPARSE versus the ViennaCL SpMV algorithm
on the AMD GPU. It is worth noting that ViennaCL uses
an earlier version of the CSR-Adaptive algorithm used in
clSPARSE. However, clSPARSE includes both new algo-
rithmic changes [2] and numerous minor performance tun-
ing changes. Through these changes, clSPARSE is able to
achieve a 2.5× higher performance than ViennaCL.

Figure 3 and 4 show similar comparisons between libraries
and cards, but using sparse matrix-sparse matrix multiplica-
tion (SpMSpM) algorithms. These results show that, while
cuSPARSE yields better SpMSpM performance for some
input matrices (like Protein), the average performance be-
tween clSPARSE and cuSPARSE is comparable because of
inputs like amazon0312. In addition, we see that clSPARSE
is 27% faster than the open-source ViennaCL.

These results demonstrate that that the performance of
clSPARSE compares favorably to proprietary libraries while
maintaining the benefits open-source libraries. Contribu-
tions to clSPARSE from the community are welcome, as are
feedback, feature requests, and bug reports.

http://github.com/clMathLibraries/clSPARSE/


0

15

30

45

60

75

90

105

SP
 G
FL
O
P
s

cuSPARSE‐NV clSPARSE‐NV clSPARSE‐AMD

Figure 1: Performance comparison of single-precision SpMV on an Nvidia GeForce GTX TITAN X GPU
(using both cuSPARSE and clSPARSE) and an AMD RadeonTM Fury X GPU (using clSPARSE).

0

15

30

45

60

75

90

105

SP
 G
FL
O
P
s

ViennaCL‐AMD clSPARSE‐AMD

Figure 2: Performance comparison of single-precision SpMV between the open source ViennaCL library and
clSPARSE on an AMD RadeonTM Fury X GPU.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SP
 G
FL
O
P
s

cuSPARSE‐NV clSPARSE‐NV clSPARSE‐AMD

Figure 3: Performance comparison of single-precision SpMSpM on an Nvidia GeForce GTX TITAN X GPU
(using both cuSPARSE and clSPARSE) and an AMD RadeonTM Fury X GPU (using clSPARSE).

0

1

2

3

4

5

6

7

8

SP
 G
FL
O
P
s

ViennaCL‐AMD clSPARSE‐AMD

Figure 4: Performance comparison of single-precision SpMSpM between the open source ViennaCL library
and clSPARSE on an AMD RadeonTM Fury X GPU.



Table 2: Matrices used for the SpMV evaluation
Name Size NNZ NNZ Max

/row
Dense8 8K * 8K 8 M 8,000 8,000
Protein 36K * 36K 4.3 M 119 204
FEM/Spheres 83K * 83K 6.0 M 72 81
FEM/Cantilever 62K * 62K 4.0 M 64 78
Wind Tunnel 218K * 218K 11.6 M 53 180
FEM/Harbor 47K * 47K 2.4 M 51 145
FEM/Ship 141K * 141K 7.8 M 55 102
Economics 207K * 207K 1.3 M 6 44
Epidemiology 526K * 526K 2.1 M 4 4
FEM/Accelerator 121K * 121K 2.6 M 22 81
Circuit 171K * 171K 0.96 M 6 353
Webbase 1,000K * 1,000K 3.1 M 3 4.7 K
LP 4K * 1,097K 11.3 M 2,634 56 K
circuit5M 5,558K * 5,558K 59.5 M 11 1.29 M
eu-2005 863K * 863K 19.2 M 22 4.2 K
Ga41As41H72 268K * 268K 18.4 M 69 702
in-2004 1,383K * 1,383K 16.9 M 12 7.8 K
mip1 66K * 66K 10.4 M 156 66 K
Si41Ge41H72 186K * 186K 15.0 M 81 662
ASIC 680k 683K * 683K 3.9 M 6 395 K
dc2 117K * 117K 0.77 M 7 114 K
FullChip 2,897K * 2,897K 26.6 M 9 2.3 M
ins2 309K * 309K 2.8 M 9 309 K
bone010 986K * 986K 47.9 M 48 81
crankseg 2 121K * 121K 2.6 M 22 3.4 K
ldoor 952K * 952K 42.4 M 45 77
rajat31 4,690K * 4,690K 20.3 M 4 1.3 K
Rucci1 1,978K * 109K 7.8 M 4 5
boyd2 466K * 466K 1.5 M 3 93 K
sls 1,748K * 63K 6.8 M 4 5
transient 179K * 179K 0.96 M 5 60 K

AMD, the AMD Arrow logo, AMD Radeon, and combi-
nations thereof are trademarks of Advanced Micro Devices,
Inc. OpenCL is a trademark of Apple, Inc. used by per-
mission by Khronos. Windows is a registered trademark of
Microsoft Corporation. Linux is a registered trademark of
Linus Torvalds. Other product names used in this publica-
tion are for identification purposes only and may be trade-
marks of their respective companies.

