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List of Topics We Will Use to Wow You 

 Motivation 
 We restate some ideas from class and say what is broken! 

 Background work 
 What you need to know about what we need you to know 

 Problem Statement 
 We clearly define the problem so that we can be the ones to solve it  

 Our Contributions 
 Includes our fantastic plan for fixing all the flaws we bring up 

 Experimental Results 
 Proof that our work is a great solution! 

 Conclusions 
 We will rush through this to finish on time. 
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Motivations 

 Runtime verification (checker processors, etc.) 
 Benefits of this are pretty well-covered in this class. 

 

 Even so, questions about runtime verification: 
 How confident are you in a deployed design? 

 Diagnose a problem in the field:  Is your fix good? 

 What if the fix breaks something else? 

 How can you compare replacement designs? 

 What parts of the design are to blame when you detect a failure? 

 How badly broken are they? 
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Background work 

 Formally Verified Checkers/DIVA 

 Find bugs in real-time, correct them with slowdown 

 

 Statistical learning approaches 

 Learn and predict failure rates using runtime statistics  

 

 Dynamically-reconfigurable computing 

 Replace “too-buggy” designs on reconfigurable circuits (e.g. FPGAs) 

 

 Design diversity 

 Multiple versions of a design lessen chance of overlapping bugs 
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The Official Problem Statement 

Find a scheme to quantify the confidence in a 

design at runtime 
 

 Must be able to identify problematic regions in the design 

 Should allow fair comparison of similar systems 

 Needs to be constantly updated during system operation 
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Now For Our Solutions 

A Runtime Metric of 
Design Confidence 

Module-Level 
Probabilistic Diagnosis 
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A Runtime Metric of  Design Confidence 

Design confidence?  What do you mean by that? 

 An estimated probability that a design will operate correctly when run in a 

specific system environment (e.g. embedded system) 

 Concerned with the probability of future failure, not number of bugs 

 

We represent confidence as a scalar value with range:  

0 (terrible design) to 1 (we think it‟s good) 

 

Key aspects of our metric: 

 Failure statistics 

 Probabilistic diagnosis 

 



A Runtime Metric of Design Confidence 8 

Failure statistics 
 Failures detected by runtime checkers 

 Mark each watched module when you see an error 

 Use failure data to estimate confidence in each module 

 Assumption: Future failures correlated with past failures 

 Statistical technique: parameter learning.  

 Predictions based on maximum likelihood hypothesis   
 

 
 Must find some way 

to assign confidence 

to parts of the design 

we do not watch. 
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Probabilistic diagnosis 

Create a directed weighted graph of the system:  

 

 

 

 

 

 

 „Causal network‟ 

 Nodes represent design modules 

 Links represent signals flowing from one module to another 

 How is the weighting determined? 
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Probabilistic diagnosis 

Some methods for determining weights: 

1. Expert knowledge (ad hoc method) 

 “If this checker fails, there is probably a bug in IF, or possibly in ID” 

2. Systematic analysis of system structure 
 Compute the contributions of each module to the logic cone that feeds a 

checker.   

 Treat modules as a black-boxes and base the weights  on fanouts and 

proportion of interconnections.  

 In our proposal, the weight from module i to module j is: 

 

 
1 if module j has a checker and i=j 
 

‘X’ (don’t care) if module j has no checker 
 

∑ 1 / (fanouts × (num signals to j)) for all signals s from i→j 

wij = 
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Probabilistic diagnosis 

 Weights can be computed at 

design time.  Saved in an 

implication matrix. 

 

 At runtime failure, modules are 

implicated (blamed) according to 

the precomputed weights.   

 

 

 Example: module C gets charged 

with 0.8 of a failure for every 

failure caught at module A. 

 

     Dest 

 

Src 

A B C 

A 1 0.9 X 

B 0.2 1 X 

C 0.8 0.1 X 

Example: Implication matrix for 
system with 3 modules.  Only 
modules A & B have checkers. 
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Runtime metric: an example 
 Watch for errors with checker processor 

 

 Record error numbers for watched modules 

 

 Statically assign weighted blame to all modules based 
on these error numbers. 

 

 Compute  
confidence in 
modules using  
compiled blame  
statistics 
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Experimental Setup 
 Five-stage pipeline.  One known-good (checker), one under test 

 Multiple versions of each stage under test (one version active at a time) 

 All stages under test have design defects 

 Test suite: 50,000 vectors of directed tests 

 Good stages maintain correct architectural state of bad pipe 
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Experiment 1: Can design confidence be 

used to find a good system configuration? 

 Checkers on every stage (i.e. assume full visibility) 

 Select among two buggy versions of each stage 

 25 = 32 possible system configurations 

 

 Initialize all confidence values to 1.0 

 

 Simple decision procedure:  

 Compare failure rates of current version vs. others of same stage.  Repeat 

for all modules.  

 Swap versions that lead to biggest increase in module confidence 
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 We ran all possible starting configurations 

 Results: System pass/fail rate improves significantly over time 
 Fail rate decreases to 36 fails every 50,000 cycles. 

 Optimal configuration is found for 2/3 of starting configurations  
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Experiment 2: When checking is limited, 

can we use simple probabilistic diagnosis? 

 Partial checking: only 3 of 5 modules have checkers   

 

 Watch signals that affect architectural state. 

 

 Set weights to 1 for unchecked source modules. 

 

 Again we ran from all possible starting configurations 
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Experiment 2 Results 

 Results: even with simple implication (w=1), probabilistic diagnosis can 

provide some benefit (at least on this tiny example)! 
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Experiment 3: Hypothesis: proportional 

weighting will work even better 

 Now try probabilistic diagnosis with proportional weighting 

 

 Try two proportional weighting schemes: 

 

 

 

Implication matrix for weighting #1 

(Based on total # of input bits) 

           Dest 

Src IF ID EX M WB 

IF x x .321 0 .474 

ID x x .465 .015 .044 

EX x x 1 .985 .007 

M x x .214 1 .474 

WB x x 0 0 1 

         Dest 

Src IF ID EX M WB 

IF x x .702 0 .111 

ID x x .277 .4 .667 

EX x x 1 .6 .111 

M x x .021 1 .111 

WB x x 0 0 1 

Implication matrix for weighting #2 

(Collapse data busses into single input signal) 
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Lessons learned 

 Cross-pollination can yield useful ideas 

 Software reliability originally modelled on hardware reliability 

 Due to design complexity, HW may now benefit from SW reliability ideas 

 

 Many of these concepts have a surprisingly long history. 

 

 Assertions are not as great as we initially thought 

 

 Industry has related projects with related ideas 

 e.g. Sun Niagara II, IBM autonomic computing 

 

 Possible future work: 

 Scalability, new heuristics, sophisticated weighting, non-proc. systems 
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Thank you! 

 

  


