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Abstract
Buffer overflows are a common source of program crashes,
data corruption, and security problems. In this work, we
demonstrate that GPU-based workloads can also cause
buffer overflows, a problem that was traditionally ignored
because CPUs and GPUs had separate memory spaces. Mod-
ern GPUs share virtual, and sometimes physical, memory
with CPUs, meaning that GPU-based buffer overflows are
capable of producing the same program crashes, data corrup-
tion, and security problems as CPU-based overflows. While
there are many tools to find buffer overflows in CPU-based
applications, the shift towards GPU-enhanced programs has
expanded the problem beyond their capabilities.

This paper describes a tool that uses canaries to de-
tect buffer overflows caused by GPGPU kernels. It wraps
OpenCL™ API calls and alerts users to any kernel that
writes outside of a memory buffer. We study a variety of
optimizations, including using the GPU to perform the ca-
nary checks, which allow our tool to run at near application
speeds. The resulting runtime overhead, which scales with
the number of buffers used by the kernel, is 14% across 175
applications in 16 GPU benchmark suites. In these same
suites, we found 13 buffer overflows in 7 benchmarks.

1. Introduction
Buffer overflows are a common software problem with a
long history [7]; famous security attacks such as the Mor-
ris Worm, Code Red, and Slammer were all predicated on
this error. By allowing accesses outside of the “correct”
region of memory, buffer overflows can lead to program
crashes, data corruption, and security breaches [53]. Ow-
ing to this long history in CPU-based applications, numerous
tools have been built to find and stop buffer overflows [10,
12, 29, 42, 45, 58–60, 65, 68, 74].

In contrast, little attention has been paid to buffer over-
flows on GPUs. While GPU programs are just as susceptible
to memory bugs as CPU programs, the following differences
have led developers to incorrectly ignore the problem:

1. GPU and CPU memory has traditionally been separated,
making it difficult for GPUs to corrupt the CPU memory.

2. GPU programs rarely use pointers or make function calls,
making visible crashes from buffer overflows less likely.

3. GPU memory is often allocated in a less dense manner
than CPU memory, so overflows from one buffer will not
necessarily corrupt useful data in another.
Unfortunately, these neither prevent overflows nor protect

against their effects. Miele, for instance, recently demon-
strated that GPU-based buffer overflows can lead to remote
GPU code execution [54], as did Di et al. [26].

Additionally, GPUs can access CPU memory over in-
terconnects such as PCIe®, and standards such as Hetero-
geneous System Architecture (HSA) allow virtual memory
sharing between CPUs and GPUs [13, 40]. Such tight inte-
gration allows GPU overflows to easily corrupt CPU data.

There currently exist few tools to help catch GPU buffer
overflows. Oclgrind can instrument OpenCL™ programs
with checks to find such errors, but it causes runtime over-
heads of up to 300× [61]. Techniques from fast CPU-based
detectors like Electric Fence [60] and StackGuard [21] are
difficult to add to closed-source vendor runtimes; they re-
quire changes to virtual memory managers or compilers.

Towards this end, this paper describes the design of a run-
time buffer overflow detector for OpenCL GPU programs.
By catching function calls that allocate OpenCL memory
buffers, we can add canary regions outside of the buffers.
After an OpenCL kernel completes, our tool checks these
canary regions to see if the kernel wrote beyond its buffers’
limits. If so, our tool alerts the user to this problem.

We limit the overhead of these analyses by tuning our
canary checks and switching them between the CPU and
GPU. Our tool causes a mean slowdown of only 14% across
175 programs in 16 OpenCL benchmark suites. We use the
same benchmarks to demonstrate its efficacy by finding a
total of 13 buffer overflows in 7 of the programs.

In total, this paper makes the following contributions:

• We describe the design of the first canary-based OpenCL
buffer overflow detector. It is also the first to work with
OpenCL 2.0 shared virtual memory buffers.

• We detail techniques, such as using GPU kernels to check
canary values for overflows, which limit our tool to an
average slowdown of only 14%.

• We show that our tool finds real problems by detecting
and fixing 13 buffer overflows in 7 real benchmarks,
many of which have not been observed by other tools.

mailto:Christopher.Erb@amd.com
mailto:Mike.Collins@amd.com
mailto:Joseph.Greathouse@amd.com


2. Background
This section includes background information for this work.
Section 2.1 discusses buffer overflows and tools to find them.
Section 2.2 describes GPU memories, and Section 2.3 dis-
cusses how OpenCL™ 2.0 presents this memory to software.

2.1 Buffer Overflows
Buffer overflows are software errors that result from access-
ing data beyond the limits of a buffer. An example of a
buffer overflow (perhaps most famously described by Aleph
One [6]) is illustrated in Figures 1(a) and 1(b). Here, an ar-
ray and the function’s return address are placed next to one
another. Copying too many values into the array will over-
write the address, allowing an attacker to take control of the
application. Overflows can also cause silent data corruption,
memory leaks, and crashes, among other problems.

Numerous tools have been built to catch buffer overflows
in CPU programs. Heavyweight tools like Valgrind [58]
add extra checks to validate each memory access, but their
overheads mean that they are used sparingly by developers.

This work therefore focuses on more lightweight tech-
niques. In particular, as illustrated in Figure 1(c), we place
canary values outside of buffers that are susceptible to over-
flows. The values are later checked and, if they have been
overwritten, the tool reports a buffer overflow.

