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Abstract

Numerous tools have been proposed to help developers fix
software errors and inefficiencies. Widely-used techniques
such as memory checking suffer from overheads that limit
their use to pre-deployment testing, while more advanced
systems have such severe performance impacts that they
may require special-purpose hardware. Previous works have
described hardware that can accelerate individual analyses,
but such specialization stymies adoption; generalized mech-
anisms are more likely to be added to commercial processors.

This paper demonstrates that the ability to set an unlim-
ited number of fine-grain data watchpoints can reduce the
runtime overheads of numerous dynamic software analysis
techniques. We detail the watchpoint capabilities required
to accelerate these analyses while remaining general enough
to be useful in the future. We describe a hardware design
that stores watchpoints in main memory and utilizes two
different on-chip caches to accelerate performance. The first
is a bitmap lookaside buffer that stores fine-grained watch-
points, while the second is a range cache that can efficiently
hold large contiguous regions of watchpoints. As an example
of the power of such a system, it is possible to use watch-
points to accelerate read/write set checks in a software data
race detector by nearly 9×.

Categories and Subject Descriptors B.3.2 [Memory
Structures]: Design Styles—cache memories; C.0 [General ]:
hardware/software interfaces; D.2.0 [Software Engineer-
ing ]: General—protection mechanisms; D.2.5 [Software En-
gineering ]: Testing and Debugging—debugging aids, testing
tools

General Terms Design, Performance

Keywords Watchpoints, Data Race Detection, Determin-
istic Concurrent Execution, Taint Analysis, Demand-Driven
Analysis

1. Introduction

Billions of dollars and millions of man-hours are spent each
year attempting to build correct programs. As Bessey et al.
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stated, “Assuming you have a reasonable [software analysis]
tool, if you run it over a large, previously unchecked system,
you will always find bugs” [7]. The fact that developers
looking to increase performance on multiprocessors must
explicitly utilize concurrency only adds to this problem.

Numerous tools exist to help developers make more ro-
bust software. Valgrind’s MemCheck, for instance, checks
dynamic memory operations for errors such as memory leaks
[37]. While such dynamic tools are powerful, they suffer from
large computational overheads that limit their adoption to
small groups of developers and dedicated testers. MemCheck
can cause the original program to run 30× slower, while
more heavyweight tools, such as Larson and Austin’s sym-
bolic execution engine, see slowdowns of over 200× [24].
More insidiously, because dynamic analyses can only observe
bugs on executed paths, the power of these tools is further
limited by slowdowns that reduce the number of situations
observable in a reasonable amount of time.

Application-specific hardware is one way of solving this
problem. Such mechanisms are custom-designed to accel-
erate individual analyses, but none offers a comprehensive
way of accelerating many tools. As such, they are unlikely
to meet the stringent requirements needed to be integrated
into a modern commercial microprocessor; their benefits are
too narrowly defined compared to their high area, design,
and verification costs.

Commercial processors tend to favor generic solutions,
where costs can be amortized across multiple uses. As an ex-
ample, the performance counters available on modern micro-
processors are used to find performance-degrading hotspots
in software [39], but they are also used during hardware
bring-up to identify correctness issues [48]. Similarly, while
Sun added hardware into their prototype Rock processor in
order to support transactional memory [10], the same mech-
anisms were also used to support runahead execution and
speculative execution [11].

1.1 Contributions of This Paper

We theorize that a general acceleration mechanism should
alert programmers when specified locations in memory are
being accessed. In other words, having the ability to set a
large number of data watchpoints (WPs) would benefit a
wide range of analyses.

As the original program executes, many runtime anal-
ysis systems also perform actions on shadow values. In
taint analysis, for example, each location in memory has a
shadow value that marks it as trusted or untrusted. Check-
ing this meta-data, in order to decide if analyses should oc-
cur, is slow. As an example, we previously demonstrated
that checking read/write sets using software routines was
3-10× slower than using hardware to do the same [19].
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Figure 1: Existing Watchpoint Systems Are Inadequate.
WP registers are too few in number. VM’s granularity is too
coarse. Mondriaan-like systems cannot quickly change many
WPs, and other systems are often only useful for small regions.

This paper makes a case for the hardware-supported abil-
ity to set a virtually unlimited number of fine-grained data
watchpoints. We will show that this mechanism can accel-
erate numerous software tools and is more general than the
application-specific hardware often touted in the literature.

This is an improvement over existing memory-watching
mechanisms, as qualitatively illustrated in Figure 1. Hard-
ware watchpoint registers are too limited in number for
the advanced systems we wish to accelerate. Virtual mem-
ory watchpoints, which are not constrained by hardware re-
sources, are limited by the coarse granularity of pages. Fi-
nally, a number of proposals for fine-grained hardware mem-
ory protection and tagged memory systems exist in the lit-
erature, but they too are not general enough.

We present a mechanism that avoids these limitations.
Our hardware/software hybrid watchpoint system stores
per-thread virtual address watchpoints in main memory,
avoiding hardware limitations on the total number of watch-
points. It makes use of two on-chip caches to hold these
watchpoints closer to the pipeline. The first is a modified ver-
sion of the range cache proposed by Tiwari et al. [40], which
efficiently encodes continuous regions of watched memory.
The second is a bitmapped lookaside cache, which increases
the number of cached WP ranges when they are small.

By combining these mechanisms with the abilities to take
fast WP faults and set WPs with user-level instructions, we
can greatly accelerate tools that work on shadow data while
remaining general enough to be useful for other memory-
watching tasks. Our simulated results show, for instance,
that a data race detector built using our technique can check
read/write sets up to 9× faster than one built entirely with
binary instrumentation and 3× faster than one using other
fine-grained memory protection systems.

This paper presents the following novel contributions:

• We design hardware that allows software to set a virtually
unlimited number of byte-accurate watchpoints.
• We study numerous dynamic software analysis tools and

show how they can utilize watchpoints to run more
accurately and much faster.
• We demonstrate that this design performs better on a

wide range of tools and applications than other state-of-
the-art memory monitoring technologies.

We detail the design of our watchpoint hardware in
Section 2 and discuss software systems that could be built
with it in Section 3. We compare our system to previous
fine-grain memory protection works while running a variety
of software analysis tasks in Section 4. Finally, we review
other related works in Section 5 and conclude in Section 6.

