
Structural Agnostic SpMV: Adapting CSR-Adaptive for Irregular Matrices

Mayank Daga Joseph L. Greathouse
AMD Research

Advanced Micro Devices, Inc., USA
{Mayank.Daga, Joseph.Greathouse}@amd.com

Abstract—Sparse matrix vector multiplication (SpMV) is an
important linear algebra primitive. Recent research has focused
on improving the performance of SpMV on GPUs when using
compressed sparse row (CSR), the most frequently used matrix
storage format on CPUs. Efficient CSR-based SpMV obviates
the need for other GPU-specific storage formats, thereby saving
runtime and storage overheads. However, existing CSR-based
SpMV algorithms on GPUs perform poorly on irregular sparse
matrices, limiting their usefulness.

We propose a novel approach for SpMV on GPUs which
works well for both regular and irregular matrices while
keeping the CSR format intact. We start with CSR-Adaptive,
which dynamically chooses between two SpMV algorithms
depending on the length of each row. We then add a series of
performance improvements, such as a more efficient reduction
technique. Finally, we add a third algorithm which uses
multiple parallel execution units when operating on irregular
matrices with very long rows.

Our implementation dynamically assigns the best algorithm
to sets of rows in order to ensure that the GPU is efficiently uti-
lized. We effectively double the performance of CSR-Adaptive,
which had previously demonstrated better performance than
algorithms that use other storage formats. In addition, our
implementation is 36% faster than CSR5, the current state of
the art for SpMV on GPUs.

I. INTRODUCTION

Sparse matrix vector multiplication (SpMV) is a funda-
mental sparse linear algebra primitive [6]. A common refrain
when optimizing this algorithm is that its performance is
tightly coupled with the data structure used to store the
sparse matrix [21, 22]. Many applications use the com-
pressed sparse row (CSR) matrix storage format because
it yields good performance on CPUs and good compression
for both structured and unstructured matrices [23].

Substantial research has been conducted to improve
the performance of SpMV on graphics processing units
(GPUs) [2, 9, 14, 18, 20, 24]. Previous research has proposed
more than fifty new storage formats for sparse matrices, since
CSR seemed unsuitable for GPUs [3, 11]. This is because
traditional CSR-based algorithms: (i) did not yield enough
parallelism when working on short rows, (ii) were poorly
load balanced on irregular matrices that have rows of varying
widths, and (iii) relied on performing slow uncoalesced
memory accesses [7].

While new storage formats can yield improved perfor-
mance on GPUs, they present two major concerns. First,

software that already uses CSR must be rewritten to utilize
the new format. Second, other algorithms also use CSR,
necessitating frequent transformations to and from the GPU-
optimized formats. These transitions can take large amounts
of time and space, reducing the appeal of new formats [11].

Recent proposals have described efficient CSR-based
SpMV algorithms for GPUs [1, 7, 10, 13, 14]. These new al-
gorithms reduce or eliminate the need to modify the original
CSR data structure, while, at the same time, they improve
the performance over GPU-specific formats. CSR-Adaptive,
for instance, is over twice as fast as the eleven SpMV
algorithms implemented in the clSpMV auto-tuning frame-
work while requiring substantially lower format-conversion
overheads [7].

One limitation of the CSR-Adaptive algorithm is its poor
performance on irregular matrices that have a small number
of very long rows, such as those found in graph analytics.
Calculating the result of these long rows can become the
serial bottleneck for the entire computation. An efficient
SpMV solution for irregular matrices is thus needed.

We propose a novel approach to compute SpMV on GPUs
and integrate it with the existing CSR-Adaptive algorithm.
This improved CSR-Adaptive keeps the CSR format intact
and works well for both regular and irregular sparse ma-
trices. The new CSR-Adaptive dynamically chooses from
among three algorithms for every row of the sparse matrix.
These three algorithms are optimized for short, long, and
very long rows. We optimize the algorithm for short rows,
CSR-Stream, to incorporate a logarithmic reduction tech-
nique to fully utilize the GPU’s resources. We also introduce
a configuration parameter to choose the optimal number of
rows that should be processed by CSR-Stream.

The other algorithm, CSR-Vector, can lead to load im-
balance with very long rows. We propose a third algorithm
that uses multiple parallel execution units on these rows. The
three different algorithms create a distinct mapping between
the GPU execution units and the rows of the sparse matrix
in order to serve the entire spectrum of SpMV.

We evaluate our solution on an AMD FireProTM W9100
GPU using a set of 32 sparse matrices. Our improvements
to CSR-Adaptive double its performance. This allows it to
achieve 36% higher performance than CSR5 [13], the current
state of the art for SpMV on GPUs, while reducing the
overhead of generating data structures by 10×.

0 1 2 3 4
0 2.0 ‐ 3.5 ‐ 6.7
1 ‐ 8.2 ‐ 9.2 ‐
2 ‐ 1.1 2.8 ‐ ‐
3 3.0 ‐ 1.5 4.5 ‐
4 ‐ 2.5 ‐ 8.9 ‐

0 1 2 3 4 5 6 7 8 9 10 11
vals 2.0 3.5 6.7 8.2 9.2 1.1 2.8 3.0 1.5 4.5 2.5 8.9

cols 0 2 4 1 3 1 2 0 2 3 1 3

rowPtrs 0 3 5 7 10 12

Matrix CSR Storage Format

(a)

1 function CSR-SpMV (vals[], cols[], vec[], rowPtr[], out[]) {
2 for (row=0; row < vals.length; row++) {
3 out[row] = 0.;
4 for (pt = rowPtr[row]; pt < rowPtr[row+1]; pt++) {
5 out[row] += vals[pt] * vec[cols[pt]];
6 }
7 }
8 }

(b)
Figure 1. Example of the Compressed Sparse Row (CSR) sparse matrix storage format. (a) The CSR structure for the sparse matrix on the left. (b)
Pseudocode of a basic serial algorithm that can be used to perform SpMV on a CSR-based sparse matrix.

We make the following contributions in this paper:
• We propose a new GPU algorithm to compute sparse

matrix-vector multiplication for matrices with very long
rows that are stored in the CSR format.

• We optimize the existing algorithms in CSR-Adaptive
using novel reduction techniques to improve the per-
formance of rows with fewer non-zero values.

• We demonstrate that the improved CSR-Adaptive per-
forms better than all previous GPU-based SpMV algo-
rithms while incurring negligible overheads.

The remainder of this paper is arranged as follows. Sec-
tion II provides a background on SpMV and previous CSR-
based algorithms, while Section III details our algorithm.
Section IV explains our experiments, and Section V shows
results. We present related work in Section VI, followed by
future directions and conclusions in Section VII.

II. BACKGROUND

A. Sparse Matrix-Vector Multiplication

The goal of SpMV is to find the dense vector product of a
matrix stored in a sparse format and a dense vector: y = Ax.
The data structure used to hold the sparse matrix defines the
SpMV algorithm, and the most popular format is compressed
sparse row (CSR). This format is built from three data
structures: two arrays that hold the non-zero values in the
sparse matrix (vals) and the column offsets of each non-
zero value (cols), as well as a smaller array which points
into the other two arrays and denotes where each row starts
(rowPtrs). An example of this is shown in Figure 1a.