Previous tools have used canaries to check for overflows
in CPU programs. StackGuard [21] uses canaries to pro-
tect the stack, while ContraPolice can protect heap struc-
tures [45]. Both of these tools add canary checks at vari-
ous points in the application. Along similar lines, Electric
Fence [60] adds canary pages around heap structures and
protects the canaries using the virtual memory system; a
page fault therefore indicates a buffer overflow. While these
tools are useful for finding CPU-based buffer overflows, they
do not work for GPU memory.

2.2 GPU Memory
CPUs and GPUs have traditionally had separate memory
spaces, so overflows on the GPU would not corrupt CPU
data. In addition, because GPUs rarely performed tasks
like dereferencing pointers, corrupted GPU buffers rarely
caused crashes. GPU memory managers often pack data
less densely than CPU managers, making it harder for an
overflow to corrupt other buffers [50]. As such, GPU buffer
overflows were often ignored or left undetected, and there
were few tools built to find them.

While this may imply that buffer overflows are a mi-
nor problem on GPUs, this is not the case. Miele recently
demonstrated that buffer overflows on the GPU could be
used to inject code that could allow attackers to take control
of the GPU’s operation [54]. Beyond hijacking GPU control
flow, the move towards tightly integrated heterogeneous sys-
tems means that GPUs can also corrupt CPU memory by di-
rectly accessing CPU buffers over interconnects like PCIe®.

(a)
buf+2buf+1 buf+n...

... return addr
buf

(b)
src[1] src[2] src[n] src[n+1]-[n+4]

buf+2 buf+n...
...

memcpy(buf,src,n+5);

buf+1buf
src[0]

(c) ... return addrcanary
buf+n...buf+2buf+1buf

Figure 1. Example of a buffer overflow. (a) and (b) show
how copying too much data into a buffer can corrupt neigh-
boring variables. (c) shows a canary value after the buffer; if
this canary changes, a buffer overflow has occurred.

This can happen in OpenCL applications that allocate
buffers with flags such as CL MEM ALLOC HOST PTR
or CL MEM USE HOST PTR [3]. Similarly, fine-grained
shared virtual memory buffers are stored in this manner
in AMD’s OpenCL 2.0 implementation [8]. Margiolas and
O’Boyle took advantage of these techniques to reduce DMA
transfers between the CPU and GPU memories [52]. They
only moved buffers into the GPU’s memory if they would
be accessed frequently enough to justify the transfer costs.
As such, they designed an automated system that may leave
some CPU buffers susceptible to GPU buffer overflows.

New chip designs bring advancements that will exacer-
bate this problem. Single-chip heterogeneous SoCs are now
available from companies such as AMD [46], Intel [28], and
Nvidia [27] that allow CPUs and GPUs to share the same
physical memory. Both AMD and Intel allow these devices
to share virtual memory, as well. Similarly, HSA compliant
devices share virtual memory between the CPU and accel-
erators [13, 70]. This means that GPU buffer overflows will
become more problematic in the future.

2.3 OpenCL Memory Buffers
This work focuses on buffer overflows caused by OpenCL™
kernels running on GPUs. As such, this section details the
type of buffers used in OpenCL kernels.

Stack Values Many OpenCL implementations do not put
stack variables into memory, instead preferring to allocate
them entirely in registers. In addition, analyzing these vari-
ables requires modifying the OpenCL compiler, which is of-
ten a proprietary part of a vendor’s software stack. As such,
our buffer overflow detector does not analyze stack values.

Local Memory Local memory is often allocated into on-
chip scratchpad memories at kernel invocation time. Be-
cause this memory is not shared with the DRAM buffers,
attempting to access values outside of the allocated region
often causes GPU kernels to crash immediately. As such,
our tool does not search for local memory overflows.

Global cl mem Buffers These memory buffers are allo-
cated by the host using functions such as clCreateBuffer.
By default, these buffers are allocated into the GPU’s mem-
ory and cannot contain pointers. However, as mentioned in



Section 2.2, they can be forced into the CPU’s memory. Our
tool watches for buffer overflows in these regions by wrap-
ping calls to functions that create cl mem buffers and ex-
panding the requested size to include our canary regions.

Global cl mem Images Images are multi-dimensional
buffers created using functions such as clCreateImage2D
(before OpenCL 1.2) and clCreateImage (OpenCL 1.2+).
Images are like cl mem buffers, except that it is possible
for an application to overflow one dimension of the image
without writing past the “end” of the buffer (the final di-
mension). To enable discovery of these overflows, our tool
expands each dimension of an image with canary regions.

Sub-Buffers A sub-buffer is created by calling the func-
tion clCreateSubBuffer, which takes a reference to an ex-
isting cl mem buffer and returns a cl mem object that points
into the middle of the original buffer. Because this sub-buffer
is within a memory region that has already been allocated,
our tool cannot expand this buffer with canary regions at sub-
buffer creation time. Instead, our tool creates a shadow copy
of this buffer, as further described in Section 3.

Coarse-grained SVM Shared virtual memory (SVM) is a
feature of OpenCL 2.0 that allows buffers that reside in the
GPU’s memory to contain pointers into their buffer and into
other SVM buffers. These regions are allocated with the
clSVMAlloc function. Coarse-grained SVM buffers must be
mapped into the CPU’s memory in order to access them on
the CPU, and this generally copies the data. Once the buffer
is mapped on the CPU, the pointers it contains are still valid.

Our tool watches for buffer overflows in these regions by
wrapping calls to clSVMAlloc and expanding the requested
allocation size to include our canary regions.