Table 1: Hardware Watchpoint Support in Modern ISAs.
Most ISAs support a small number of hardware-assisted watch-
points. While they reduce debugger overheads, their small num-
bers and reach are usually inadequate for more complex tools.

ISA # Known As Possible Size

x86 [-64] 4 Debug Register 1, 2, 4, [8] bytes

ARMv7 16 Debug Register 1-8 bytes or up to 2GB
using low-order masking

ePOWER 2 Data Address
Compare

1 byte or 64-bit address
with any bit masked or
range up to 264 bytes

Itanium 4 Data Breakpoint
Register

1 byte to 64PB using low-
order masking

MIPS 8 WatchLo/Hi 8 bytes, naturally aligned

POWER 1 DABR 1-8 bytes

SPARC 2 Watchpoint Reg. 1-8 bytes

z/Arch 1 PER RO Range up to 264 bytes

2. Fast Unlimited Watchpoints

This section describes a system that allows software to set
a virtually unlimited number of byte-accurate watchpoints.
We first review existing WP hardware and list what proper-
ties are needed to effectively accelerate a variety of software.
We then present a design that meets these needs.

2.1 Existing HW Watchpoint Support

Watchpoints, also known as data breakpoints, are debugging
mechanisms that allow a developer to demarcate memory
regions and take interrupts whenever they are accessed
[22, 27]. Using software to check each memory access can
cause slowdowns, so most processors include some form of
hardware support for watchpoints.

As Wahbe discussed, existing support can be broken
down into specialized hardware watchpoint mechanisms and
virtual memory [43]. The first commonly takes the form of
watchpoint registers that hold individual addresses and raise
exceptions when these addresses are touched. Unfortunately,
as Table 1 shows, no modern ISA offers more than a small
handful of these registers. This makes them difficult (if not
impossible) to use for many analyses [14].

The second method marks pages containing watched data
as unavailable or read-only in the virtual memory system.
The kernel then checks the offending address against a list
of watchpoints during each page fault. Though this system
has been implemented on existing processors [4, 36], it has
a number of restrictions that limit its usefulness.

Individual threads within a process cannot easily have
different VM watchpoints. Additionally, the large size of
pages reduces their effectiveness. Faults taken when access-
ing unwatched data on pages that also contain watched data
can result in unacceptable performance overheads; we mea-
sured pathological cases on x86 Solaris that showed slow-
downs of over 10,000×. Ho et al. also observed this problem
and claimed that they “anticipate that using [finer-granu-
larity] techniques would greatly improve performance” [21].

ECC memory can be used to set watchpoints at a finer
granularity [32, 34]. By setting a value in memory with ECC
enabled, then disabling ECC, writing a scrambled version of
the data into the same location, and finally re-enabling error
correction, it is possible to take a fault whenever a watched
memory line is accessed. However, changing watchpoints, as
well as taking watchpoint faults, is extremely slow in such a
system. We do not explore this further.

In all, existing hardware is inadequate to support the
varied needs of the wide range of dynamic analysis tools.



2.2 Unlimited Watchpoint Requirements

While this tells us what current systems do not offer, we
must still answer the question of what a WP system should
offer. Section 3 will detail watchpoint-based algorithms for
numerous dynamic analysis systems, but in the vein of Appel
and Li’s paper on virtual memory primitives [2], we first list
the properties which should be made available:

• Large number: Some systems watch gigabytes of data
to observe program behavior.
• Byte/word granularity: Many tools use watchpoints

at a very fine granularity to reduce false faults.
• Fast fault handler: Some applications take many

faults, so this would greatly increase their performance.
• Fast watchpoint changes: Numerous tools frequently

change WPs in response to the program’s actions.
• Per-thread: Separate watchpoints on threads within a

single process would allow tools to use watchpoints in
parallel programs without taking false faults.
• Set ranges: Many tools require the ability to watch

large ranges of addresses without needing to mark every
component byte individually.
• Break ranges: It is also important to be able to quickly

remove sections in the middle of ranges without rewriting
every byte’s WP. This is often used to carve out a
working set of unwatched data.

2.3 Efficient Watchpoint Hardware

This section describes a hardware mechanism that operates
in parallel with the virtual memory system in order to
deliver on these requirements. Each watchpoint is defined
by two bits that indicate whether it is read- and/or write-
watched. To allow a large number of these watchpoints,
the full list of watched addresses is stored in main memory.
Accessing memory for each check would be prohibitively
slow, so virtual addresses are first sent from the address
generation unit (AGU) to an on-chip WP cache that is
accessed in parallel to the data translation lookaside buffer
(DTLB), as shown in Figure 2.

To deliver these watchpoints at byte granularity , the
cache compares each virtual address that the instruction
touches and outputs a logical OR of their watched statuses.
This check need not complete until the instruction attempts
to commit, and so it may be pipelined.

If the WP unit indicates a fault, a precise exception is
raised upon attempting to commit the offending instruction.
This could either be a user-level fault, which is treated as
a mispredicted branch, or a kernel fault. We assume the
former in order provide a fast fault handler . Using such
handlers for kernel-controlled watchpoints, or cross-process
watchpoints, is beyond the scope of this paper.

In order to yield fast watchpoint changes, it is impor-
tant that the on-chip caches be able to hold dirty data and
only write back to main memory on dirty evictions. This,
and the fact that the watchpoints are stored as virtual ad-
dresses, means that watchpoints can be changed with simple
user-level instructions instead of system calls.

In order to support per-thread (rather than per-core)
watchpoints, any dirty state in the WP cache will neces-
sarily be part of process state. This can be switched lazily,
only being saved if another process utilizing watchpoints is
loaded, to increase performance. Additionally, each core will
require a thread ID register so that individual threads can
be targeted with watchpoint changes.

AGU

L1D DTLB

Main 

Memory 

WP 

StorageWLB
Range 

Cache

Data/

Tag

Physical 

Address
Watched?

Watchpoint Cache

Figure 2: Watchpoint Unit in the Pipeline. Because watch-
points are set on virtual addresses, the WP system is accessed
in parallel with the DTLB. This also allows WPs to be set with
user-level instructions while not affecting the CPU’s critical path.

Watchpoints are stored on-chip in three different forms.
They are first stored in a range cache (RC), which holds
the start and end addresses of each cached watchpoint and
status values that hold each range’s 2-bit watchpoint. This
system, which is further explained in Section 2.3.1, helps
support setting and breaking ranges.