CSR is popular because it performs well on CPUs and
compresses matrices well regardless of their sparsity pattern.
Pseudocode for a CSR-based SpMV is shown in Figure 1b.
This can be parallelized by having each thread work inde-
pendently on a row (an iteration of the outermost loop).

Previous works concluded that CSR was poorly suited
for SpMV on GPUs [3]. Having each GPU thread work on
a different row, a technique dubbed CSR-Scalar, results in
poor performance because of uncoalesced memory accesses.
Using a full workgroup to operate on a row, dubbed CSR-
Vector, can increase performance by allowing more efficient
memory accesses. Unfortunately, CSR-Vector only utilizes
the GPU’s wide vector units if there are many non-zero val-
ues in each row. Parallelizing over a row with fewer values
than the vector width of the processor leaves execution units
idle, again hampering performance.

These difficulties led Bell and Garland to posit that CSR
was an unsuitable storage format for GPU-based SpMV.
They proposed a hybrid of ELLPACK and the COO for-
mat, a decision that carried forward to the CUSPARSE
library [16]. This led to a deluge of research into new
formats, ranging from sliced and blocked versions of ELL-
PACK [4, 15] to complex coordinate schemes [24].

Conversion to these new formats must often take place
dynamically, since other algorithms, like sparse matrix-
matrix multiplication, are built to use CSR [12]. As such,
Langr and Tvrdı́k argue that conversion times are a vital
metric for new formats; it is not always possible to amortize
these times through successive SpMV iterations [11]. They
also recommend that memory overheads be measured for
new formats and mention that in-place formats, those that
do not require extra storage during conversion, are ideal.

B. Previous CSR-based GPU Algorithms

There has been a renewed interest in CSR-based SpMV on
GPUs. Reguly and Giles described a CSR-based algorithm
that is a mix of CSR-Scalar and CSR-Vector [17]. They use
multiple threads per row but avoid using entire workgroups if
the average row lengths are short. They pick a static number
of threads per row based on the average number of non-zero
values (NNZs) in each row. This static, matrix-wide choice
makes it difficult to achieve maximum performance on
irregular matrices with varying row lengths. This algorithm
is similar to the CSR-Vector implementation available in the
CUSP library [19].

Koza et al. describe an extension to CSR called com-
pressed multi-row storage (CMRS) that helps solve this
problem [10]. They allocate a static number of rows, called
a strip, to each workgroup. Within a strip, they stream the
adjacent values into the GPU, allowing better coalescing and
load balancing. The static size of each strip can still lead to
performance loss for irregular matrices, however.

CSR-Adaptive alleviates this difficulty by statically fixing
the NNZs per workgroup and dynamically calculating the
number of rows each workgroup will handle [7]. Multiple
short rows can thus be assigned to a single workgroup, while
long rows can be given to individual workgroups to help
load balance. The CSR-Adaptive algorithm leaves the CSR
structure unchanged but adds a rowBlocks buffer to delineate
which rows are assigned to each workgroup. CSR-Adaptive
is faster, on average, than other matrix storage formats while
maintaining comparability with CSR.

Liu et al. showed that CSR-Adaptive’s performance was
limited on irregular matrices that contained very long
rows [13] and therefore developed CSR5. Their algorithm
adds extra data structures to CSR and performs an in-place
transpose of parts of the matrix to maximize performance
on both regular and irregular matrices. Their results showed
higher performance than any previous CSR-based SpMV.
The limitations of CSR5 are its complexity and the matrix
transpose, which can cause large transformation overheads.

III. IMPLEMENTATION DETAILS

The objective of our work is to obtain good SpMV
performance regardless of the structure of the input matrices.
This section describes our complete SpMV solution, which
dynamically switches between three algorithms - CSR-
Stream, CSR-Vector, and CSR-VectorL. We first describe
optimizations for CSR-Stream and CSR-Vector, followed by
a detailed description of our new CSR-VectorL algorithm.

We analyzed a non-public implementation of CSR-
Adaptive in a previous paper [7], which also described it
in pseudocode. Soon after that work was published, the
authors of ViennaCL used this pseudocode to implement
CSR-Adaptive in version 1.6.1 of their library [18]. This
forms our baseline implementation in this paper.

Pseudocode for this baseline is shown in Figure 2. The
number of rows assigned to a workgroup is used to deter-
mine the best algorithm for that workgroup. CSR-Stream is
used if the number of rows is greater than one, otherwise
CSR-Vector is used. CSR-Stream first performs coalesced
loads of NNZ_PER_WG values into the GPU’s local memory
(LDS) and then uses a scalar reduction technique to compute
the final result for every row of that workgroup. CSR-Vector
loads a row’s values from global memory to local registers
in parallel. Afterwards, a parallel reduction is performed
through the LDS to calculate a row’s final result [3].

A. Optimized CSR-Stream

The baseline CSR-Stream has two main limitations – (1)
it may not yield the best performance for workgroups with
few rows, and (2) the scalar reduction technique employed
to compute the final result may leave a large number of
GPU threads idle, thereby inefficiently utilizing hardware
resources. This section describes how we optimized CSR-
Stream to substantially improve its performance.

1) Logarithmic Reduction: CSR-Stream computes the
output for each row by reducing the multiplication results
held in the LDS. The baseline implementation of CSR-
Stream employs a scalar reduction technique to compute this
final result, as shown in Figure 2. This reduction uses only
one thread per row (line 16).

We augment this scalar reduction with a logarithmic
reduction that uses multiple threads to reduce each row.
Pseudocode for this two-step reduction process is shown in
Figure 3. First, threads are evenly distributed to each row of

1 function CSR-Adaptive-Baseline (vals[], cols[], vec[],
2 rowPtrs[], rowBlocks[], out[]) {
3 startRow = rowBlocks[workgroupID];
4 stopRow = rowBlocks[workgroupID+1];
5 numRows = stopRow - startRow;
6 local TYPE LDS[NNZ_PER_WG];
7 // Choose between CSR-Stream and CSR-Vector
8 if (numRows > 1) // CSR-Stream case
9 for i ∈ BLOCKSIZE

10 localCol = rowPtrs[startRow]+localthreadID+i;
11 LDS[localthreadID+i] = vals[localCol];
12 LDS[localthreadID+i] *= vec[cols[localCol]];
13 i += WGSIZE;
14 end for
15 firstCol = rowPtrs[startRow];
16 localRow = startRow + localthreadID;
17 // # numRows threads perform Scalar Reduction out
18 // of LDS to compute final output
19 while(localRow < stopRow) do
20 temp = 0;
21 i = rowPtrs[localRow] - firstCol;
22 // Loop over non_zeroes for this row
23 for i ∈ (rowPtrs[localRow+1] - firstCol) do
24 temp += LDS[i];
25 end for
26 // Write computed result to the output buffer
27 out[localRow] = temp;
28 localRow += workgroupSize;
29 end while
30 else // CSR-Vector case
31 /* OMITTED: CSR-Vector is well known */
32 end if
33 }

Figure 2. Pseudocode for our Baseline CSR-Adaptive. CSR-Adaptive uses
the rowBlocks buffer to determine how many rows are being computed
by each workgroup. CSR-Stream works on at least two rows and the scalar
reduction is carried out using one thread per row.