Fine-grained SVM Like coarse-grained SVM, these buffers
can contain pointers that are valid on both the CPU and
the GPU. However, fine-grained SVM buffers need not be
mapped and copied in order to access them from the CPU.
AMD’s OpenCL runtime enables this by storing them in host
memory and allowing the GPU to access this CPU memory
region [8]. Our tool watches for buffer overflows in these re-
gions by wrapping calls to clSVMAlloc and expanding the
requested allocation size to include our canary regions.

Fine-grained System SVM These are pointers to tra-
ditional CPU memory, such as heap data returned from
malloc. Because the allocation of these buffers does not
go through any OpenCL APIs, and because most modern
discrete GPUs do not support fine-grained SVM, our detec-
tor does not analyze this type of memory.

GPUs that do support these regions (such as the inte-
grated systems discussed in Section 2.2) do so by sharing
virtual memory between the CPU and GPU. As such, CPU-
based buffer overflow detection mechanisms such as Elec-
tric Fence [60] would work for fine-grained system SVM.
A GPU buffer overflow to such a region would cause a GPU
page fault [73], meaning that our tool would not be required.

3. Design of a Buffer Overflow Detector
Our buffer overflow detector uses canary values to detect
whether a GPU kernel has written past the end of any global
memory regions. This is akin to tools like StackGuard [21],
ContraPolice [45], and Electric Fence [60]. In such systems,
the canary values beyond the end of a buffer are periodically
checked to ensure that no buffer overflow has happened.

StackGuard and ContraPolice add the canary checks into
the application, requiring it or the system libraries to be
recompiled. Electric Fence protects canary pages using the
virtual memory system, and writing into the canary region
will cause a page fault. This is done by dynamically linking
against Electric Fence and replacing calls to functions like
malloc, which does not require recompilation.

Like Electric Fence, our tool works on unmodified pro-
grams. We accomplish this using the Unix LD PRELOAD
mechanism to create an OpenCL™ wrapper [62] (though
similar library injection techniques can also be performed
on the Windows® operating system [75]).

Our wrapper catches OpenCL API calls that allocate
global memory and expands the requested sizes to include
canary regions that are initialized with known patterns. We
then wrap calls that set GPU kernel arguments in order to
keep track of which buffers to check. Finally, we wrap the
function call that launches GPU kernels, and, after the ker-
nel completes, we check the canary values from any buffer
it could access. If a canary value has changed, a bug in the
kernel has caused a buffer overflow.

We check the canary values after the kernel completes
because we cannot catch canary writes in the kernel (like
StackGuard) or with memory protection (like Electric Fence).
This limits the types of errors our tool finds, since there is
a time when a corrupted value could be used before the ca-
naries are checked. An attacker could avoid our checks by
taking control of the GPU before we get a chance to see the
canary values and could even reset the canary values to avoid
detection. As such, our buffer overflow detector offers no se-
curity guarantees. Nonetheless, like the lightweight bounds
checking technique by Hasabnis et al., this tool can still find
useful problems [39]. As we demonstrate in Section 6, our
technique is useful as a debugging tool.

Our tool’s three wrapper mechanisms are illustrated in
Figure 2. The following sections detail a simple version
of our system to make the explanation easier. Section 4
discusses performance optimizations.

3.1 Buffer Creation APIs
As Figure 2(a) shows, we wrap buffer creation APIs such
as clSVMAlloc, clCreateBuffer, and clCreateImage.
We then extend the buffers created by these functions and
record meta-data about them. For all buffers whose creation
does not use an existing allocation as a base, the size of the
buffer is increased by the length of a canary region (8 KB in
our studies), which is initialized with a static data pattern.
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Figure 2. Architecture of our GPU Buffer Overflow Detector. (a) shows the wrapper for OpenCL buffer creation, which
allows us to extend the allocations and add canary regions. (b) illustrates the wrapper for the functions that set kernel arguments.
These allow our tool to know which buffers must be checked when running a kernel. (c) depicts work that takes place upon
launching a kernel, which includes checking the canary values after the kernel completes to detect any overflows.

The flag CL MEM USE HOST PTR adds some difficulty to
this scheme, since it allows previously allocated CPU mem-
ory to be used as an OpenCL buffer. We are unable to re-
size this region because we cannot update all of the user’s
pointers to it. To work around this problem, we create an ex-
tended shadow copy of the buffer whenever we are about to
execute a kernel. The copy is extended with canaries, and,
upon completion of the kernel, the useful data in the shadow
buffer is copied back to the original host memory. This is
valid because the OpenCL standard allows implementations
“to cache the buffer contents” of host pointer regions. Our
tool caches them until after our canary check completes.

We use shadow copies more generally to solve problems
arising from buffer creation using pointers to existing alloca-
tions. Similar to using the CL MEM USE HOST PTR flag, sub-
buffers are references to previously allocated buffers. Images
may also be created with a previously existing buffer or im-
age. In these cases, because our tool cannot update all refer-
ences to the original data, a shadow copy is used.

3.2 Setting Kernel Arguments
Figure 2(b) shows how we catch the calls that are used to
assign arguments to OpenCL kernels, clSetKernelArg and
clSetKernelArgSVMPointer. Wrapping these allows us
to maintain a list of the buffers that each kernel can access.

This list is used when the kernel is launched to know
which buffers we should check for overflows. For each
global memory buffer argument, we keep a list of buffer
sizes, canary values, and pointers to the buffers’ meta-data.
In addition, this bookkeeping allows us to know if any SVM
buffers are accessible from this kernel. As an optimization,
we check for identical arguments; if two arguments use the
same buffer, we only check the canary values once.

