
A Runtime Metric of Design Confidence
For Use in Dynamic Verification & Design Refinement

Joseph Greathouse and Kenneth Zick

December 12, 2006

EECS 578 Final Project

A Runtime Metric of Design Confidence 2

List of Topics We Will Use to Wow You

 Motivation
 We restate some ideas from class and say what is broken!

 Background work
 What you need to know about what we need you to know

 Problem Statement
 We clearly define the problem so that we can be the ones to solve it

 Our Contributions
 Includes our fantastic plan for fixing all the flaws we bring up

 Experimental Results
 Proof that our work is a great solution!

 Conclusions
 We will rush through this to finish on time.

A Runtime Metric of Design Confidence 3

Motivations

 Runtime verification (checker processors, etc.)
 Benefits of this are pretty well-covered in this class.

 Even so, questions about runtime verification:
 How confident are you in a deployed design?

 Diagnose a problem in the field: Is your fix good?

 What if the fix breaks something else?

 How can you compare replacement designs?

 What parts of the design are to blame when you detect a failure?

 How badly broken are they?

A Runtime Metric of Design Confidence 4

Background work

 Formally Verified Checkers/DIVA

 Find bugs in real-time, correct them with slowdown

 Statistical learning approaches

 Learn and predict failure rates using runtime statistics

 Dynamically-reconfigurable computing

 Replace “too-buggy” designs on reconfigurable circuits (e.g. FPGAs)

 Design diversity

 Multiple versions of a design lessen chance of overlapping bugs

A Runtime Metric of Design Confidence 5

The Official Problem Statement

Find a scheme to quantify the confidence in a

design at runtime

 Must be able to identify problematic regions in the design

 Should allow fair comparison of similar systems

 Needs to be constantly updated during system operation

A Runtime Metric of Design Confidence 6

Now For Our Solutions

A Runtime Metric of
Design Confidence

Module-Level
Probabilistic Diagnosis

A Runtime Metric of Design Confidence 7

A Runtime Metric of Design Confidence

Design confidence? What do you mean by that?

 An estimated probability that a design will operate correctly when run in a

specific system environment (e.g. embedded system)

 Concerned with the probability of future failure, not number of bugs

We represent confidence as a scalar value with range:

0 (terrible design) to 1 (we think it‟s good)

Key aspects of our metric:

 Failure statistics

 Probabilistic diagnosis

A Runtime Metric of Design Confidence 8

Failure statistics
 Failures detected by runtime checkers

 Mark each watched module when you see an error

 Use failure data to estimate confidence in each module

 Assumption: Future failures correlated with past failures

 Statistical technique: parameter learning.

 Predictions based on maximum likelihood hypothesis

 Must find some way

to assign confidence

to parts of the design

we do not watch.

A Runtime Metric of Design Confidence 9

Probabilistic diagnosis

Create a directed weighted graph of the system:

 „Causal network‟

 Nodes represent design modules

 Links represent signals flowing from one module to another

 How is the weighting determined?

A Runtime Metric of Design Confidence 10

Probabilistic diagnosis

Some methods for determining weights:

1. Expert knowledge (ad hoc method)

 “If this checker fails, there is probably a bug in IF, or possibly in ID”

2. Systematic analysis of system structure
 Compute the contributions of each module to the logic cone that feeds a

checker.

 Treat modules as a black-boxes and base the weights on fanouts and

proportion of interconnections.

 In our proposal, the weight from module i to module j is:

1 if module j has a checker and i=j

‘X’ (don’t care) if module j has no checker

∑ 1 / (fanouts × (num signals to j)) for all signals s from i→j

wij =

A Runtime Metric of Design Confidence 11

Probabilistic diagnosis

 Weights can be computed at

design time. Saved in an

implication matrix.

 At runtime failure, modules are

implicated (blamed) according to

the precomputed weights.

 Example: module C gets charged

with 0.8 of a failure for every

failure caught at module A.

 Dest

Src

A B C

A 1 0.9 X

B 0.2 1 X

C 0.8 0.1 X

Example: Implication matrix for
system with 3 modules. Only
modules A & B have checkers.