1 function Logarithmic-CSR-Stream-Reduction {
2 // # threads that can be allocated to each row
3 numThreadsRed = numThreadsInWG / numRows;
4 numThreadsRed = lowerPowerOf2(numThreadsRed);
5 // # values which each thread needs to reduce
6 threadInRow = localthreadID & (numThreadsRed - 1);
7 /* Step 1 -- Compact all rows into WGSIZE entries*/
8 /* OMITTED: stride and offset computations are
9 * abstracted for clarity. */

10 localRow = startRow + (localthreadID/numThreadsRed);
11 workPerThread = nnzInLocalRow / numThreadsRed;
12 for i ∈ workPerThread do
13 /* OMITTED: a parallel group of numThreadsRed
14 * threads sums their entire localRow into ’temp’
15 * registers with a stride of numThreadRed. */
16 end for
17 LDS[localthreadID] = temp;
18 /* Step 2 -- Parallel logarithmic reduction */
19 i = WGSIZE / 2;
20 while (i > 0)
21 if (i < numThreadsRed)
22 LDS[localthreadID] += LDS[localthreadID + i];
23 end if
24 i = i / 2;
25 end while
26 if (threadInRow == 0 && localRow < stopRow)
27 out[localRow] = LDS[localthreadID];
28 end if
29 }

Figure 3. Pseudocode for logarithmic reduction in CSR-Stream.
Step 1 uses numThreadsRed adjacent threads to reduce a row into
numThreadsRed LDS locations. Step 2 then does a logarithmic reduction
of each of these values, such that each row’s output is contained in the LDS
entry corresponding to the first thread in the group working on that row.

0.75

0.8

0.85

0.9

0.95

1

2 3 5 7 9 11 13 15

R
e
la
ti
ve
 P
e
rf
o
rm

an
ce

Minimum Rows in CSR‐Stream (num_rows_stream)

512

768

1024

1536

2048

2560

3072

3584

4096

(a) Single Precision

0.75

0.8

0.85

0.9

0.95

1

2 3 5 7 9 11 13 15

R
e
la
ti
ve
 P
e
rf
o
rm

a
n
ce

Minimum Rows in CSR‐Stream (num_rows_stream)

512

768

1024

1536

2048

2560

3072

3584

4096

(b) Double Precision

Figure 4. Relative performance of CSR-Adaptive at varying minimum rows in CSR-Stream for a range of NNZ PER WG. The legend depicts the value
of NNZ PER WG. The values plotted are the harmonic mean of the performance achieved with over 48 different sparse matrices.

the workgroup. The threads assigned to a row then reduce
all of its results into fewer locations in the LDS. Next, these
values are reduced in parallel since the initial step aligns the
values for each thread. This results in multiple outputs that
can then be stored to global memory in parallel.

For explanatory purposes, let us assume that there are 16
rows assigned to a 256-thread workgroup, each with 1024
non-zero values. This new reduction will allocate 256/16 =
16 threads to each row. Each of these 16 threads evenly
divide the non-zero values for that row, meaning that each
thread would reduce 1024/16 = 64 non-zero values into a
single LDS entry. All of the threads access their 64 non-zero
values and cooperatively reduce them into 16 LDS locations.
This marks the completion of Step 1. In Step 2, all 256
threads perform parallel reductions until there are 16 output
values remaining, one for each row.

The modified reduction technique overcomes the limita-
tion of scalar reduction and improves the performance for
workgroups which calculate fairly small numbers of rows
with many non-zero values per row. The logarithmic reduc-
tion is efficient only when more than one thread is allocated
to every row. If this is not the case, scalar reduction is more
efficient. We therefore check the number of threads that are
available for reduction and choose between logarithmic or
scalar reductions, as shown in Figure 9.

We found that this reduction technique fared somewhat
poorly when the length of rows in a workgroup varied
greatly. As such, it is best to modify the rowBlocks gener-
ation algorithm to break a row-block when moving between
relatively long (e.g. > 128 NNZ) and relatively short (e.g.
< 32 NNZ) rows. We implemented this mechanism but do
not further describe or study it in this paper.

2) Hyper-Parameter: num_rows_stream: The base-
line CSR-Adaptive uses CSR-Stream when more than one
row is processed by a workgroup. This may not yield the
best performance, because the overheads associated with
reduction may not be amortized. CSR-Vector can be better
at processing workgroups with a small number of rows due
to its simpler reduction method.

Determining the minimum number of rows to send to
CSR-Stream in order to achieve the best overall SpMV per-
formance depends on the characteristics of individual sparse
matrices. The optimum value can be empirically deduced by

evaluating the performance at varying values of minimum
rows and NNZ_PER_WG across a variety of sparse matrices.
We introduce a hyper-parameter called num rows stream to
choose the optimal number of rows for CSR-Stream.

The improved CSR-Adaptive uses CSR-Stream when
the number of rows is greater than or equal to
num_rows_stream and uses CSR-Vector otherwise.
Figure 4 illustrates the relative performance of CSR-
Adaptive at varying values of both num_rows_stream
and NNZ_PER_WG using the harmonic mean for 48 different
matrices. From the figure, we show that for single precision,
this value is best set to the default of 2. Double precision,
on the other hand, sees a minor benefit at a value of 3.
On our particular GPU, we see little average performance
difference, but we note that this is not always the case on
different GPUs or on all matrices. Another important point
is that the best performing NNZ_PER_WG for single and
double precision is 1024 and 1536, respectively.

The optimal values of num_rows_stream and
NNZ_PER_WG can change with the GPU micro-architecture
and, and experiments should be rerun to find the best value
for any particular GPU.

B. SpMV for Very Long Rows (CSR-VectorL)

CSR-Adaptive used the CSR-Vector algorithm (which
uses one workgroup per row) for long rows with many non-
zero values. However, if a row is exceptionally long, then the
corresponding workgroup might take longer than any other
row, causing a performance bottleneck.