3.3 Kernel Enqueues
Figure 2(c) illustrates how we wrap the kernel launch func-
tion, clEnqueueNDRangeKernel. This is where buffer
overflow detection takes place. The detector first analyzes
the kernel’s arguments. Kernels with no global buffers can-
not cause overflows and are run like normal.

If, however, there are cl mem buffers passed to the kernel,
we must verify that these buffers’ canary regions were not
perturbed by the kernel. If any of the buffers were allocated
without a canary region (e.g. CL MEM USE HOST PTR was
used), the wrapper makes temporary shadow copies that
contain enough space for our canary region and assign them
as kernel arguments. We then launch the kernel.

While this kernel is executing, we enqueue a checker that
will execute immediately after the original kernel finishes.
This checker will verify the canaries of all the buffers that
the kernel could have accessed.

SVM buffers add extra complexity, because we are unable
to tell which will be accessed solely by looking at the ker-
nel’s arguments. SVM regions can contain pointers to other
SVM regions, so if any argument to a kernel is to an SVM
buffer, it is possible to access all other SVM buffers in the
application. As such, if any of the kernel’s arguments give
it access to an SVM buffer, the canary regions for all SVM
buffers in the application must be verified.

Checking image canaries also adds complexity. In order
to detect overflows in any dimension (e.g. writing past the
end of a row in a 2D image), we allocate a canary region
per dimension. As such, the number of canaries depends on
both the number of dimensions and their size. We therefore
read the canaries hierarchically from the image into a one-
dimensional array. This flattened collection of all image ca-
naries is fed into a checker kernel along with a buffer that
contains the end point for each image.

Should the verification function find an overflow, a de-
bug message is printed to the screen and, optionally, exe-
cution is halted. The debug message, shown later in Fig-
ure 11, shows the kernel name, the argument name, and
where in the canary region the first corruption happened. We
are able to obtain the function argument’s name by using the
clGetKernelArgInfo function, since we know the argu-
ment index of the overflowed buffer. This does not work for
SVM regions that are not passed as kernel arguments.

Finally, any shadow copy buffers are copied back to their
CPU memory regions and the application continues.



3.4 API Checking
We also perform simple checks for functions that operate
directly on cl mem objects (e.g. clEnqueueWriteBuffer).
These quickly compare the inputs for the operation with
the cl mem’s instantiated size. This identifies overflows not
caused by kernels and prevents us from later finding them
with a checker kernel and misattributing the error.

4. Accelerating Buffer Overflow Detection
Section 3 described our buffer overflow detector, while this
section describes techniques to increase its performance.

We use a GPU microbenchmark with a variable number
of buffers to test these techniques. Our detector will check
each buffer’s canary values after the work kernel (which does
no real work) ends. We then record time taken to perform the
canary checks, allowing us to test the overheads of our tool
at a variety of configurations. More buffers will lead to more
checker overhead, because there are more checks to perform.

CPU vs GPU Checkers Intuitively, GPUs should excel
at the parallel task of checking canary values. However,
GPUs must amortize kernel launch overheads and need a
significant amount of parallel work to fill their hardware
resources. As such, we compared the overheads of checking
canary values on both the CPU and the GPU as we vary the
number of buffers (and thus the number of canaries).

For the CPU checker, our clEnqueueNDRangeKernel

wrapper asynchronously enqueues a command to read the
canary regions back to the host after the kernel finishes. A
call to clWaitForEvents allows us to wait until this read
completes, and a single CPU thread then checks the canaries.

For the GPU checker, our wrapper launches dependent
checker kernel(s) immediately after the work kernel. The
GPU checker will begin execution after the work kernel
ends, and it will check the canary values in parallel.

Checking multiple buffers per kernel The simplest GPU
canary checker uses one kernel per buffer, where the kernel’s
arguments are the buffer to check and the offset to the canary
region. This results in poor GPU utilization since each buffer
only has a few thousand canary values to check.

A slightly more complicated solution uses a single kernel
that takes a variable number of buffers in a fixed number
of kernel arguments. We accomplish this by copying the
canary regions from all of the buffers into a single buffer.
Afterwards a single parallel kernel can check the entries
from many buffers at once, leading to better GPU utilization.

Utilizing SVM Pointers Like cl mem buffers, the canaries
in SVM regions can also be checked using either one ker-
nel per buffer or a single kernel that checks copies of the
canaries for all buffers. Alternatively, it is possible to create
a buffer of SVM pointers, each of which points to the be-
ginning of a canary regions in the original SVM buffer. This
allows the checker kernel to directly read the SVM regions’
canary values without requiring any extra copies.

Cleaning Modified Canaries We must reset any corrupted
canary values before subsequent kernel iterations to avoid
falsely declaring more buffer overflows. This is faster for
the checkers that directly check the original buffer (like the
SVM-pointer method), since they can immediately write
over the modified canaries. For checkers that use canary
copies, we use an asynchronous clEnqueueFill<X> to re-
set the canary regions after they have been copied.

Asynchronous Checking Stalling the CPUs until the work
kernel and canary checks complete can cause significant
overhead. First, the application itself may have CPU work
that can take place while the work kernel is running; adding
synchronous canary checks will eliminate this parallelism.
In addition, launching GPU checker kernels synchronously
can expose dozens of microseconds of launch overhead.

To prevent this, we asynchronously launch the GPU
checker kernels and use OpenCL™ events to force them
to wait on the work kernels. We then launch a thread that
waits on the checker’s completion event in order to print any
debug messages. The checker’s event is returned to the ap-
plication so that waiting on the work kernel will also wait
on the checker. Calls to clGetEventProfilingInfo, how-
ever, return the profiling information for the worker kernel.

