
A Runtime Metric of Design Confidence
For Use in Dynamic Verification & Design Refinement

Joseph Greathouse and Kenneth Zick

December 12, 2006

EECS 578 Final Project

A Runtime Metric of Design Confidence 2

List of Topics We Will Use to Wow You

 Motivation
 We restate some ideas from class and say what is broken!

 Background work
 What you need to know about what we need you to know

 Problem Statement
 We clearly define the problem so that we can be the ones to solve it

 Our Contributions
 Includes our fantastic plan for fixing all the flaws we bring up

 Experimental Results
 Proof that our work is a great solution!

 Conclusions
 We will rush through this to finish on time.

A Runtime Metric of Design Confidence 3

Motivations

 Runtime verification (checker processors, etc.)
 Benefits of this are pretty well-covered in this class.

 Even so, questions about runtime verification:
 How confident are you in a deployed design?

 Diagnose a problem in the field: Is your fix good?

 What if the fix breaks something else?

 How can you compare replacement designs?

 What parts of the design are to blame when you detect a failure?

 How badly broken are they?

A Runtime Metric of Design Confidence 4

Background work

 Formally Verified Checkers/DIVA

 Find bugs in real-time, correct them with slowdown

 Statistical learning approaches

 Learn and predict failure rates using runtime statistics

 Dynamically-reconfigurable computing

 Replace “too-buggy” designs on reconfigurable circuits (e.g. FPGAs)

 Design diversity

 Multiple versions of a design lessen chance of overlapping bugs

A Runtime Metric of Design Confidence 5

The Official Problem Statement

Find a scheme to quantify the confidence in a

design at runtime

 Must be able to identify problematic regions in the design

 Should allow fair comparison of similar systems

 Needs to be constantly updated during system operation

A Runtime Metric of Design Confidence 6

Now For Our Solutions

A Runtime Metric of
Design Confidence

Module-Level
Probabilistic Diagnosis

A Runtime Metric of Design Confidence 7

A Runtime Metric of Design Confidence

Design confidence? What do you mean by that?

 An estimated probability that a design will operate correctly when run in a

specific system environment (e.g. embedded system)

 Concerned with the probability of future failure, not number of bugs

We represent confidence as a scalar value with range:

0 (terrible design) to 1 (we think it‟s good)

Key aspects of our metric:

 Failure statistics

 Probabilistic diagnosis

A Runtime Metric of Design Confidence 8

Failure statistics
 Failures detected by runtime checkers

 Mark each watched module when you see an error

 Use failure data to estimate confidence in each module

 Assumption: Future failures correlated with past failures

 Statistical technique: parameter learning.

 Predictions based on maximum likelihood hypothesis

 Must find some way

to assign confidence

to parts of the design

we do not watch.

A Runtime Metric of Design Confidence 9

Probabilistic diagnosis

Create a directed weighted graph of the system:

 „Causal network‟

 Nodes represent design modules

 Links represent signals flowing from one module to another

 How is the weighting determined?

A Runtime Metric of Design Confidence 10

Probabilistic diagnosis

Some methods for determining weights:

1. Expert knowledge (ad hoc method)

 “If this checker fails, there is probably a bug in IF, or possibly in ID”

2. Systematic analysis of system structure
 Compute the contributions of each module to the logic cone that feeds a

checker.

 Treat modules as a black-boxes and base the weights on fanouts and

proportion of interconnections.

 In our proposal, the weight from module i to module j is:

1 if module j has a checker and i=j

‘X’ (don’t care) if module j has no checker

∑ 1 / (fanouts × (num signals to j)) for all signals s from i→j

wij =

A Runtime Metric of Design Confidence 11

Probabilistic diagnosis

 Weights can be computed at

design time. Saved in an

implication matrix.

 At runtime failure, modules are

implicated (blamed) according to

the precomputed weights.

 Example: module C gets charged

with 0.8 of a failure for every

failure caught at module A.

 Dest

Src

A B C

A 1 0.9 X

B 0.2 1 X

C 0.8 0.1 X

Example: Implication matrix for
system with 3 modules. Only
modules A & B have checkers.