Small ranges can negatively impact the reach, or the
number of addresses covered by all entries, of the RC. In this
case, the WPs within a contiguous region of memory can be
held in a single bitmap stored in main memory, rather than
as multiple small ranges. The RC then stores the boundary
addresses for the entire bitmapped region, and the status
bits associated with that entry will point to the base of
the bitmap. Accessing this bitmap would normally require
a load from main memory, so we also include a Watchpoint
Lookaside Buffer (WLB) that is searched in parallel with
the RC. This is detailed further in Section 2.3.2.

Finally, because creating bitmaps can be slow (requiring
kilobytes of data to be written to main memory), it can
be useful to store small bitmaps directly on chip. By using
the storage that normally holds a pointer to a bitmap, it
is possible to also make an On-Chip Bitmap (OCBM) that
stores the watchpoints for a region of memory that is larger
than a single byte but smaller than a main memory bitmap.
This is described in Section 2.3.3.

2.3.1 Range Cache

The first mechanism for storing watchpoints within the core
is a modified version of the range cache proposed by Tiwari
et al. [40]. They made the observation that “many dataflow
tracking applications exhibit very significant range locality,
where long blocks of memory addresses all store the same tag
value,” and we have found this statement even more accurate
when dealing with 2-bit watchpoints rather than many-bit
tags. This cache, shown as part of Figure 3, stores the
boundary addresses for numerous ranges within the virtual
memory space of a thread as well as the 2-bit watchpoint
status associated with each of these regions.

Virtual addresses are sent to the RC in parallel with
DTLB lookups, and the boundary addresses of each access
are compared with those of the cached ranges. When any
address that a memory instruction is attempting to access
overlaps with a range stored in the RC, the hardware checks
that range’s watchpoint bits. If an overlapping range is
marked as watched for this type of access, the instruction is
set to cause a watchpoint fault when it commits. This will
cause execution to jump to a software fault handler.

If there are no watchpoints set on a region of memory, the
RC will hold a region with R- and W-watched bits both ‘0’.
This means that if the range cache misses on any lookup, it
should attempt to retrieve that range from main memory.
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Figure 3: Unlimited Watchpoint Architecture. This system uses a combination of a range cache, center, with bitmaps and a
lookaside buffer, left, to accelerate accesses to watchpoints that are stored into main memory, right. (1) On a RC access miss, a software
handler loads new ranges from main memory. A hit causes the watchpoint system to check the associated status entry. (2) This range
could be a uniform watchpoint, an off-chip bitmap, or an on-chip bitmap. In the case of an off-chip bitmap, the output of the lookaside
buffer, which is accessed in parallel to the RC, is consulted. (3) If the WLB misses, the pointer from the RC status entry is used by the
hardware to load a line in from the main memory bitmap.

The original RC design brought in 64 byte chunks from
a two-level trie whenever it missed. We found this method
inefficient for our tools, as it required a large number of
writes to save non-aligned ranges. Instead, our RC causes a
fault to a software handler on a miss. This handler loads an
entire range from the storage system in main memory. We
implemented a backing store handler that keeps a balanced
tree of non-overlapping ranges, which was modeled after the
watchpoint data structure in the OpenSolaris kernel.

Programs set watchpoints on their own memory space us-
ing range-based instructions, which are described in Section
2.3.4. These instructions can set or remove ranges by directly
inserting the new watchpoint tag into the range cache, which
uses a dirty-bit write-back policy to avoid taking a fault on
every WP change. The RC employs a pseudo-LRU replace-
ment policy, which keeps track of the most-likely candidate
for eviction. If the range cache overflows and the LRU entry
is dirty, the cache will cause a user-level fault that reroutes
execution to the software backing store handler.

Updating a watchpoint range is more complicated than
setting or removing, as it may require loading in ranges from
the backing store to find the value that is to be modified.

2.3.2 Bitmap and Watchpoint Lookaside Buffer

The RC is designed to quickly handle large ranges of watch-
points, and its write-back policy reduces the number of
writes to main memory. However, its reach can be limited if
it contains many short ranges. In the worst case, a 128-entry
RC, which takes up an area roughly equal to 4KB of L1D,
may only have a reach of 128 bytes. We utilize a second
hardware structure to handle these cases.

Bitmaps are a compact way of storing small watchpoint
regions, because they only take 2 bits per byte within the
region, as demonstrated in Figure 4. Instead of storing the
start and end address for each small range, we therefore
choose to sometimes store into the range cache the first
and last address of a large region whose small watchpoints
are contained in a bitmap in memory. This increases the
required amount of status storage in the range cache, which
originally only held the read-watched and write-watched
bits. It instead requires 32 or 64 bits of storage to hold
the pointer to the bitmap and one bit to denote whether
an entry is a bitmap pointer or a range. The two watched
bits can be mapped onto the pointer bits to save space.

We found it difficult to design a hardware-based algo-
rithm to decide when to change a collection of ranges into
a bitmap. Doing so in an intelligent manner requires know-
ing how many watchpoints are contained within a particular
area of memory. This knowledge may best be gathered by
the backing store software, as it can see the entire state of
a process’s watchpoints. We therefore leave it to the range
cache miss handler to decide when to toggle a region of mem-
ory between a bitmap and ranges. The algorithm modeled
in this paper moves a naturally aligned 4KB region from a
range to a bitmap if the number of internal ranges exceeds
an upper threshold of 16. The dirty eviction handler changes
a bitmap back to ranges if this number falls below 4. This
is illustrated in Figure 5.

While this mechanism increases the reach of the range
cache, it could adversely affect performance if every access
to a bitmapped range required checking main memory. This
is especially true because WPs are set on virtual addresses,
meaning that each access to the bitmap would wait on
the TLB. In order to accelerate this process, our system
includes a Watchpoint Lookaside Buffer (WLB). This cache
is accessed in parallel to the RC, and any watchpoint status
it returns is consulted if the RC indicates that this location
is stored in a bitmap. On a miss in the WLB, a 64-byte line
of WP bits is loaded by a hardware engine from the bitmap
pointed to by the RC entry. Changes to the watchpoints in
a bitmapped region cause a WLB eviction.

This WLB could be replaced with extended cache line
bits, such as iWatcher uses to store its bitmapped watch-
points [50]. Sentry’s power-saving method of only storing
unwatched lines in the L1 (and thus only checking the WLB
on cache misses) may also be useful [38]. We leave a more
in-depth analysis of these tradeoffs for future work, and fo-
cus on a system with a separate watchpoint cache, much like
MemTracker uses [42].