Overheads of Checking Canaries The overheads of these
techniques across various numbers of buffers are compared
in Figures 3-5. The overhead of the GPU checkers are split
into two parts: the added time spent on the host arranging
canary regions and launching kernels, and the added time
spent in the checker kernels. We note that applications which
asynchronously launch their work kernels could perform
other useful work in parallel to these checks.

Figure 3 shows the overheads of checking cl mem buffers.
For small numbers of buffers, and consequently small data
sets and transfers, checking on the CPU results in less over-
head. In these situations, the GPU has little work to do, and
amortizing the launch overheads is more difficult.

As more buffers are added, using a single GPU checker
for all of the buffers results in less overhead. The time spent
marshaling the canary values increases along with the num-
ber of buffers, but the checker kernel time increase more
slowly, since the GPU can check many canaries in parallel.
The difference in kernel times between using one kernel per
buffer and using one kernel for all buffers demonstrates the
benefit of running many canary checks in parallel.

Figure 4 shows a similar test for SVM buffers. The CPU
checker is always slower here because, it must first copy ca-
naries into a smaller SVM before mapping that to the host. A
GPU check can instead use SVM copies or pointers and re-
main relatively unaffected by data movement and mapping.

Passing an array of SVM pointers to the checker kernel
(rather than marshaling the canaries themselves) leads to
lower host-side overheads. The most efficient way to check
SVM buffers is therefore using one kernel for all canaries
and passing it an array of pointers to the canary regions.
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Figure 5. Time to check images. Images have many ca-
naries due to their multi-dimensional nature, so their total
check time is high. GPU checks eliminate bus transfer times.

Figure 5 shows this test for images. These multi-dimen-
sional buffers have many canary regions. For instance, a 2D
image with 256 rows has 257 canary regions – one at the
end of each row, and one beyond the final column. Checkers
therefore spend a great deal of time on the host enqueueing
data transfers. Performing the checks on the GPU saves time
by avoiding the use of the PCIe® bus for most data transfers.

Amortizing Kernel Compilation The previous sections
showed that GPU canary checks can increase performance
through parallelism and reduced bus transfers. These tests,
however, did not include the cost of compiling the GPU
checker kernel, which must be paid once each time the appli-
cation is run. Figures 6-8 show the checker costs, including
compilation time, as we repeatedly call the work kernel.
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Figure 6 shows that it takes more than 1000 kernel invo-
cations before the compilation overhead is amortized when
checking cl mem buffers on the GPU. Because of this, we
fall back to performing all canary checks for cl mem buffers
on the CPU. While some programs may run thousands of
iterations, the benefits of GPU checks would only slowly
reach those implied by Figure 3. Dynamically switching be-
tween CPU and GPU checks based on the number of ob-
served iterations is an interesting direction for future study.

Figures 7 and 8 show how many iterations it takes to
amortized kernel compilation time for SVM and image
buffers, respectively. For these buffer types, GPU checks
are much faster for each iteration. As such, the difference
is great enough as to make up for the compilation time of
the kernel within a few iterations. As such, for these buffer
types, we always perform the checks on the GPU.



5. Benchmark Analysis
This section reports the overheads caused by running an ap-
plication under our buffer overflow detector. We describe our
experimental setup and benchmarks in Sections 5.1, detail
the memory overheads caused by our tool in Section 5.2,
and show performance overheads in Section 5.3.

5.1 Experimental Setup
All of our experiments were performed on a system with a
3.7 GHz AMD A10-7850K CPU, 32 GB of DDR3-1866,
and an AMD FirePro™ W9100 discrete GPU. The GPU’s
core runs at 930 MHz, it has 320 GB/s of memory bandwidth
to its 16 GB of GDDR5 memory, and it is connected to the
CPU over a 3rd Generation PCIe® x8 connection.

The system ran Ubuntu 14.04.4 LTS and version 15.30.3
of the AMD Catalyst™ graphics drivers (fglrx). We used
the AMD APP SDK v3.0 as our OpenCL™ runtime.

We ran 175 benchmarks from 16 open source OpenCL
benchmark suites: the AMD APP SDK, FinanceBench [36],
GPU-STREAM [23], Hetero-Mark [55], CloverLeaf and
TeaLeaf from Mantevo [51], NAS Parallel Benchmarks [67],
OpenDwarfs [32], Pannotia [16], Parboil [72], Phoronix [47],
PolyBench/ACC [35], Rodinia [15], SHOC [22], StreamMR
[30], ViennaCL [66], and the exascale proxy applications
CoMD, LULESH, SNAP, and XSBench [1].

We ran two series of experiments. The first measured the
memory overhead caused by extending OpenCL buffer al-
locations with 8 KB of canaries. We use this to show that
the memory overhead of our tool is manageable and will not
break most applications. The second set of experiments mea-
sured the change in wall-clock time between running these
applications alone and with our buffer overflow detector. Be-
cause of the large number of benchmarks, these results are
shown as the geometric mean of all benchmarks within each
suite, as well as the geometric mean across all benchmarks.

5.2 Application Memory Overheads
Figure 9 shows the maximum amount of OpenCL™ buffer
space added by using our tool. Figure 9(a) sorts all of the
benchmarks from lowest to highest overhead, while Fig-
ure 9(b) focuses on those with overheads higher than 30%.