1) Multiple Workgroups Per Row: A higher-performing
solution is to use multiple workgroups to compute SpMV on
a long row, as shown in Figure 5a. Each workgroup working
on a long row must therefore know which subset of that row
it should to work on. For instance, workgroup 1 will load
the first NNZ_PER_WG values, while workgroup 2 will load
the next NNZ_PER_WG values, etc. If multiple entries in
the rowBlocks buffer point to the same row, then those
workgroups can cooperate on that row. However, the existing
CSR-Adaptive structure do not have enough information to
accurately complete this operation. All of the workgroups
processing the same row would start at the first non-zero in
that row and end at its last non-zero.

very long row

WG 1 WG 2 WG 3

+
output

(a) Multiple Workgroups on a Sin-
gle Row

row_delimiters 0 2048 5,120 5,632

row	
 block	
 buffer 0 1 2 3

(b) Existing rowBlocks Buffer

(c) Improved rowBlocks Buffer

Figure 5. Illustration of multiple workgroups working on a single long
row. Three rows contain 2048, 3072, and 512 non-zeroes, respectively.
The NNZ PER WG is assumed to be 512 for both existing and improved
rowBlocks buffers. In the improved rowBlocks buffer, each entry consists
of row and workgroup numbers for workgroups working on that row.

|6666	
 5555	
 5555	
 5544	
 4444	
 4444	
 3333	
 3333|3322	
 2222|2222	
 1111	
 1111	
 1100	
 0000	
 0000|	

|3210	
 9876	
 5432	
 1098	
 7654	
 3210	
 9876	
 5432|1098	
 7654|3210	
 9876	
 5432	
 1098	
 7654	
 3210|	

|-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Row	
 Information-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐|-­‐-­‐-­‐-­‐flag^|-­‐-­‐-­‐WG	
 ID	
 within	
 a	
 long	
 row-­‐-­‐-­‐|	

Figure 6. Single entry of the improved rowBlocks buffer demonstrating
the bits to store the row number, the flag, and the workgroup number. The
exact number of bits used to store each can be implementation dependent.
The flag allows workgroups to synchronize.

For illustration purposes, let us assume that three rows in
a sparse matrix consist of 2048, 3072, and 512 non-zeros.
The rowBlocks buffer for such an example is shown
in Figure 5b. The baseline CSR-Adaptive would use one
workgroup for each row, leading to load imbalance, since
the first two workgroups must do more work than the third.

To solve this problem, we assign multiple workgroups
to rows such as these. We then extend the rowBlocks
structure so that each workgroup assigned to a long row
can calculate where in that row it should work. This can be
accomplished by using one set of bits of a 64-bit integer
to store the row number (like the original rowBlocks
structure) and another set of bits to store the workgroup
number for that particular row, as shown in Figure 5c.

In this example, each solid black box denotes a 64-bit
integer. The blue line shows a demarcation of the set of bits
used to store the row and workgroup numbers. Workgroup 0
works on the first 512 non-zeroes of row 0, workgroup 2
works on the second 512 non-zeroes of row 0, and so on.
Workgroup 5 works on first 512 elements of row 1, and
workgroup 11 works on row 2. The number of bits chosen
to store the row number and workgroup number can be
implementation dependent, and these values could be stored
in different structures for simplicity. Using the improved
rowBlocks buffer, each workgroup can determine the start
and end of its working region in a long row.

2) Reducing Partial Outputs: The second part of the long
rows algorithm is to combine the answers from each of
the workgroups which cooperate on a long row to produce
the final output (the reduce operator in Figure 5a). Since
multiple workgroups are working towards the same final
output, a regular addition would result in a data race.

1 function Multi-Workgroup-Barrier {
2 compare_value = rowBlocks[WG_ID].flag;
3 if(WG_ID == first_wg_in_row)
4 // First WG handles output initialization
5 out[row] = 0;
6 // Release other workgroups
7 xor(rowBlocks[first_wg_in_row].flag, 1);
8 end if
9 // For other workgroups, compare_value holds

10 // what to wait on. If your flag==first workgroup’s
11 // flag, you spin loop
12 while(WG_ID != first_wg_in_row &&
13 rowBlocks[first_wg_in_row].flag == compare_value);
14 // After the barrier, update your flag to ensure
15 // you know what to wait on the next time through
16 if(WG_ID != first_wg_in_row)
17 xor(rowBlocks[WG_ID].flag, 1);
18 end if
19 }

Figure 7. Pseudocode for implementation of a GPU barrier which allows
all of the workgroups that are cooperative on a single row to wait for the
output to be properly initialized.

We use atomic additions to enforce the correct final
output. However, simply using atomic additions will produce
incorrect answers if the output buffer is not initialized before
every iteration. Similarly, if the goal of the SpMV algorithm
is to calculate y = αAx + βy, rather than simply y = Ax
(where α and β are scalar multipliers), then it is difficult to
initially multiply y by β. In this case, the output buffer must
first be initialized before allowing any other workgroups to
write out their partial sums. We do this by means of a flag-
based barrier. Generally, a workgroup can know if it is taking
part in the operation on a “long row” by checking the values
which occur before and after its own corresponding value
in the rowBlocks buffer. If either points to the same row,
then we must perform this specialized initialization.

The first workgroup in a cooperative performs the initial-
ization while other workgroups wait at a barrier to ensure
that they do not read the uninitialized value. After the
first workgroup completes the initialization, it releases all
other workgroups from the barrier. We have each of these
workgroup wait on a flag stored in the rowBlocks entry
of that row’s first workgroup, as shown in Figure 6. All
of the workgroups spin-loop while the value of the first
workgroup’s flag is 0. Meanwhile, the first workgroup sets
its flag to 1 once it completes the initialization.

Another complexity arises when the SpMV kernel is
called multiple times. In this case, the cooperative work-
groups will not wait at the barrier because the previous
flag still remains. Because every workgroup has its own
rowBlocks entry and its own flag bit, a solution is to
have every workgroup independently store (in its own flag)
the value it should wait on. After going through the barrier,
it flips its own flag. As such, each workgroup checks its
flag to know whether value means “wait at this barrier” or
“go ahead”. The pseudocode to implement multi-workgroup
barrier in a GPU kernel is show in Figure 7.

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9

R
el
at
iv
e
 P
er
fo
rm

an
ce

Minimum Rows in CSR‐Stream (num_rows_stream)

512

768

1024

1536

2048

2560

3072

3584

4096

(a) Single Precision

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9

R
e
la
ti
ve
 P
e
rf
o
rm

a
n
ce

Minimum Rows in CSR‐Stream (num_rows_stream)

512

768

1024

1536

2048

2560

3072

3584

4096

(b) Double Precision

Figure 8. Relative performance of CSR-Adaptive at varying NNZ multipliers for a range of NNZ PER WG. The legend depicts the value of
NNZ PER WG. The values plotted are the harmonic mean of the performance achieved with over 48 different sparse matrices.

3) Hyper-Parameter: NNZ_multiplier: Computing
SpMV for a long row by merely dividing it across
multiple workgroups and having each workgroup process
NNZ_PER_WG non-zero values is not optimal. This is be-
cause (1) the total number of workgroups to be launched can
be high, which can cause substantial workgroup scheduling
overheads, and (2) the number of atomic writes to global
memory linearly increase with the increase in number of
workgroups processing a row. The number of atomic writes
increase because every workgroup needs to atomically up-
date its partial value to compute the final output.