If a bitmapped range is evicted from the RC to main
memory, the modeled software handler stores the entire
range as a single entry in the balanced tree, along with the
pointer. It then brings the entire bitmap range back into the
range cache on the next miss, though it may also need to
update the bitmap to handle changes that occurred in the
range cache but have not yet been evicted.
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Figure 5: Software Algorithm for Bitmapped Ranges. Because hardware has a myopic view of the global status of watchpoints,
we rely on the software fault handlers to choose when a region of watchpoints should toggle between bitmap and range.

2.3.3 On-Chip Bitmap

There are also situations where a collection of small ranges
within a large region prematurely displace useful data from
the range cache. Though the backing store handler may later
fix this by changing the region to a bitmapped one, we also
devised a mechanism to better utilize the pointer bits in a
range cache entry when it is not bitmapped. It is possible
to store a small bitmap for a region ≤16 bytes (on a 32-
bit machine) within these bits, allowing the RC to slightly
increase its reach. This on-chip bitmap (OCBM) range is
stored much like a normal range, with an arbitrary start
and end address. However, unlike a uniformly tagged range,
the watchpoint statuses of OCBM entries are stored as a
bitmap in the range cache’s status tag bits, which normally
hold either a pointer to a main memory bitmap or the 2-bit
tag of a range. The low-order bits of the address are used to
index into this bitmap, allowing a single range cache entry
to hold up to 16 consecutive small ranges.

Unlike the bitmaps stored in main memory, the transition
to OCBM requires little knowledge. Simply put, if a range
becomes small enough to be held in a single OCBM entry, it
is converted to one by the hardware. Returning to a uniform
range will occur when the hardware detects that all of the
watchpoints within the OCBM are equal. If an OCBM is
chosen to be written back to memory, our backing store
handler will store it as individual ranges. If two OCBMs
cover adjacent ranges, the hardware will merge them only if
their total size would still result in an OCBM.

2.3.4 ISA Changes

Interfacing with this watchpoint system requires modifica-
tions to the ISA. For instance, we must add instructions that
can set or remove ranges from the RC, as well as instruc-
tions that allow the backing store handler to directly talk to
the RC hardware. Table 2 lists the instructions that must
be added and describes what each does.

The most complicated instruction semantics relate to
modifying watchpoints in multi-threaded programs. The
WLB, for example, must be able to respond to shootdown
requests in order to remain synchronized across multiple
threads. Most importantly, instructions must exist to add,
remove, and update ranges of watchpoints for sibling proces-
sors. To do this quickly, our system must send these requests

without going through the OS. One method of doing this in-
volves broadcasting to all cores a process ID (e.g., the CR3
register in x86) and thread ID along with the request to
perform a global update. Each core can then update its own
cache entry if it matches the target process and thread ID.
This instruction must be a memory fence, however, to main-
tain consistency between watchpoints and normal requests
to watched memory locations. After the remote threads up-
date their watchpoint cache, they must also send back ac-
knowledgments. If any target thread ID does not return an
acknowledgment within some timeout period, it may not be
running, and its watchpoints may be saved in memory. The
source processor must then raise an interrupt and allow the
OS to update the unscheduled process’s watchpoints.

3. Watchpoint Applications

This section analyzes potential applications for this watch-
point system. We detail how each requires some subset of
the requirements listed in Section 2.1 and then develop
watchpoint-based algorithms that can accelerate each anal-
ysis. Space limitations prevent us from detailing more than
what we tested in our experiments, but Table 3 covers other
tools, which are also briefly discussed in Section 5.

3.1 Dynamic Dataflow Analysis

Dynamic dataflow analyses associate shadow values with
program data, propagate them alongside the execution of
the program, and perform a variety of checks on them to
find errors. This meta-data can represent myriad details
about the associated memory location such as trustworthi-
ness [12], symbolic limits [24], or identification tags [29].
Unfortunately, these systems suffer from high runtime over-
heads, as every memory access must first check its associated
meta-data before calculating any propagation logic.

Ho et al. described a method for dynamically disabling a
taint analysis tool when it is not operating on tainted vari-
ables, allowing the majority of memory operations to pro-
ceed without any analysis overheads [21]. Pages that contain
any tainted data are marked unavailable in the virtual mem-
ory system. Programs will execute unencumbered when op-
erating on untainted data, but will cause a page fault if they
access data on a tainted page. At this point, the program
can be moved into the slow analysis tool.



Table 2: ISA Additions for Unlimited Watchpoints. Watchpoint modifications must be memory fences, and instructions working
on remote cores cause a shootdown in the remote WLB. Instructions used by the backing store handler can set all bits in a RC entry,
and are also used during task switching.

Watchpoint Modifications

set local wp start, end, {r,w,rw,0} Adds a R/W/RW/not-watched range into this CPU’s RC. Overwrites any overlapping
ranges.

add/rm local wp start, end, {r,w} Updates an entry in the RC of this CPU. If anything between start and end is not in the
RC, it must be read from the backing store to properly update it.

set remote wp start, end, tid, {r,w,rw,0} Adds an entry into the RC of the CPU with TID register tid.

add/rm remote wp start, end, tid, {r,w} Updates an entry in the RC of the CPU with TID register tid.

Backing Store Handler

read rc entry n Reads the nth entry of the RC (LRU order). This allows the oldest entries to be sent to the
backing store. A bulk-read instruction could be used for task-switching.

store rc entry start, end, status bits Allows writing an entire range (including bitmap and OCBM status bits) into a range cache
entry. Used for reading in a watchpoint on a RC miss.

Watchpoint System Interface

enable/disable wp Enable or disable the watchpoint system on this core. Kernel-level instruction.

set cpu tid tid Set the TID register on this CPU at thread switch time.

enable/disable wp thread tid Toggle WP operation for any core with the same PID as this core’s and TID equal to tid.

set handler addr addr Set the address to jump to when a watchpoint-related fault occurs. If faults are user-level,
then this instruction is user-level.

get cpu tid Find the value in this processor’s TID register.