The geometric mean of this overhead across all 175
benchmarks is 16%, though it is often much less than 1%.
The median overhead is 0.1%. Nevertheless, some of the
benchmarks see very high overheads because the canary re-
gions are a fixed 8 KB, while buffer allocation may be small.
Our detector can also use some additional internal buffers to
store things like arrays of SVM canary pointers. As shown
in Figure 9(b), these overheads can reach almost 1000×.

For example, the SHOC benchmark md5hash allocates
three cl mem buffers that are 4, 8, and 16 bytes, respectively.
Each of these buffers is then extended with 8 KB of canaries,
increasing the aggregate buffer size by 24 KB, or 878× the
initial 28-byte allocation.
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Figure 9. OpenCL memory overhead when using our de-
tector. 9(b) details the 7 benchmarks with overheads higher
than 30% and lists the absolute amount of added storage.

In addition to the relative overheads illustrated with bars,
Figure 9(b) lists the absolute amount of OpenCL buffer
space that our detector adds. In general, the programs that
have large relative overheads have small absolute overheads
because the buffer space used by the application is small.
This implies that our tool will rarely cause major memory
pressure issues that will prevent applications from running.

Nevertheless, our 8 KB canary size was somewhat ar-
bitrarily chosen based on our GPU’s maximum workgroup
size (256), the length of a double (8 bytes), and width vector
width recommended for older AMD GPUs (4). We believe
there is future research in sizing canary regions to maximize
error coverage while minimizing memory overheads.

5.3 Application Performance Overheads
Our detector checks the canaries for each buffer that a kernel
can access, and the canary regions are a fixed size. As such,
the runtime of our checker should scale linearly with the
number of buffers and kernel invocations In contrast, the
relative overhead of our detector depends on the runtime
of the kernels, since short kernels will make the checker
time more prominent. As such, it is useful to analyze the
performance overheads on real programs.

Figure 10 shows the runtime overhead of our tool on
the 175 OpenCL™ enhanced applications described in the
previous sections. We divide the benchmarks into their 16
respective suites in order to improve legibility. The blue bars
show the geometric mean of the runtime overheads within a
suite, while the upper and lower bars show the highest and
lowest runtime overheads within that suite, respectively.
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Figure 10. Normalized runtime when running buffer
overflow detection. Each blue bar is the geometric mean of
the overheads within a suite. The upper and lower bars rep-
resent the maximum and minimum overheads within a suite,
respectively. Our detector causes an average 14% overhead.

The worst overhead caused by our tool is a 4.8× slow-
down in the proxy application SNAP MPI [24]. This over-
head is caused by a significant number of very small kernels
that are launched synchronously. The kernels zero buffer

and sweep plane take an average of 400 µs and 230 µs, re-
spectively, and are called repeatedly. sweep plane also uses
15 cl mem buffers. As such, the execution time of the check-
ers is greater than the runtime of the real kernels. In addition,
both kernels are executed synchronously; very soon after
they launch, all other CPU work stops to wait for the ker-
nel to complete. The execution time of the check is therefore
almost fully exposed as overhead.

Despite this, our detector rarely caused overheads greater
than 50%; only 10 applications saw more than 50% slow-
down. This typically occurred because, like SNAP MPI,
the program used short kernels or frequent synchronization.
Short kernels do not last long enough to amortize the cost of
canary checking, and synchronization prevents our detector
from overlapping checks with unrelated CPU work.

In rare situations, our tool caused the application to run
slightly faster. This was due to secondary effects on the host,
such as link order and memory layout changes [56]. For
instance, Rodinia’s hotspot3D consistently wrote its output
files faster when using our tool, yielding a 7% speedup.

The final category, “ALL,” shows the geometric mean,
maximum, and minimum overheads across all 175 bench-
marks. Our tool causes an average slowdown of 14% across
these benchmarks, with a median overhead of just 6%. We
believe that this level of performance will allow our tool
to be used in continuous integration systems, nightly and
regression tests, and other development situations that pre-
clude more heavyweight tools.

Looking forward, GPU applications are moving towards
more asynchronous operation [2] and launching further work
from within kernels [37, 43, 64]. Both of these would help
amortize or hide the costs of our canary checker. As such, we
believe that the overheads seen by our detector will decrease
on future workloads.

*******Error, buffer overflow detected*******

Kernel: splitRearrange

Buffer: keys o

First wrote 1 word(s) past the end

Figure 11. Example buffer overflow detector output. It
lists the kernel that caused the error, which buffer was af-
fected, and where the first corrupting write happened.

6. Buffer Overflows Detected
An important test of software analysis tools is whether they
can find real problems, so this section details the overflows
that we found in our benchmarks. When our tool detects an
overflow, it emits information about the kernel that caused
the overflow and how far past the end of the buffer it wrote,
as shown in Figure 11. This can help pinpoint the problem,
but finding and fixing the root cause is still a manual process.

In aggregate, our tool found buffer overflows in 13 ker-
nels across 7 programs and returned no false positives. These
errors are shown in Table 1, which explains what problems
we found when writing patches or workarounds.

The error in Parboil’s mri-gridding occurs because the
sizes of two output buffers, keys o and values o, are based
on the number of input elements, n. The splitRearrange

kernel can cause an overflow because it assumes their
lengths are evenly divisible by four. A fix for this is to allo-
cate the buffers based on (((n + 3)/4) ∗ 4). This error may
have also been found by the authors of Oclgrind when they
claimed that their detector “has been used to identify bugs in
real OpenCL applications ... including ... Parboil” [61].