One way to reduce these overheads is to increase the num-
ber of non-zero values processed by every workgroup. How-
ever, we have previously found the values for NNZ_PER_WG
that achieve best performance for CSR-Stream and CSR-
Vector, as shown in Section III-A. Therefore, we should
alter the NNZ_PER_WG for workgroups working only on
CSR-VectorL. This is achieved by introducing another
hyper-parameter, called NNZ multiplier, which increases
the NNZ_PER_WG by a predefined value. Choosing the
appropriate value of NNZ_multiplier is challenging
because a high value may adversely affect performance,
similar to why CSR-Vector performs poorly on long rows.
In contrast, a low value might still incur high scheduling
and atomic overheads. We empirically determine the best
value of NNZ_multiplier by comparing the performance
of 48 sparse matrices at varying values of NNZ_PER_WG
and NNZ_multiplier. These results, for both single and
double precision, are shown in Figure 8.

From the figure, it is noted that an NNZ_multiplier
of 2 provide the best performance for double precision
at the NNZ_PER_WG of 1536. For single precision, a
NNZ_multiplier of 3 at a NNZ_PER_WG of 1024 per-
forms the best. Larger values of both NNZ_PER_WG and
NNZ_multiplier reduce performance as the algorithm
tends to be more like CSR-Vector. Contrarily, smaller val-
ues of NNZ_multiplier do not successfully amortize
the overheads associated with CSR-VectorL. These optimal
values may change for different GPUs. It is worth reiter-
ating that the NNZ_multiplier is used for only those
workgroups which use CSR-VectorL.

Per Workgroup: done in parallel on GPU

Number of rows
>

num_rows_stream

Number of rows
>= 1 &&

only workgroup
for this row

Run CSR‐VectorL

Run CSR‐Vector

Thread/row
>=2

Do Logarithmic
Reduction

Do Scalar Reduction Run CSR‐Stream

Yes

No

No

No

Yes

Yes

Figure 9. Flowchart for improved CSR-Adaptive.

C. Bringing Everything Together

We have described three different SpMV algorithms,
CSR-Stream, CSR-Vector, and CSR-VectorL, which are ad-
vantageous for short, long, and very long rows, respectively.
We combine the three algorithms into an improved CSR-
Adaptive to efficiently compute SpMV regardless of the
structure of sparse matrices. The pseudocode for the im-
proved CSR-Adaptive is shown in Figure 9.

We should also mention that other low-level optimizations
are possible. For example, splitting row blocks when the row
lengths change (as mentioned in Section III-A1) can help
performance. Removing the division operations to compute
the number of available threads per row in Figure 3 and
replacing them with appropriate shifts or calculating these
values on the CPU also helps. A version of our source
code with all such optimizations is available as part of
the open source clSPARSE library, which can be found at
https://github.com/clMathLibraries/clSPARSE/.

IV. EXPERIMENTAL SETUP

We implemented the improved CSR-Adaptive algorithm
starting from the baseline described in Figure 2. Our CSR-
Adaptive hyper-parameters are shown in Table I. We com-
pare the improved CSR-Adaptive to CSR5, the current state
of the art for SpMV on GPUs. The implementation of CSR5
was provided by its authors.

We test our improved CSR-Adaptive on 32 different
matrices, shown in Table II, from previous works [3, 13, 20].

We performed all of our experiments on an
AMD FireProTM W9100 GPU with ECC disabled.
Table III details its important characteristics. The host
machine, which we also use to measure matrix format
conversion times, uses an AMD A10-7850K APU with 32
GB of DDR3-2133 SDRAM. The GPU was programmed
using OpenCLTM 1.2 with the AMD APP SDK v2.9 and
AMD FirePro driver v14.20 Beta on Ubuntu 14.04.2. We
used 256 threads per workgroup, and all of the performance
numbers are an average of 1000 runs.

Table I
VALUES OF HYPER-PARAMETERS USED IN CSR-ADAPTIVE

Hyper-Parameter Single Precision Double Precision
NNZ PER WG 1024 1536
num rows stream 1 2
NNZ multiplier 3 2

Table II
OVERVIEW OF SPARSE MATRICES USED FOR EVALUATION

Name Size NNZ NNZ/row Max
Dense2 2K * 2K 4,000,000 2,000 2,000
Protein 36K * 36K 4,344,765 119 204
FEM/Spheres 83K * 83K 6,010,480 72 81
FEM/Cantilever 62K * 62K 4,007,383 64 78
Wind Tunnel 218K * 218K 11,634,424 53 180
FEM/Harbor 47K * 47K 2,374,001 51 145
QCD1 49K * 49K 1,916,928 39 40
FEM/Ship 141K * 141K 7,813,404 55 102
Economics 207K * 207K 1,273,389 6 44
Epidemiology 526K * 526K 2,100,225 4 4
FEM/Accelerator 121K * 121K 2,624,331 22 81
Circuit 171K * 171K 958,936 6 353
Webbase 1,000K * 1,000K 3,105,536 3 4700
LP 4K * 1,097K 11,284,032 2,634 56,182
circuit5M 5,558K * 5,558K 59,524,291 11 1,290,501
eu-2005 863K * 863K 19,235,140 22 4240
Ga41As41H72 268K * 268K 18,488,476 69 702
in-2004 1,383K * 1,383K 16,917,053 12 7753
mip1 66K * 66K 10,352,819 156 66,396
Si41Ge41H72 186K * 186K 15,011,265 81 662
ASIC 680k 683K * 683K 3,871,773 6 395,259
dc2 117K * 117K 766,396 7 114,190
FullChip 2,897K * 2,897K 26,621,990 9 2,312,481
ins2 309K * 309K 2,751,484 9 309,412
bone010 986K * 986K 47,851,783 48 81
crankseg 2 121K * 121K 2,624,331 22 3423
ldoor 952K * 952K 42,493,817 45 77
rajat31 4,690K * 4,690K 20,316,253 4 1252
Rucci1 1,978K * 109K 7,791,168 4 5
boyd2 466K * 466K 1,500,397 3 93,262
sls 1,748K * 63K 6,804,304 4 5
transient 179K * 179K 961,790 5 60,423

Table III
OVERVIEW OF AN AMD FIREPROTM W9100 GPU
Compute Units (CU) 44
Core Clock Rate 930 MHz
GDDR5 Memory Clock Rate 1250 MHz
Peak Memory Bandwidth 320 GB/s
L2 Cache Size 1024 KB
L1 Cache Size per CU 16 KB
Local Data Store (LDS) Size per CU 64 KB

1This matrix stores complex numbers, but only the real portions were
used in our tests. CSR5 and ViennaCL do the same.

V. EVALUATION

A. Effect of Optimizations

Figure 10 presents the effect of various optimizations in
both double and single precision. The performance achieved
with our simple implementation of CSR-Adaptive is denoted
by Baseline. We note that the double precision analysis
in Figure 10b uses a row block size of 1024. As shown
in Figure 8b, the final performance is roughly the same as
with a size of 1536. The performance of Baseline was
much worse at 1536, however, so we felt that it was unfair
to compare our optimizations against it. All other double
precision results use a row block size of 1536.

The first optimization, denoted by NRS+opt or
num_rows_stream, divides the SpMV computation be-
tween CSR-Stream and CSR-Vector depending on the num-
ber of rows assigned to a workgroup. This also includes
the various optimizations we mentioned at the end of
Section III-C. NRS+opt improves the performance by an
average of 1% over Baseline for single and double
precision. The speedups for mip1 are 3.2× and 4.5×, since
many of its workgroups compute only one or two rows each,
and they are more amenable to CSR-Vector.

