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List of Topics We Will Use to Wow You 

 Motivation 
 We restate some ideas from class and say what is broken! 

 Background work 
 What you need to know about what we need you to know 

 Problem Statement 
 We clearly define the problem so that we can be the ones to solve it  

 Our Contributions 
 Includes our fantastic plan for fixing all the flaws we bring up 

 Experimental Results 
 Proof that our work is a great solution! 

 Conclusions 
 We will rush through this to finish on time. 
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Motivations 

 Runtime verification (checker processors, etc.) 
 Benefits of this are pretty well-covered in this class. 

 

 Even so, questions about runtime verification: 
 How confident are you in a deployed design? 

 Diagnose a problem in the field:  Is your fix good? 

 What if the fix breaks something else? 

 How can you compare replacement designs? 

 What parts of the design are to blame when you detect a failure? 

 How badly broken are they? 
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Background work 

 Formally Verified Checkers/DIVA 

 Find bugs in real-time, correct them with slowdown 

 

 Statistical learning approaches 

 Learn and predict failure rates using runtime statistics  

 

 Dynamically-reconfigurable computing 

 Replace “too-buggy” designs on reconfigurable circuits (e.g. FPGAs) 

 

 Design diversity 

 Multiple versions of a design lessen chance of overlapping bugs 
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The Official Problem Statement 

Find a scheme to quantify the confidence in a 

design at runtime 
 

 Must be able to identify problematic regions in the design 

 Should allow fair comparison of similar systems 

 Needs to be constantly updated during system operation 
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Now For Our Solutions 

A Runtime Metric of 
Design Confidence 

Module-Level 
Probabilistic Diagnosis 
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A Runtime Metric of  Design Confidence 

Design confidence?  What do you mean by that? 

 An estimated probability that a design will operate correctly when run in a 

specific system environment (e.g. embedded system) 

 Concerned with the probability of future failure, not number of bugs 

 

We represent confidence as a scalar value with range:  

0 (terrible design) to 1 (we think it‟s good) 

 

Key aspects of our metric: 

 Failure statistics 

 Probabilistic diagnosis 
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Failure statistics 
 Failures detected by runtime checkers 

 Mark each watched module when you see an error 

 Use failure data to estimate confidence in each module 

 Assumption: Future failures correlated with past failures 

 Statistical technique: parameter learning.  

 Predictions based on maximum likelihood hypothesis   
 

 
 Must find some way 

to assign confidence 

to parts of the design 

we do not watch. 
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Probabilistic diagnosis 

Create a directed weighted graph of the system:  

 

 

 

 

 

 

 „Causal network‟ 

 Nodes represent design modules 

 Links represent signals flowing from one module to another 

 How is the weighting determined? 
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Probabilistic diagnosis 

Some methods for determining weights: 

1. Expert knowledge (ad hoc method) 

 “If this checker fails, there is probably a bug in IF, or possibly in ID” 

2. Systematic analysis of system structure 
 Compute the contributions of each module to the logic cone that feeds a 

checker.   

 Treat modules as a black-boxes and base the weights  on fanouts and 

proportion of interconnections.  

 In our proposal, the weight from module i to module j is: 

 

 
1 if module j has a checker and i=j 
 

‘X’ (don’t care) if module j has no checker 
 

∑ 1 / (fanouts × (num signals to j)) for all signals s from i→j 

wij = 
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Probabilistic diagnosis 

 Weights can be computed at 

design time.  Saved in an 

implication matrix. 

 

 At runtime failure, modules are 

implicated (blamed) according to 

the precomputed weights.   

 

 

 Example: module C gets charged 

with 0.8 of a failure for every 

failure caught at module A. 

 

     Dest 

 

Src 

A B C 

A 1 0.9 X 

B 0.2 1 X 

C 0.8 0.1 X 

Example: Implication matrix for 
system with 3 modules.  Only 
modules A & B have checkers. 
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Runtime metric: an example 
 Watch for errors with checker processor 

 

 Record error numbers for watched modules 

 

 Statically assign weighted blame to all modules based 
on these error numbers. 

 

 Compute  
confidence in 
modules using  
compiled blame  
statistics 
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Experimental Setup 
 Five-stage pipeline.  One known-good (checker), one under test 

 Multiple versions of each stage under test (one version active at a time) 

 All stages under test have design defects 

 Test suite: 50,000 vectors of directed tests 

 Good stages maintain correct architectural state of bad pipe 
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Experiment 1: Can design confidence be 

used to find a good system configuration? 

 Checkers on every stage (i.e. assume full visibility) 

 Select among two buggy versions of each stage 

 25 = 32 possible system configurations 

 

 Initialize all confidence values to 1.0 

 

 Simple decision procedure:  

 Compare failure rates of current version vs. others of same stage.  Repeat 

for all modules.  

 Swap versions that lead to biggest increase in module confidence 
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 We ran all possible starting configurations 

 Results: System pass/fail rate improves significantly over time 
 Fail rate decreases to 36 fails every 50,000 cycles. 

 Optimal configuration is found for 2/3 of starting configurations  
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Experiment 2: When checking is limited, 

can we use simple probabilistic diagnosis? 

 Partial checking: only 3 of 5 modules have checkers   

 

 Watch signals that affect architectural state. 

 

 Set weights to 1 for unchecked source modules. 

 

 Again we ran from all possible starting configurations 
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 Results: even with simple implication (w=1), probabilistic diagnosis can 

provide some benefit (at least on this tiny example)! 



A Runtime Metric of Design Confidence 20 

Experiment 3: Hypothesis: proportional 

weighting will work even better 

 Now try probabilistic diagnosis with proportional weighting 

 

 Try two proportional weighting schemes: 

 

 

 

Implication matrix for weighting #1 

(Based on total # of input bits) 

           Dest 

Src IF ID EX M WB 

IF x x .321 0 .474 

ID x x .465 .015 .044 

EX x x 1 .985 .007 

M x x .214 1 .474 

WB x x 0 0 1 

         Dest 

Src IF ID EX M WB 

IF x x .702 0 .111 

ID x x .277 .4 .667 

EX x x 1 .6 .111 

M x x .021 1 .111 

WB x x 0 0 1 

Implication matrix for weighting #2 

(Collapse data busses into single input signal) 
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Lessons learned 

 Cross-pollination can yield useful ideas 

 Software reliability originally modelled on hardware reliability 

 Due to design complexity, HW may now benefit from SW reliability ideas 

 

 Many of these concepts have a surprisingly long history. 

 

 Assertions are not as great as we initially thought 

 

 Industry has related projects with related ideas 

 e.g. Sun Niagara II, IBM autonomic computing 

 

 Possible future work: 

 Scalability, new heuristics, sophisticated weighting, non-proc. systems 
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Thank you! 

 

  