Ho et al. discussed the problem of false tainting, where
the relatively coarse granularity of pages causes unneces-
sary page faults when touching untainted data. Ideally,
such a demand-driven taint analysis tool would utilize byte-
accurate watchpoints. Additionally, although they partially
mitigated the slowdowns caused by the lack of a fast fault
handler by remaining inside their analysis tool for long peri-
ods of time, this can limit performance. Their tool conserva-
tively remains enabled while performing no useful analysis.

A WP-based algorithm for this type of system can be
summarized as setting RW watchpoints on any data that
is tainted and running until a WP fault occurs. The fault
indicates that a tainted value is either being written over
or read from, and the propagation logic or instrumented
code should be called from the WP handler. The tool should
also remain enabled while tainted data exists in registers, as
those values cannot be covered by watchpoints.

3.2 Deterministic Concurrent Execution

Deterministic concurrent execution systems attempt to
make more robust parallel programs by guaranteeing that
the outputs of concurrent regions are the same each time a
program is run with a particular input [5]. This can be ac-
complished by allowing parallel threads to run unhindered
when they are not communicating, but only committing
their memory speculatively. If one thread concurrently mod-
ifies the data being used by another, they must be serialized
in some manner.

Grace, one example of this type of system, splits fork/join
parallel programs into multiple processes and marks poten-
tially shared heap regions as watched in the virtual memory
system [6]. Any time the program reads or writes a new
heap page, a watchpoint fault is taken, whereupon the page
is put into that process’s read or write set and marked as
read-only or available, respectively. As the processes merge
while joining, any conflicting write updates cause one of the
threads to roll back and reexecute.

While Berger et al. demonstrated the effectiveness of
this system for a collection of fork/join parallel programs,
using virtual memory watchpoints in such a way limits
the applicability of their system. First, it only works on

programs that can easily be split into multiple processes,
which can lead to performance and portability problems
in some operating systems. Additionally, it can only look
for conflicting accesses at the page granularity. While many
developers work to limit false cache line sharing between
threads, it is much less likely that they care to limit false
sharing at the page granularity. Such a mismatch can lead
to many unnecessary rollbacks, again reducing performance.

Our watchpoint-based deterministic execution algorithm
is similar to Grace, except that it works on a per-thread
basis and sets watchpoints at a 64B cache line granularity.
This could also be done at the byte granularity, but with
higher overheads.

3.3 Data Race Detection

Unordered accesses to shared memory locations by multiple
threads, or data races, can allow variables to be changed
in undesired orders, potentially causing data corruption
and crashes [31]. Dynamic data race detectors can help
programmers build parallel programs by informing them
whenever shared memory is accessed in a racy way [35].

We previously showed a data race detection mechanism
that operated on similar principles to demand-driven taint
analysis, though it required the careful usage of performance
monitoring hardware to observe cache events [19]. That sys-
tem could run into performance problems due to false shar-
ing and may miss some races due to cache size limitations,
among other issues.

It is possible to build such a demand-driven analysis
system using per-thread watchpoints. Similar to how Grace
operates, all regions of shared memory are initially watched
for each thread. As a thread executes, it will take a number
of watchpoint faults in order to fill its read and write sets in
a byte-accurate manner. In our implementation, reads that
take a watchpoint fault remove the local read watchpoint
and set a write watchpoint on all other threads (in order
to catch WAR sharing), while writes completely remove the
local watchpoint and set RW watchpoints on all other cores
(to catch RAW and WAW sharing). Any time an instruction
takes a WP fault, the software race detector can assume
that it was caused by inter-thread data sharing, and should



Table 3: Applications of Watchpoints. This is a sample of software systems that could utilize hardware-supported watchpoints
to perform more efficiently and accurately. High-level algorithms that focus on how such systems would interact with the watchpoint
hardware are given for each, as well as an overview of the watchpoint capabilities that would be useful or needed for each algorithm.
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Demand-Driven
Dataflow Analysis

Set shadowed values as RW watched.
Enable analysis tool only on watchpoint faults.

X X X X

Deterministic
Execution

Start with shared memory RW watched in all threads.
On local access fault:

Check for write conflict between threads. If so, serialize.
Unwatch (R or RW, depending on access) cache line locally.
Rewatch cache lines on other threads after serialization.

X X X X

Demand-Driven
Data Race
Detection

Start with shared memory RW watched in all threads.
On local access fault:

Run software race detector on this access.
Unwatch (R or RW, depending on access) address locally.
Rewatch address on other threads.

X X X X X X X

Bounds Checking Set W-watchpoints on canaries, return addresses, and heap meta-data. X X

Speculative
Program
Optimization

Mark data regions as W watched in speculative and normal threads.
On faults:

Save list of modified regions (perhaps larger than pages).
Mark page available in this thread.

Compare values in modified regions when verifying speculation.

X X X X

Hybrid
Transactional
Memory

At start of transaction, set local memory as RW watched.
On local access fault:

Save original value for rollback.
Check for conflicts with other transactions.
Unwatch (R or RW, depending on access) address locally

Unwatch memory for this thread on transaction commit.

X X X X X X

Semi-space
Garbage
Collection

During from-space/to-space switch:
Mark all memory in from-space as RW watched to executing threads.
Update dereferenced pointer to be consistent on faults.

X X X

send the access through its slow race detection algorithm.
A similar WP-based race detection method was recently
demonstrated in DataCollider, though they are only able
to concurrently watch four variables due to WP register
limitations [16].

This tool is a prime example of the need to break large
ranges, as the program initially starts by watching large
ranges and slowly splits them to form a local working set.

4. Experiments

Any slowdowns caused by issues such as WP cache misses
should not outweigh the performance gains a WP system
offers software tools. To that end, this section presents
experiments that evaluate the performance of our system
and a collection of other fine-grained memory protection
systems when they are used to accelerate dynamic analysis
tools.

4.1 Experimental Setup

We implemented a high-level simulation environment using
Pin [25] running on x86-64 Linux hosts. The software anal-
ysis tools were implemented as pintools and were used to
analyze 32-bit x86 benchmark applications. These pintools
communicated with a simulator that modeled the watch-
point hardware. It also kept track of events that would cause
slowdowns. The overheads of events that were fully exposed
to the pipeline (e.g. faults to the kernel) were calculated by
multiplying the event count by values derived from running
lmbench [28] on a collection of x86 Linux systems. These
values are listed in Table 4.

Events that are not fully exposed, such as the work
done by software handlers, were logged and run through a

trace-based timing tool on a 2.4GHz Intel Core 2 processor
running Red Hat Enterprise Linux 6.1. These actions are
listed in Table 5. The runtime of the timing tool is recorded
and used to derive the cycle overhead of such events.