We then add the logarithmic reduction technique (LOG)
in CSR-Stream. Adding LOG improves the performance by
4% and 9% over NRS+opt in single and double precision,
respectively. This combination of NRS+LOG more dou-
bles the performance for three matrices (Ga41As41H72,
Si41Ge41H72, crankseg_2). These matrices leave
many threads idle when performing a scalar-style reduction,
which can become a performance bottleneck.

The performance drops for some matrices when adding
NRS+opt. However, when combined with LOG, there are
no performance losses. This shows that combinations of
optimizations are vital to maximize performance.

Lastly, we integrate the CSR-VectorL algorithm into
CSR-Adaptive to improve the performance of matrices
which contain a few very long rows. Several such ma-
trices (circuit5m, ASIC_680k, dc2, FullChip,
and ins2) achieve a speedup of up to 8.2× in single pre-
cision and up to 6.6× in double precision. Integrating CSR-
VectorL doubles the average performance for all matrices
over the combination of only NRS+LOG.

Overall, the improved CSR-Adaptive achieves an average
speedup of 2.8× (SP) and 2.4× (DP) over the Baseline.

While the algorithms presented here are optimized to ac-
cess the matrix as quickly as possible, uncoalesced accesses
to the vector can prevent some matrices from reaching the
same performance as others. This can be seen in matrices
that are greatly helped by CSR-VectorL. As shown in Ta-
ble II, these matrices have some number of very long rows.
The parallel accesses to the dense vector are therefore spread
over a wide range of addresses, resulting in uncoalesced,
slow loads. This problem also manifests in LP.

0

10

20

30

40

50

60

70
SP

 G
FL
O
P
S

Baseline NRS+Opt NRS+LOG NRS+LOG+VectorL (Final)

(a) Single Precision

0
5
10
15
20
25
30
35
40
45
50

D
e
n
se
2

P
ro
te
in

FE
M
/S
p
h
er
es

FE
M
/C
an
ti
le
ve
r

W
in
d
 T
u
n
n
el

FE
M
/H
ar
b
o
r

Q
C
D

FE
M
/S
h
ip

Ec
o
n
o
m
ic
s

Ep
id
e
m
io
lo
gy

FE
M
/A
cc
e
le
ra
to
r

C
ir
cu
it

W
eb
b
as
e LP

ci
rc
u
it
5
M

e
u
‐2
0
05

G
a4
1
A
s4
1H

72

in
‐2
0
0
4

m
ip
1

Si
4
1G

e
41
H
72

A
SI
C
_6
8
0k d
c2

Fu
llC
h
ip

in
s2

b
o
n
e0
10

cr
an
ks
eg
_
2

ld
o
o
r

ra
ja
t3
1

R
u
cc
i1

b
o
yd
2 sl
s

tr
an
si
en

t

D
P
 G
FL
O
P
S

(b) Double Precision

Figure 10. Effect of various optimizations in CSR-Adaptive. NRS: num rows stream, denotes the performance achieved by optimally choosing the
minimum number of rows needed in a row block before using the CSR-Stream algorithm. LOG: logarithmic reductions in CSR-Stream. NRS+LOG
denotes the performance achieved by combining NRS and LOG. Lastly, the optimized version combines NRS, LOG, and CSR-VectorL.

Along the same lines, some tests can cache the input
vector better than others. The vector access pattern depends
on the input matrix and can affect cache hit rates. The matrix
sls, for instance, is heavily affected by changes in the cache
size. Those matrices that do not clearly fit into our GPU’s
1MB L2 cache will generally perform slightly worse due to
higher memory bandwidth requirements.

B. Comparison to CSR5

Our previous work on CSR-Adaptive showed that our
baseline algorithm was better than a plethora of other for-
mats (such as ELLPACKR, BCSR, SELLPACK, and others
in the clSpMV suite). Similarly, the authors of CSR5 showed
that their algorithm was better than any other CSR-based
solution, including the baseline version of CSR-Adaptive
implemented in ViennaCL. As such, we compare the im-
proved CSR-Adaptive against this state-of-the-art SpMV
implementation.

Figure 11 demonstrates the performance achieved by
CSR5 and CSR-Adaptive. On average, CSR-Adaptive is
faster than CSR5 by 36% in single precision and by 30%
in double precision. However, for individual matrices, CSR-
Adaptive improves the performance by 2.6× like for dc2
in single precision and 2.4× for double precision. The only
case when CSR-Adaptive is slower is for LP, by 16%. In
both algorithms, the performance of LP is limited by the
access pattern to the input vector. CSR-Adaptive is slightly

more aggressive at accessing the vector and causes more
memory contention.

Both CSR5 and CSR-Adaptive use specialized data struc-
tures (e.g. the rowBlocks buffer in CSR-Adaptive) to
improve the performance of CSR-based SpMV on GPUs.
The overhead of generating these structures may reduce
the usefulness of the SpMV [11]. We therefore compare
the single-precision data structure generation times of CSR-
Adaptive and CSR5. The CSR-Adaptive row blocking al-
gorithm is single-threaded CPU code, while the CSR5 gen-
eration algorithm parallelizes some parts of the generation
on the GPU. Figure 12 illustrates the overhead incurred
by CSR5 normalized to the overhead incurred by CSR-
Adaptive.

From the figure, CSR5 can take up to 105× longer
to generate its required data structures compared to CSR-
Adaptive. An interesting data point is LP. CSR5 is 16%
faster to calculate a single SpMV iteration, as shown in
Figure 11. However, CSR5 incurs a setup overhead 65×
greater than CSR-Adaptive. Therefore, CSR5 would take
31 SpMV iterations after generating the data structures
before it gained performance over CSR-Adaptive. None of
these matrices incur more overhead with CSR-Adaptive than
with CSR5. On an average, CSR-Adaptive incurs 10× less
overhead than CSR5.

To summarize, CSR-Adaptive is 36% faster than CSR5,
while incurring 10× less data structure generation overhead.

0
10
20
30
40
50
60
70

SP
 G
FL
O
P
S

CSR5 CSR‐Adaptive

(a) Single Precision

0
10
20
30
40
50

D
en

se
2

P
ro
te
in

FE
M
/S
p
h
e
re
s

FE
M
/C
an
ti
le
ve
r

W
in
d
 T
u
n
n
el

FE
M
/H

ar
b
o
r

Q
C
D

FE
M
/S
h
ip

Ec
o
n
o
m
ic
s

Ep
id
em

io
lo
gy

FE
M
/A
cc
e
le
ra
to
r

C
ir
cu
it

W
eb

b
as
e LP

ci
rc
u
it
5
M

e
u
‐2
0
05

G
a4
1
A
s4
1
H
7
2

in
‐2
0
0
4

m
ip
1

Si
4
1
G
e
41
H
72

A
SI
C
_
68
0
k

d
c2

Fu
llC
h
ip

in
s2

b
o
n
e0
10

cr
an
ks
e
g_
2

ld
o
o
r

ra
ja
t3
1

R
u
cc
i1

b
o
yd
2 sl
s

tr
an
si
en

t

H
ar
 M

e
an

D
P
 G
FL
O
P
S

(b) Double Precision

Figure 11. Performance comparison between CSR-Adaptive and CSR5.