A Runtime Metric of Design Confidence 12

Runtime metric: an example
 Watch for errors with checker processor

 Record error numbers for watched modules

 Statically assign weighted blame to all modules based
on these error numbers.

 Compute
confidence in
modules using
compiled blame
statistics

A Runtime Metric of Design Confidence 13

Runtime metric: an example
 Watch for errors with checker processor

 Record error numbers for watched modules

 Statically assign weighted blame to all modules based
on these error numbers.

 Compute
confidence in
modules using
compiled blame
statistics

A Runtime Metric of Design Confidence 14

Runtime metric: an example
 Watch for errors with checker processor

 Record error numbers for watched modules

 Statically assign weighted blame to all modules based
on these error numbers.

 Compute
confidence in
modules using
compiled blame
statistics

A Runtime Metric of Design Confidence 15

Experimental Setup
 Five-stage pipeline. One known-good (checker), one under test

 Multiple versions of each stage under test (one version active at a time)

 All stages under test have design defects

 Test suite: 50,000 vectors of directed tests

 Good stages maintain correct architectural state of bad pipe

A Runtime Metric of Design Confidence 16

Experiment 1: Can design confidence be

used to find a good system configuration?

 Checkers on every stage (i.e. assume full visibility)

 Select among two buggy versions of each stage

 25 = 32 possible system configurations

 Initialize all confidence values to 1.0

 Simple decision procedure:

 Compare failure rates of current version vs. others of same stage. Repeat

for all modules.

 Swap versions that lead to biggest increase in module confidence

A Runtime Metric of Design Confidence 17

0.9975

0.998

0.9985

0.999

0.9995

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

A
v
e
ra

g
e
 s

y
s
te

m
 p

a
s
s
 r

a
te

Ideal

Actual

Experiment 1 Results

 We ran all possible starting configurations

 Results: System pass/fail rate improves significantly over time
 Fail rate decreases to 36 fails every 50,000 cycles.

 Optimal configuration is found for 2/3 of starting configurations

A Runtime Metric of Design Confidence 18

Experiment 2: When checking is limited,

can we use simple probabilistic diagnosis?

 Partial checking: only 3 of 5 modules have checkers

 Watch signals that affect architectural state.

 Set weights to 1 for unchecked source modules.

 Again we ran from all possible starting configurations

A Runtime Metric of Design Confidence 19

0.998

0.9985

0.999

0.9995

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

A
v
e
ra

g
e
 s

y
s
te

m
 p

a
s
s
 r

a
te

Unit implication

No implication

Ideal

Experiment 2 Results

 Results: even with simple implication (w=1), probabilistic diagnosis can

provide some benefit (at least on this tiny example)!

A Runtime Metric of Design Confidence 20

Experiment 3: Hypothesis: proportional

weighting will work even better

 Now try probabilistic diagnosis with proportional weighting

 Try two proportional weighting schemes:

Implication matrix for weighting #1

(Based on total # of input bits)

 Dest

Src IF ID EX M WB

IF x x .321 0 .474

ID x x .465 .015 .044

EX x x 1 .985 .007

M x x .214 1 .474

WB x x 0 0 1

 Dest

Src IF ID EX M WB

IF x x .702 0 .111

ID x x .277 .4 .667

EX x x 1 .6 .111

M x x .021 1 .111

WB x x 0 0 1

Implication matrix for weighting #2

(Collapse data busses into single input signal)

A Runtime Metric of Design Confidence 21

0.998

0.9985

0.999

0.9995

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Refinement steps

A
v
e
ra

g
e
 s

y
s
te

m
 p

a
s
s
 r

a
te

Proportional by input signals

Proportional by input bits

Unit implication

No implications

Ideal

Experiment 3 Results

A Runtime Metric of Design Confidence 22

Lessons learned

 Cross-pollination can yield useful ideas

 Software reliability originally modelled on hardware reliability

 Due to design complexity, HW may now benefit from SW reliability ideas

 Many of these concepts have a surprisingly long history.

 Assertions are not as great as we initially thought

 Industry has related projects with related ideas

 e.g. Sun Niagara II, IBM autonomic computing

 Possible future work:

 Scalability, new heuristics, sophisticated weighting, non-proc. systems

A Runtime Metric of Design Confidence 23

Thank you!