While this setup is likely to have inaccuracies (due to,
for instance, caches and branch predictors being in differ-
ent states), it is still useful in giving rough estimates of the
performance of numerous different systems across a multi-
tude of tools and benchmarks. It’s worth nothing that even
“cycle-accurate” simulators have inaccuracies compared to
real hardware [47]. The larger testing space available to our
fast simulation can still lead to useful design decisions.

4.1.1 Hardware Designs Modeled

To compare our design to previous works that could also
offer watchpoints, we built models for a number of other
hardware memory protection mechanisms. We assume that
every system except virtual memory has user-level faults so
as not to bias our results away from other hardware designs.

Virtual Memory – This models the traditional way of
offering large numbers of watchpoints [2]. Touching a page
with watched data causes a page fault, whereupon the kernel
looks through a list of byte-accurate watchpoints to decide
if this was a true watchpoint fault. If so, a signal is sent
to the user code. If not, the page is marked available, the
next instruction single-stepped, and the page is then marked
unavailable again after the subsequent return to the kernel.
The overheads of this system can be estimated as: (# true
faults × (Tkernel +Tsignal)) + (# false faults × Tkernel × 2)
+ (# WP changes × Tsyscall) + TSWcheck + TSWset + TV M .

MemTracker – This implements a design that has a
lookaside buffer that is separate from the L1D cache (called



Table 4: Exposed Latency Values. These events are counted
in our simulator, and each event is estimated to take the listed
number of cycles, on average.

Event Added Cycles Symbol

Kernel fault 700 Tkernel

Syscall entry 400 Tsyscall

Signal from kernel 3000 Tsignal

User-level fault time 20 Tuser

the “Taint L1” in FlexiTaint [41] and “State L1” in Mem-
Tracker [42]). In these tests, the State L1 (SL1) was a 4KB,
4-way set associative cache with 64-byte lines. The original
MemTracker did not have user-level faults, so their backing
store was a bitmap in main memory. Our initial tests showed
that the vast majority of time was spent writing data to
this bitmap, so we changed the system to use a software-
controlled backing store handler similar to our design. The
overheads of this system can be estimated as: ((# of faults
+ # SL1 misses) × Tuser) + TSWcheck + TSWset.

Mondriaan Memory Protection – MMP utilizes a
trie in main memory to store the watchpoints for individual
bytes [46]. Upper levels of the table can be set to mark large,
aligned regions as watched in one action. The protection
lookaside buffer (PLB) is 256 entries and can hold these
higher-level entries (using low order don’t-care bits). We did
not utilize the mini-SST optimization because Witchel later
described how such entries can yield significant slowdowns if
permission changes are frequent [45]. The overheads for this
system are: (# of faults + Tuser) + THWcheck + TMLPT

Range Cache – This system is a 128-entry range cache,
where each entry holds 2 bits of WP data. Tiwari et al.
estimated that a 128-entry range cache with 32-bit entries
would take up nearly the same amount of space as 4KB of
data cache [40]. The OH is: ((# of faults + # RC misses
+ # write-backs) × Tuser) + (complex range updates × 64
cycles) + TSWcheck + TSWset.

RC + Bitmap – Our technique adds bitmapped ranges,
OCBMs, and a 2-way set-associative, 2KB WLB to the range
cache design. The size of the RC is reduced to 64 entries
because of the extra area needed for these features. This
system can have further overhead-causing events besides
those of the range cache: (THWcheck on WLB miss) + (time
to decide to switch to/from bitmap ranges) + Tbitmap.

4.1.2 Software Test Clients

The software analyses discussed in Section 3 are utilized
as clients for the simulated hardware watchpoint system.
The overheads caused by the tools themselves are common
amongst all watchpoint designs and are not modeled. In
other words, the reported performance differences are rel-
ative to the meta-data checks only, not the shadow propa-
gation, serialization algorithms, or race detection logic.

Demand-Driven Taint Analysis – This tool performs
taint analysis on target applications, marking data read
from disk and the network as tainted. As a baseline, we
compare against two state-of-the-art analysis systems. The
first, MINEMU 0.3, is an extremely fast taint analysis tool
that utilizes multiple non-portable techniques (such as using
SSE registers to hold taint bits) in order to run as fast as
possible [9]. Because this system is a full taint analysis tool,
its measured overheads do include taint propagation and
checks. The second baseline system is Umbra, a more general
shadow memory system built on top of DynamoRio [49]. Its
overheads come from calculating shadow value locations and

Table 5: Pipelined Events. These are pipelined events that
cause overlapping slowdowns. They are logged and their over-
heads estimated using a trace-based timing simulator.

Event Symbol

Load watchpoints using SW handler. TSWcheck

Store watchpoints using SW handler. TSWset

Load watchpoints using hardware THWcheck

Change page table protection bits. TV M

Create MLPT entries in MMP. TMLPT

Write data into bitmaps. Tbitmap

accessing them on each memory operation. Similar to the
tests done by Tiwari et al. [40], we test these systems using
the SPEC CPU2000 integer benchmarks.

Deterministic Concurrent Execution – We test the
deterministic execution tool in a similar manner to Grace by
using the benchmark tests included in the Phoenix shared-
memory MapReduce suite [33]. We also tested the SPEC
OMP2001 benchmarks, another set of programs with the
fork-join parallelism that Grace is designed to support.

Demand-Driven Data Race Detection – The default
tool we compare against is a commercial data race detector
that performs this sharing analysis in software. We test this
system in a similar manner to our previous work [19] by
running the Phoenix [33] and PARSEC [8] suites.

4.2 Results for Taint Analysis

Figure 6 details the average number of memory operations
between each WP cache miss for all of the systems that use
some cache mechanism (i.e., not virtual memory). Because
these programs have large regions of unwatched data, this
tool shows the power of the range cache to cover nearly
the entire working set of a program. Similarly, because
the MMP PLB can hold aligned ranges, it has a larger
reach than MemTracker’s cache, which can only hold small
sections of per-byte bitmaps. Nonetheless, Figure 7 shows
that MMP has worse performance, on average, than MT.
This is primarily because some benchmarks cause MMP to
spend a great deal of time deciding whether to set or remove
upper levels of the trie, in order to best utilize ranges in its
PLB.