0

10

20

30

40

50

60

70

D
e
n
se
2

P
ro
te
in

FE
M
/S
p
h
e
re
s

FE
M
/C
an
ti
le
ve
r

W
in
d
 T
u
n
n
el

FE
M
/H
ar
b
o
r

Q
C
D

FE
M
/S
h
ip

Ec
o
n
o
m
ic
s

E
p
id
e
m
io
lo
gy

FE
M
/A
cc
e
le
ra
to
r

C
ir
cu
it

W
e
b
b
as
e LP

ci
rc
u
it
5
M

eu
‐2
0
0
5

G
a4
1
A
s4
1
H
7
2

in
‐2
0
0
4

m
ip
1

Si
4
1
G
e4
1
H
7
2

A
SI
C
_6
8
0
k

d
c2

Fu
llC
h
ip

in
s2

b
o
n
e
0
1
0

cr
an

ks
e
g_
2

ld
o
o
r

ra
ja
t3
1

R
u
cc
i1

b
o
yd
2

sl
s

tr
an

si
e
n
t

M
e
d
ia
n

N
o
rm

al
iz
e
d
 O
ve
rh
e
ad

C
SR

5
/C
SR

‐A
d
ap

ti
ve

Figure 12. Overhead incurred for generation of specialized data structures in CSR5 and CSR-Adaptive, normalized to CSR-Adaptive (red line)

C. Overhead for Storage Format
As previously mentioned, CSR-Adaptive improves the

performance of SpMV on GPUs by augmenting the CSR
data structures with the rowBlocks buffer. Our experi-
ments for single precision showed that rowBlocks in-
creases the storage requirement by an average of only
0.0603% (and a maximum of 0.0716%) compared to the
storage requirements of the regular CSR data structures.
For double precision (with its different block size), these
numbers become 0.0611% and 0.0823%, respectively.

Several applications are known to iteratively call the
SpMV routine. Hence, rather than just comparing the row-
Block generation time with CSR5, we also compare the
generation time versus the performance of a single SpMV
iteration. This gives a general idea of the number of SpMV
iterations required to amortize the cost of generating the
rowBlocks structure. This data is presented in Figure 13.

From the figure, the average matrix takes less than 2.5
SpMV iterations to overcome the overhead of rowBlocks
generation. This is substantially better than the overheads

incurred by either other CSR-based SpMV algorithms or
more complicated formats, thereby making CSR-Adaptive
an extremely lightweight SpMV solution.

D. Memory Bandwidth Performance Bounds

Rather than simply analyzing the computational perfor-
mance of SpMV, evaluating how close it is to the maximum
bandwidth of a processor is also relevant. This is a measure
of optimality of the algorithm for a particular device [11].

Gropp et al. showed a formula for calculating the band-
width bounds for SpMV [8]. They assume that every value
from both the matrix and the input vector must be loaded
into the cache exactly once, and that each entry of the
output vector must be written to once. Koza et al. call
this value β+ [10]. This is a lower bound on the memory
throughput because it makes the idealistic assumption that
the input vector is perfectly cached. Dividing this estimated
data transfer by the SpMV execution time gives a memory
throughput estimate that, ideally, should be as close as
possible to the GPU’s maximum memory bandwidth.

0
1
2
3
4
5
6
7
8
9
10

D
e
n
se
2

P
ro
te
in

FE
M
/S
p
h
er
es

FE
M
/C
an
ti
le
ve
r

W
in
d
 T
u
n
n
e
l

FE
M
/H
ar
b
o
r

Q
C
D

FE
M
/S
h
ip

Ec
o
n
o
m
ic
s

Ep
id
em

io
lo
gy

FE
M
/A
cc
e
le
ra
to
r

C
ir
cu
it

W
eb

b
as
e LP

ci
rc
u
it
5
M

e
u
‐2
0
05

G
a4
1
A
s4
1
H
7
2

in
‐2
0
0
4

m
ip
1

Si
4
1G

e
4
1
H
7
2

A
SI
C
_6
8
0
k

d
c2

Fu
llC
h
ip

in
s2

b
o
n
e
0
10

cr
an
ks
e
g_
2

ld
o
o
r

ra
ja
t3
1

R
u
cc
i1

b
o
yd
2

sl
s

tr
an
si
en

t

M
ed

ia
n

N
u
m
. S
p
M
V
 I
te
ra
ti
o
n
s

Figure 13. Number of SpMV iterations required to amortize the cost of generation of the rowBlocks buffer using a single CPU core.

0
50

100
150
200
250
300
350
400
450

D
en
se
2

P
ro
te
in

FE
M
/S
p
h
er
es

FE
M
/C
an
ti
le
ve
r

W
in
d
 T
u
n
n
el

FE
M
/H
ar
b
o
r

Q
C
D

FE
M
/S
h
ip

Ec
o
n
o
m
ic
s

Ep
id
em

io
lo
gy

FE
M
/A
cc
el
er
at
o
r

C
ir
cu
it

W
eb
b
as
e LP

ci
rc
u
it
5
M

e
u
‐2
00
5

G
a4
1
A
s4
1H

72

in
‐2
0
0
4

m
ip
1

Si
4
1G

e
41
H
72

A
SI
C
_6
8
0
k

d
c2

Fu
llC
h
ip

in
s2

b
o
n
e0
10

cr
an
ks
eg
_
2

ld
o
o
r

ra
ja
t3
1

R
u
cc
i1

b
o
yd
2

sl
s

tr
an
si
en
t

H
ar
. M

ea
n

B
an

d
w
id
th
 (
G
B
/s
)

Vector Cached (β+) Vector Uncached (β‐)

Figure 14. Bandwidth achieved by CSR-Adaptive assuming the vector is either fully cached or uncached. The red dashed line indicates the bandwidth
achieved using a STREAM-style microbenchmark. Results are from single precision tests; double precision bandwidth is roughly the same.

Figure 14 shows these calculations for our optimized
CSR-Adaptive kernel. The bars in this chart show the lower
bound on memory bandwidth (calculated using the lower
bound on memory throughput, β+). The red line shows the
GPU’s achievable memory bandwidth in the DeviceMemory
microbenchmark from the SHOC benchmark suite [5]. In
this case, many of the input matrices operate within 15% of
this GPU’s maximum achievable performance.

The upper bar for each input matrix shows the estimated
memory bandwidth using the pessimistic assumption that
the input matrix values are never cached, a value Koza et al.
refer to as β− [10]. This is often higher than can actually
be achieved if every access went to DRAM, demonstrating
the benefit of the GPU’s caches on vector accesses.