In the StreamMR benchmarks kmeans and wordcount,
some output buffers are allocated based on previous kernel
results. The copyerHashToArray kernels write contiguous
data to these buffers from all 64 work items in each work-
group, but the host does not ensure their sizes are evenly
divisible by 64. In addition, these kernels sometimes use
an uninitialized variable to access their hash tables. Both of
these can result in buffer overflows and are easily fixed.

Hetero-Mark’s kmeans allocates the features swap

buffer based on npoints. The number of work items for
the kmeans swap kernel is set to be ≥npoints and evenly
divide by 256. The kernel does not check the length of the
buffer, so work items beyond npoints write past the end
of the array based on their ID. This error is derived from a
known problem in Rodinia’s kmeans, and it can be fixed (as
in Rodinia 3.1) by adding a length check into the kernel.

Hetero-Mark’s sw allocates multiple buffers based on
sizeInBytes, a product of m len and n len. The kernels
sw init velocities, sw compute0, sw compute1, and
sw update0 access these buffers using a variety of bad off-
set calculations. For instance sw compute0 will attempt to
write to z[n len * m len + m len], which will result in
a buffer overflow. We could not verify our fixes to each ker-
nel’s miscalculations, since we are not the application’s au-
thors. A workaround is to increase the size of sizeInBytes.



Suite Benchmark Kernel Problem
Parboil [72] mri-gridding splitRearrange keys o and values o are not allocated enough space.

StreamMR [30]
kmeans copyerHashToArray outputKeys, outputVals, and keyValOffsets are too small.

wordcount copyerHashToArray outputKeys, outputVals, and keyValOffsets are too small.

Hetero-Mark [55]

OpenCL 1.2 kmeans kmeans swap Incorrect range check in threads writing to feature swap.
OpenCL 2.0 kmeans kmeans swap Incorrect range check in threads writing to feature swap.

OpenCL 1.2 sw

sw compute0 Bad SizeInBytes causes cu, cv, and z to be too small.
sw compute1 Bad SizeInBytes causes u next and v next to be too small.

sw init velocities Bad SizeInBytes causes u and v to be too small.
sw update0 Bad SizeInBytes causes cu, cv, and z to be too small.

OpenCL 2.0 sw

sw compute0 Bad SizeInBytes causes cu, cv, and z to be too small.
sw compute1 Bad SizeInBytes causes u next and v next to be too small.

sw init velocities Bad SizeInBytes causes u and v to be too small.
sw update0 Bad SizeInBytes causes cu, cv, and z to be too small.

Table 1. Overview of the errors found by our tool. We found buffer overflows in 13 separate kernels across 7 benchmarks.

The source of the errors in the OpenCL 1.2 and 2.0
Hetero-Mark programs are very similar. However, the 2.0
benchmarks used SVM rather than cl mem buffers, so tools
that do not support SVM would not have been able to find
the errors. As such, we categorize these as different errors.

The errors found by our tool remained hidden until now
primarily because they rarely crash today’s GPUs. How-
ever, we found that using a system to dynamically hold
buffers in CPU memory (as demonstrated by Margiolas and
O’Boyle [52]) resulted in observable problems. For exam-
ple, the GPU buffer overflow would corrupt metadata in
neighboring heap objects, leading to crashes or double-free
errors [33]. This was especially difficult to debug without
our tool, since common mechanisms like CPU-based watch-
points will not catch the offending writes from the GPU.

7. Related Work
This section discusses works related to detecting buffer over-
flows. Section 7.1 describes CPU-based detection tools, and
Section 7.2 describes other analysis tools for GPUs.

7.1 CPU Buffer Overflow Detection
Perhaps the most popular memory analysis tool is the
dynamic binary instrumentation engine Valgrind [58]. Its
Memcheck tool searches for memory errors such as buffer
overflows [69]. While this can find many problems, its run-
time overhead (dozens of times slowdown) limits the situ-
ations where it can be used. Similar open source and com-
mercial tools have roughly the same limitations [14, 42].

Compile-time instrumentation tools like AddressSani-
tizer [68], Baggy Bounds Checking [9], and SoftBound [57]
can perform checks with overheads of roughly 10%-2× [68].
More traditionally, StackGuard (which inspired techniques
used in GCC) inserts canaries before critical stack values
and adds checks to verify them before they can cause se-
curity problems [21]. Our tool also uses canary values, but
we do not require recompilation. Additionally, because our
checks take place after the kernel completes, we cannot offer
the same security guarantees as these inline checks.

The desire to further reduce overheads led to hardware-
supported bounds checking, as in HardBound [25] and In-
tel’s MPX [41]. Our GPU buffer overflow detector has the
benefit of requiring no added hardware support.

Electric Fence [60], and related tools like DUMA [10],
catch calls to malloc and add protected canary pages around
the allocated memory. Writing to one of these canary pages
will result in a page fault that will eventually crash the
program. Our tool similarly wraps allocation calls to create
canary regions, but it does not utilize virtual memory to
catch overflows. Systems that allow the GPU to share a
coherent virtual memory with the CPU will be able to use
such techniques, but many current GPUs do not share the
full virtual memory space with the CPU and do not allow
the canary regions to be protected in this way.

7.2 GPU Analysis Tools
Ours is not the first GPU debugging tool, nor is it the first
to search for GPU buffer overflows. This section compares
other GPU analysis tools to our buffer overflow detector.