The taint analysis tool rarely causes our hybrid system to
transition from using normal to bitmapped ranges. Because
the size of the RC is reduced from 128 to 64 entries, its miss
rate is slightly higher than the RC-only system’s. The only
counterexample is 255.vortex, which taints a large number
of small regions. However, when WLB misses are taken into
account (the line “RC+Bitmap” only accounts for range
cache misses), the total hit rate drops precipitously. This is
because the benchmark has a large number of WP changes,
and each change into a bitmapped region causes a WLB
eviction.

Figure 7 compares the performance of the HW-assisted
watchpoint systems against the two software-based shadow
value analysis tools. The lower hit rate in the hybrid system
means that it is about 7% slower than one with a larger
RC. Nonetheless, the high hit rates of both systems mean
that nearly every instruction that is not tainted suffers no
slowdown, yielding large speedups over the software analysis
tools. It is important to note, however, that MINEMU is
also performing taint propagation, overheads which we do
not analyze for our hardware systems. Nonetheless, using
hardware-supported watchpoints can still result in large
performance gains over an always-on tool like Umbra.
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This performance benefit is dampened in 255.vortex by
its extremely low cache hit rates. All of the demand-driven
analysis systems performed poorly for this benchmark, and
would probably continue to do so even with high cache hit
rates, since the software analysis tool would rarely be dis-
abled – almost 10% of the memory operations in 255.vortex
operate on tainted values. Demand-driven tools are poor at
accelerating applications such as this, and would need mech-
anisms such as sampling to run faster [18].

4.3 Results for Deterministic Execution

Figures 8 and 9 show the cache miss rates and performance,
respectively, of the WP-based deterministic execution sys-
tem. The performance graph is normalized to a Grace-like
system that removes watchpoints one page, rather than one
cache line, at a time. The normalized performance of the
more fine-grained mechanisms will be lower than 1.

Because this system operates on more watchpoints than
the taint analysis tool, the cache hit rates are lower. Very
few of the watchpoints used in this tool can be held in higher
levels of the trie, so MMP’s PLB has a much worse hit rate.
On average, MemTracker’s hit rate is higher than MMP’s
due to its larger cache. Despite the increased number of
watchpoints, the range cache maintains a high hit rate. This
can partially be attributed to the tool using watchpoints of
64 bytes in length at minimum, which increases the reach of
the range cache in highly fragmented cases.

As Figure 9 illustrates, attempting to use finer-grained
watchpoints in the virtual memory system reduces perfor-
mance significantly (it averages out to 670× slower than
using 4KB watchpoints). All of the systems designed for
fine-grained watchpoints handle this change much better.
The systems that utilize ranges execute at about 90% of the
speed of the VM-based system that uses 4KB watchpoints,
with the bitmapped range system edging slightly higher.
Because this tool primarily works on ranges of data, both
range-based systems perform better than the other hardware
systems that operate solely on bitmaps.

4.4 Results for Data Race Detection

The cache miss rate for a demand-driven data race detector
is shown in Figures 10. This tool deals with a much greater

number of watchpoints, as it slowly unwatches data touched
by individual threads at a byte granularity. The effect this
has on the range cache can be easily observed in the Phoenix
suite, as it falls from 100,000 memory operations between
each range cache miss (in Grace) to 10,000 in this tool. The
PARSEC benchmark canneal is particularly egregious, as
none of the hardware caches go more than an average of 100
memory operations before missing. Because most of these
benchmarks have a large number of relatively small ranges,
however, this suite shows the benefit of the bitmapped
ranges. In PARSEC, the geometric mean of the range cache
hit rate is 5× higher when small ranges can be stored as
bitmaps, even though the RC itself is half the size.

The performance of the hardware-assisted sharing detec-
tors, shown in Figure 11, is almost always higher than when
using software. In particular, the range based systems, even
with low hit rates, can still outperform a software system
that must check every memory access. The exception in can-
neal, where range-based hardware systems suffer high over-
heads from the backing store fault handler. In total, however,
our hybrid system is able to demonstrate a 9× performance
improvement, on average.

4.5 Experimental Takeaways

On the whole, the benefits of the range cache are pro-
nounced. Its hit rate is significantly higher than caches that
only store WP bitmaps. Perhaps even more importantly, it
acts as a write filter. Many of the slowdowns seen by Mem-
Tracker are due to writing to the backing store repeatedly.
In a similar vein, the algorithm for filling out the trie in
MMP can take up a great deal of time when there are many
WP changes, and breaking ranges apart can cause a large
amount of memory traffic.

Nonetheless, we’ve found that the addition of a bitmap
system to the range cache is beneficial when the watchpoints
are small. There are numerous applications that create a
large number of small ranges. dedup within a race detector,
for instance, is significantly helped by the increased reach of
the RC when using bitmapped ranges. We found, however,
that the WLB miss rate was quite high in many cases. This
is partially because writes to bitmapped regions currently
evict matching entries from the WLB. It is also the case that
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Figure 8: Memory Operations per WP Cache Miss for Deterministic Execution. The increased number of WPs causes the
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that bitmapped ranges are often enabled in sections of code
that are difficult to cache. This warrants future research to
perhaps find a better way to store these bitmapped ranges.

Though we did not illustrate the tests we did on the
OCBM, we found that it was a net benefit, on average.
However, its benefit was generally measured in single-digit
percentages, rather than the larger gains we often saw with
the full bitmap system.

Perhaps the most important area that could be improved
in our system is the backing store handler. Range cache
misses or overflows required hundreds to thousands of extra
cycles to handle (depending on the size of backing store
tree and the complexity of the insertion). With overheads
this high, the range cache needs a particularly good hit
rate to maintain high performance. One of the benefits we
found with the bitmapped ranges was that the WLB miss
handler was simpler and faster. It is probably possible to
build more efficient backing store algorithms, such that they
would switch between storage methods depending on the
miss rate, eviction rate, and number of watchpoints in the
system.

In summary, the hardware-assisted watchpoint systems
allowed sizable performance improvements in demand-
driven tools. For the deterministic execution system, the
finer-grained watchpoints resulted in minor slowdowns, but
allowed more accurate sharing analyses than can currently
be performed at such a speed. This is the crux of the argu-
ment that hardware-assisted watchpoints are a generalized
mechanism to improve software tools.