4. REFERENCES
[1] H. M. Aktulga, A. Buluç, S. Williams, and C. Yang.

Optimizing Sparse Matrix-Multiple Vectors
Multiplication for Nuclear Configuration Interaction
Calculations. In Proc. of the Int’l Parallel and
Distributed Processing Symposium (IPDPS), 2014.

[2] M. Daga and J. L. Greathouse. Structural Agnostic
SpMV: Adapting CSR-Adaptive for Irregular
Matrices. In Proc. of the Int’l Conf. on High
Performance Computing (HiPC), 2015.

[3] I. S. Duff, M. A. Heroux, and R. Pozo. An Overview
of the Sparse Basic Linear Algebra Subprograms: The
New Standard from the BLAS Technical Forum.
Trans. on Mathematical Software, 28(2):239–267, 2002.

[4] J. L. Greathouse and M. Daga. Efficient Sparse
Matrix-Vector Multiplication on GPUs Using the CSR
Storage Format. In Proc. of the Int’l Conf. for High
Performance Computing, Networking, Storage and
Analysis (SC), 2014.

Table 3: Matrices used for the SpMSpM evaluation
Name Size NNZ
m133-b3 200K * 200K 800,800
Circuit 171K * 171K 958,936
FEM/Accelerator 121K * 121K 2,624,331
cit-Patents 3774K * 3774K 16,518,948
web-Google 916K * 916K 5,105,039
wiki-Vote 8,297 * 8,297 103,689
majorbasis 160K * 160K 1,750,416
FEM/Harbor 47K * 47K 2,374,001
Webbase 1,000K * 1,000K 3,105,536
email-Enron 37K * 37K 367,662
poisson3Da 13.5K * 13.5K 352,762
mario002 390K * 390K 2,101,242
Protein 36K * 36K 4,344,765
WindTunnel 218K * 218K 11,634,424
ca-CondMat 23K * 23K 186,936
2cubes sphere 101K * 101K 1,647,264
Economics 207K * 207K 1,273,389
filter3D 106K * 106K 2,707,179
FEM/Ship 141K * 141K 7,813,404
hood 221K * 221K 10,768,436
cage12 130K * 130K 2,032,536
offshore 260K * 260K 4,242,673
FEM/Cantilever 62K * 62K 4,007,383
Epidemiology 526K * 526K 2,100,225
roadNet-CA 1,971K * 1,971K 5,533,214
FEM/Spheres 83K * 83K 6,010,480
amazon0312 401K * 401K 3,200,440

[5] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F.
Smith. Towards Realistic Performance Bounds for
Implicit CFD Codes. In Proc. of the Int’l Parallel
Computational Fluid Dynamics Conf. (PARCFD),
1999.

[6] A. Kaiser, S. Williams, K. Madduri, K. Ibrahim, D. H.
Bailey, J. W. Demmel, and E. Strohmaier. TORCH
Computational Reference Kernels: A Testbed for
Computer Science Research. Technical Report
LBNL-4172E, Lawrence Berkeley National
Laboratory, 2010.

[7] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and
A. R. Bishop. A Unified Sparse Matrix Data Format
for Modern Processors with Wide SIMD Units. SIAM
Journal on Scientific Computing, 36(5):C401–C423,
2014.

[8] D. Langr and P. Tvrd́ık. Evaluation Criteria for Sparse
Matrix Storage Formats. IEEE Trans. on Parallel and
Distributed Systems, 27(2):428–440, Feb. 2016.

[9] W. Liu and B. Vinter. An Efficient GPU General
Sparse Matrix-Matrix Multiplication for Irregular
Data. In Proc. of the Int’l Parallel and Distributed
Processing Symp. (IPDPS), 2014.

[10] K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - A
High Level Linear Algebra Library for GPUs and
Multi-Core CPUs. In Int’l Workshop on GPUs and
Scientific Applications (GPUScA), 2010.

[11] K. Rupp, J. Weinbub, A. Jüngel, and T. Grasser.
Pipelined Iterative Solvers with Kernel Fusion for
Graphics Processing Units. CoRR, abs/1410.4054,
2014.

[12] B.-Y. Su and K. Keutzer. clSpMV: A Cross-Platform
OpenCL SpMV Framework on GPUs. In Proc. of the
Int’l Conf. on Supercomputing (ICS), 2012.


	1 Introduction
	2 clSPARSE
	3 Performance Comparison
	4 References