Oclgrind Oclgrind is an OpenCL™ device simulator that,
like Valgrind for CPU applications, can be used to build
analysis tools for OpenCL kernels [61]. Like Valgrind, one
of the tools that comes prepackaged with Oclgrind is a mem-
ory access checker. Oclgrind presents itself to the kernel as a
CPU device, however, which limits its ability to be automat-
ically run on some applications; the majority of our bench-
marks would need manual modifications to run in Oclgrind.

While requiring manual intervention adds some difficulty,
the primary limitation of Oclgrind is its execution overhead.
Because it simulates OpenCL devices on the CPU, it adds
extra analysis overheads and also runs the original kernel
much slower. We tested a subset of our benchmarks and
found that Oclgrind ran them up to 300× slower than native
execution. This aligns with the authors’ claim of running
“typically a couple of orders of magnitude slower than a
regular CPU implementation.” Compared to our tool’s 14%,
300× slowdowns severely limit what Oclgrind can test.



Nonetheless, the authors used Oclgrind to find numerous
real buffer overflows. Based on their descriptions, it is likely
that they found the same overflow in mri-gridding that our
tool found. In addition, Oclgrind can perform more analyses
than our specialized buffer overflow detector.

GPU Binary Instrumentation SASSI [71] and GPU Ocelot
[31] are tools that can dynamically instrument GPU kernels.
SASSI instruments Nvidia’s GPU assembly, while GPU
Ocelot instruments the CUDA intermediate language.

Like Oclgrind, these tools are more general than our over-
flow detector. In addition, because they allow instrumented
code to run on the GPU, these tools are much faster than
Oclgrind (though they are still slower than our technique).
For example, while the SASSI authors did not directly test a
buffer overflow detector, similar tools (memory divergence
testing and value profiling) average between 60% and 140%
slowdowns at the application level. In addition, SASSI only
works on Nvidia GPUs and GPU Ocelot’s AMD GPU sup-
port is experimental; our tool works at the OpenCL API level
and could be used on any compliant GPU.

WebCL Validator Khronos’s WebCL Validator is a source-
to-source compiler that adds dynamic memory checks into
WebCL programs [44]. Unlike our tool, the WebCL valida-
tor can work on private, local, and global memory because
it adds checks during a compiler pass. Essentially, it mod-
ifies kernel memory accesses so that they will always be
contained within verified memory regions. This prevents ac-
cesses outside of their targets, but adds runtime overheads.
The authors measured GPU overheads of 3× unless the end-
user makes careful code modifications [48].

According to the authors, one of the major features of
WebCL that helps their tool is that they “know start and end
addresses of all the memory which is meant to be accessed.”
This is possible in WebCL because it passes these limits
as kernel arguments; this is not the case for most OpenCL
kernels. In addition, SVM buffers add a layer of difficulty;
pointers can lead to accesses to any other SVM buffer, mak-
ing it difficult to quickly constrain accesses to these buffers.

CUDA-MEMCHECK CUDA-MEMCHECK is a memory
checking tool from Nvidia for CUDA kernels [34]. It is
closed source, so we cannot say for certain how our tech-
nique compares. However, because it can identify overflows
when they happen and associate them with the line of ker-
nel code that caused them, CUDA-MEMCHECK likely uses
the compiler to add checks into the kernel. This would lead
to runtime slowdowns; the CUDA-MEMCHECK manual
claims that “applications run much slower under CUDA-
MEMCHECK tools,” and the authors of Cudagrind mea-
sured this slowdown to be roughly 120% [11]. In addition,
as mentioned for the WebCL Validator, this tool would need
to instrument the CUDA APIs in some way in order to know
the limits of the allocated buffers. Finally, unlike our tool,
CUDA-MEMCHECK only works on GPUs from Nvidia.

8. Conclusions and Future Work
This work introduced a GPU buffer overflow detector for
OpenCL™ kernels. We demonstrated that buffer overflows
can happen in GPU kernels and detailed the design of a
canary-based tool to automatically find these problems.

Our tool wraps OpenCL API calls in order to catch buffer
allocations, expand each buffer, and insert canary values
after it. We then catch kernel argument assignments in order
to know which buffers are vulnerable to overflow in a kernel.
By catching kernel invocations, we can check the buffers’
canary values after the kernel finishes to detect overflows.

We demonstrated how to accelerate these tests by asyn-
chronously checking the canary values on the GPU. This
technique scales with the number of buffers, and it leads to
an average overhead of only 14% across 175 applications.

Finally, we showed that our tool can find real errors. In
the applications we tested, we found 13 separate buffer over-
flows across 7 of the programs. These ranged from missing
range checks in the kernels to incorrect host-side allocations.

Looking forward, there are a number of future directions
to take this work. Our tool does not work on fine-grained sys-
tem SVM, which allows GPUs to coherently access data us-
ing pointers allocated from CPU functions like malloc [49].
Such systems could detect overflows using tools like Elec-
tric Fence [60], since they rely on virtual memory protection
mechanisms or page migration to work [38].

It would also be useful to add compiler-focused features
to our tool. Our buffer meta-data could be passed as argu-
ments to the kernel and, like the WebCL Validator [44] or
CUDA-MEMCHECK [34], the compiler could add checks
within the kernel to detect buffer overflows. This could pin-
point problems within the kernel and detect overflows in lo-
cal and shared memory at the expense of vendor neutrality.

Finally, while this work focused on GPUs, more accel-
erators are being introduced into heterogeneous systems [4,
5, 17–20, 63, 76]. Building broadly useful tools that work
across these accelerators will be an important area of work.

The tool described in this work is available at: https://
github.com/GPUOpen-ProfessionalCompute-Tools/

clARMOR
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