5. Related Works

This section explores works related to watchpoints and their
uses. We first discuss hardware proposals that could be used
to provide unlimited watchpoints, but which have limita-
tions that keep them from being as general as we would
like. We then list other applications that could potentially
utilize an unlimited watchpoint system.

5.1 Memory Protection Systems

There have been numerous proposals for hardware that
provides watchpoint-like mechanisms. Capabilities, for in-
stance, can be used to control software’s access to particular
regions in memory [15]. Few capability-based systems were
built, and even fewer still exist. Most recent publications
focus instead on fine-grain memory protection.

One of the most widely cited works in this area is Mon-
driaan (also spelled Mondrian) Memory Protection [46].
MMP was designed with fine-grained inter-process protec-
tion mechanisms in mind, and is optimized for applications
that do not perform frequent updates. The protection infor-
mation is stored in main memory and is cached in a protec-
tion lookaside buffer (PLB). MMP utilized a ternary CAM
for this cache, allowing naturally aligned ranges to be com-
pactly stored. The first method Witchel proposed for storing
protection regions in memory was a sorted segment table
(SST), a list sorted by starting address. Though this al-
lows O(ln n) lookups and can efficiently store ranges, it is
unsuitable for frequent updates. The second, a multi-level
permission table (MLPT), is a trie that holds a bitmap of
word-accurate permissions in its lowest level. It is beneficial
to use upper levels of this table whenever possible in order
to increase the PLB’s reach. Checking ranges of permissions
in order to “promote” a region can cause significant update
slowdowns, however. In general, MMP is designed to work

with tools that, while needing memory protection, do not
perform frequent updates.

One common method of storing protection data is to put
it alongside cache lines [30, 32, 50]. iWatcher, for example,
stores per-word watchpoints alongside the cache lines that
contain the watched data [50]. These bits are initially set
by hardware and are temporarily stored into a victim ta-
ble on cache evictions. The hardware falls back to virtual
memory watchpoints if this table overflows. iWatcher can
watch a small number of ranges, which must be pinned in
physical memory. If this range hardware overflows, the sys-
tem falls back to setting a large number of per-word watch-
points. In general, this system is inadequate for tools that
require more than a small number of large ranges. Of note,
Zhou et al. correctly state the usefulness of user-level faults
in handling frequently-touched watchpoints. UFO, a similar
system, used watchpoints to accelerate speculative software
optimization [30]. Unfortunately, because it stores watch-
points in memory by updating the ECC bits of individual
lines, it does not allow large ranges to be quickly set or re-
moved. SafeMem uses a similar scheme [32].

MemTracker holds analysis meta-data (which is analo-
gous to watchpoints) in a separate L1 cache, similar to our
WLB. It also offers the option of using a hardware state
machine to perform meta-data propagation [42]. This means
that it can have even less overhead for some types of analyses
than a system with a user-level fault handler. However, be-
cause its meta-data is stored as a packed array in main mem-
ory, it is time-consuming to set or remove watchpoints on
large ranges. FlexiTaint, a follow-on work to MemTracker,
has the same issues [41].

In order to reduce the number of accesses to the memory
protection hardware, Sentry stores its protection data at the
cache line granularity [38]. Every line in L1 is unwatched,
and the on-chip protection structure is only checked on
L1D misses. Their paper gives an excellent analysis of the
type of hardware needed to perform watchpoints. However,
their system has large overheads when performing frequent
updates because it must go to a software handler on every
change and evict cache lines accordingly.

5.2 Other Uses for Watchpoints

Watchpoints can also be used to accelerate software systems
beyond the three examined in the experiments. Table 3 lists
algorithms for the tools discussed in this section.

Hill et al. previously made an argument for deconstructed
hardware transactional memory (TM) systems [20]. They
pushed for HTM additions that could be used for other
things, like watchpoints; we instead argue that watchpoints
can be used to make (among other things) faster TM sys-
tems. A WP-based algorithm to accelerate software TM, as
described by Baugh et al., sets WPs on data touched by
transactional code; any time another thread touches this
data, a conflict will be caught [3]. If transactions are partic-
ularly long, forcibly setting watchpoints after every memory
access may be slow. In this case, carving working sets out
of large watched regions (as we demonstrated for determin-
istic execution and data race detection) may be faster, as
the initial fault times are amortized across multiple memory
operations.

Beyond correctness and debugging analyses, speculative
parallelization systems allow some pieces of sequential code
to run concurrently, and only later check if the result was
indeed correct. In essence, watchpoints can be set on values
created by the speculative code so that they are verified



before being used elsewhere in the program. Fast Track
performs these checks in software using virtual memory
watchpoints [23].

Because they allow write faults to be taken on specified
read-only regions of memory, watchpoints also enable secu-
rity systems both as common as bounds checking [14] and as
esoteric as kernel rootkit protection [44]. The latter requires
little explanation, but it is useful to note that the authors
lamented the “protection granularity gap,” or the inability
to set fine-grained watchpoints.

Watchpoints can even be used, in a fashion, for garbage
collection. A semi-space collector will move all reachable
objects from one memory space to another at collection
time [13, 17]. To implement this efficiently, the program
will continue to execute while data is moved, pausing if
the program attempts to access data that has not yet been
appropriately moved. Appel et al. did this by setting virtual
memory watchpoints on each memory location that is to be
moved [1]. This is similar to the mechanism that Lyu et al.
use to perform online software updates [26].

6. Conclusion and Future Work

In this paper we presented a hardware design that allows
software to utilize a virtually unlimited number of low-
overhead watchpoints. By combining the ability of a range
cache to store long watched regions with a bitmap’s fast
access and succinct encoding for small watchpoints, we were
able to demonstrate an effective system for a collection of
software tools. We used this system to demonstrate that
the software community can benefit from generic primitives
provided by hardware.

Though our results show that a design of this nature is
promising, a number of avenues for future research remain
open. Our range cache’s software-controlled miss and evic-
tion handler would be unusable without fast fault support.
It may therefore be advantageous to look into hardware de-
signs for operating on the backing store. There are also open
questions as to the best algorithms for moving from ranges to
bitmaps (and vice-versa). We presented a simple algorithm
that showed decent results, but it is probably not optimal
either in its runtime or its decisions.

Finally, there are potentially promising research results
into new types of software tools that could be built on top
of watchpoint systems. Software developers and researchers
have been valiantly extending the uses of the virtual memory
system for decades. This ingenuity may very well yield novel
uses for a byte-granularity watchpoint system in the future.
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