A Runtime Metric of Design Confidence 12

Runtime metric: an example
 Watch for errors with checker processor

 Record error numbers for watched modules

 Statically assign weighted blame to all modules based
on these error numbers.

 Compute
confidence in
modules using
compiled blame
statistics

A Runtime Metric of Design Confidence 13

Runtime metric: an example
 Watch for errors with checker processor

 Record error numbers for watched modules

 Statically assign weighted blame to all modules based
on these error numbers.

 Compute
confidence in
modules using
compiled blame
statistics

A Runtime Metric of Design Confidence 14

Runtime metric: an example
 Watch for errors with checker processor

 Record error numbers for watched modules

 Statically assign weighted blame to all modules based
on these error numbers.

 Compute
confidence in
modules using
compiled blame
statistics

A Runtime Metric of Design Confidence 15

Experimental Setup
 Five-stage pipeline. One known-good (checker), one under test

 Multiple versions of each stage under test (one version active at a time)

 All stages under test have design defects

 Test suite: 50,000 vectors of directed tests

 Good stages maintain correct architectural state of bad pipe

A Runtime Metric of Design Confidence 16

Experiment 1: Can design confidence be

used to find a good system configuration?

 Checkers on every stage (i.e. assume full visibility)

 Select among two buggy versions of each stage

 25 = 32 possible system configurations

 Initialize all confidence values to 1.0

 Simple decision procedure:

 Compare failure rates of current version vs. others of same stage. Repeat

for all modules.

 Swap versions that lead to biggest increase in module confidence

A Runtime Metric of Design Confidence 17

0.9975

0.998

0.9985

0.999

0.9995

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

A
v
e
ra

g
e
 s

y
s
te

m
 p

a
s
s
 r

a
te

Ideal

Actual

Experiment 1 Results

 We ran all possible starting configurations

 Results: System pass/fail rate improves significantly over time
 Fail rate decreases to 36 fails every 50,000 cycles.

 Optimal configuration is found for 2/3 of starting configurations

A Runtime Metric of Design Confidence 18

Experiment 2: When checking is limited,

can we use simple probabilistic diagnosis?

 Partial checking: only 3 of 5 modules have checkers

 Watch signals that affect architectural state.

 Set weights to 1 for unchecked source modules.

 Again we ran from all possible starting configurations

A Runtime Metric of Design Confidence 19

0.998

0.9985

0.999

0.9995

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

A
v
e
ra

g
e
 s

y
s
te

m
 p

a
s
s
 r

a
te

Unit implication

No implication

Ideal

Experiment 2 Results

 Results: even with simple implication (w=1), probabilistic diagnosis can

provide some benefit (at least on this tiny example)!

A Runtime Metric of Design Confidence 20

Experiment 3: Hypothesis: proportional

weighting will work even better

 Now try probabilistic diagnosis with proportional weighting

 Try two proportional weighting schemes:

Implication matrix for weighting #1

(Based on total # of input bits)

 Dest

Src IF ID EX M WB

IF x x .321 0 .474

ID x x .465 .015 .044

EX x x 1 .985 .007

M x x .214 1 .474

WB x x 0 0 1

 Dest

Src IF ID EX M WB

IF x x .702 0 .111

ID x x .277 .4 .667

EX x x 1 .6 .111

M x x .021 1 .111

WB x x 0 0 1

Implication matrix for weighting #2

(Collapse data busses into single input signal)

A Runtime Metric of Design Confidence 21

0.998

0.9985

0.999

0.9995

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

A
v
e
ra

g
e
 s

y
s
te

m
 p

a
s
s
 r

a
te

Proportional by input signals

Proportional by input bits

Unit implication

No implications

Ideal

Experiment 3 Results

A Runtime Metric of Design Confidence 22

Lessons learned

 Cross-pollination can yield useful ideas

 Software reliability originally modelled on hardware reliability

 Due to design complexity, HW may now benefit from SW reliability ideas

 Many of these concepts have a surprisingly long history.

 Assertions are not as great as we initially thought

 Industry has related projects with related ideas

 e.g. Sun Niagara II, IBM autonomic computing

 Possible future work:

 Scalability, new heuristics, sophisticated weighting, non-proc. systems

A Runtime Metric of Design Confidence 23

Thank you!