VI. RELATED WORK

Designing good CSR-based SpMV algorithms for GPUs
has turned out to be surprisingly difficult. The first al-
gorithms, CSR-Scalar and CSR-Vector, each had its own
limitations. The former performed poorly due to memory
serialization, the latter due to underutilizing the hardware.

Bell and Garland thus came to the conclusion that new
formats were required for SpMV GPUs [3]. This resulted in
proposals for a plethora of other formats; Langr and Tvrdı́k
list over 50 different formats [11]. This has led to auto-
tuning frameworks that dynamically analyze the matrices to
pick the best format [4, 15, 20]. We also discussed a number
of advanced CSR-based works in Section II.

We previously showed that CSR-Adaptive performed bet-
ter than these other mechanisms [7]. Though some matrices
were better stored in specialized formats, CSR-Adaptive
performed better in general. Liu et al showed that CSR-
Adaptive performed poorly on matrices with a small set of
very long rows [13]. This work set out to fix that issue.

LightSpMV [14] accelerated CSR-Vector through intel-
ligent caching and reducing workgroup launch overheads
by dynamically assigning rows to each workgroup. They
show up to 2× higher performance compared to the CUSP
library, though this was lower than CSR5 for the matrices
they tested. One benefit of LightSpMV (and a number of
the algorithms discussed in Section II) is that it requires no
matrix preprocessing.

Guo and Gropp previously demonstrated using more than
one workgroup on long rows [9]. Their algorithm is based on
CSR-Vector, but it requires an expensive sort of the matrix
and vector in order to group rows of similar lengths. Our
solution shows superior performance and requires no sorting.

Adaptive CSR (ACSR) is a recent proposal for high-
performance CSR-based SpMV [1]. ACSR also bins rows
of similar lengths, but it holds the binning information in
new data structures rather than sorting the arrays. Because
the array remains unsorted, disparate rows of similar sizes
can be accesses in parallel, causing uncoalesced memory
accesses. Liu et al. found that CSR5 performed better than
ACSR for both regular and irregular matrices.

VII. FUTURE RESEARCH AND CONCLUSIONS

CSR-based SpMV on GPUs is desirable because it
avoids the runtime and storage overheads that afflict
implementation-specific storage formats. Existing CSR-
based approaches like CSR-Adaptive have improved the
performance of SpMV on regular matrices but demonstrate
poor performance on irregular matrices with very long rows.

We improve CSR-Adaptive to better utilize the GPU
resources. We also propose a novel algorithm to efficiently
compute SpMV on long rows. The improved CSR-Adaptive
achieves high performance regardless of the matrix structure
by dynamically choosing among three different algorithms
that cater to different row lengths. Our novel techniques
effectively double the performance of CSR-Adaptive and
enable it to attain 36% higher performance at 10× less
overhead than CSR5, the current state of the art.

We found that, while our new algorithm offers superior
performance, some matrices do not perform as well as
others. This is because they have rows with widely dispersed
values; the access to the associated input vector entries
becomes the new bottleneck. Studying mitigation techniques
for this problem can be fruitful in future works.

Because CSR-Adaptive allows the same data structures
on both CPUs and GPUs, there are interesting future studies
in CSR-based algorithms on heterogeneous processors. For
example, perhaps rows with poor vector access patterns
could execute on CPUs, which usually have larger caches
and more advanced prefetching mechanisms than GPUs.

The algorithm described in this paper is available as part
of the open source clSPARSE library. The source code can
be found at https://github.com/clMathLibraries/clSPARSE/.

ACKNOWLEDGEMENTS

We wish to thank Weifeng Liu for providing his CSR5
data and source code; this greatly helped our comparisons.
Thanks also to Kent Knox for all of his work on clSPARSE
and for pushing to include initialization in CSR-VectorL.

AMD, the AMD Arrow logo, FirePro and combinations
thereof are trademarks of Advanced Micro Devices, Inc.
OpenCL is a trademark of Apple, Inc. used by permission
by Khronos. Other product names used in this publication
are for identification purposes only and may be trademarks
of their respective companies.

REFERENCES

[1] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sa-
dayappan. Fast Sparse Matrix-Vector Multiplication on GPUs for
Graph Applications. In Proc. of the Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis (SC), 2014.

[2] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan. An Ef-
ficient Two-dimensional Blocking Strategy for Sparse Matrix-Vector
Multiplication on GPUs. In Proc. of the Int’l Conf on Supercomputing
(ICS), 2014.

[3] N. Bell and M. Garland. Implementing Sparse Matrix-Vector Multipli-
cation on Throughput-oriented Processors. In Proc. of the Int’l Conf.

on High Performance Computing, Networking, Storage and Analysis
(SC), 2009.

[4] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven Autotuning of
Sparse Matrix-Vector Multiply on GPUs. In Proc. of the Symp. on
Principles and Practice of Parallel Programming (PPoPP), 2010.

[5] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The Scalable Hetero-
geneous Computing (SHOC) Benchmark Suite. In Proc. of the
Workshop on General-Purpose Computing on Graphics Processing
Units (GPGPU), 2010.

[6] I. S. Duff, M. A. Heroux, and R. Pozo. An Overview of the
Sparse Basic Linear Algebra Subprograms: The New Standard from
the BLAS Technical Forum. Trans. on Mathematical Software,
28(2):239–267, 2002.

[7] J. L. Greathouse and M. Daga. Efficient Sparse Matrix-Vector
Multiplication on GPUs Using the CSR Storage Format. In Proc. of
the Int’l Conf for High Performance Computing, Networking, Storage
and Analysis (SC), 2014.

[8] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Toward
Realistic Performance Bounds for Implicit CFD Codes. In Proc. of
the Int’l Parallel Computational Fluid Dynamics Conf. (PARCFD),
1999.

[9] D. Guo and W. Gropp. Adaptive Thread Distributions for SpMV on
a GPU. In Proc. of the Extreme Scaling Workshop, 2012.

[10] Z. Koza, M. Matyka, S. Szkoda, and Ł. Mirosław. Compressed
Multiple-Row Storage Format for Sparse Matrices on Graphics Pro-
cessing Units. SIAM Journal on Scientific Computing, 32(2):C219–
C239, 2014.

[11] D. Langr and P. Tvrdı́k. Evaluation Criteria for Sparse Matrix Storage
Formats. IEEE Trans. on Parallel and Distributed Systems, PP(99):1–
1, 2015.

[12] W. Liu and B. Vinter. An Efficient GPU General Sparse Matrix-
Matrix Multiplication for Irregular Data. In Proc. of the Int’l Parallel
and Distributed Processing Symp. (IPDPS), 2014.

[13] W. Liu and B. Vinter. CSR5: An Efficient Storage Format for Cross-
Platform Sparse Matrix-Vector Multiplication. In Proc. of the Int’l
Conf. on Supercomputing (ICS), 2015.

[14] Y. Liu and B. Schmidt. LightSpMV: Faster CSR-based Sparse Matrix-
Vector Multiplication on CUDA-enabled GPUs. In Proc. of the Int’l
Conf. on Application-specific Systems, Architectures and Processors
(ASAP), 2015.

[15] A. Monakov, A. Lokhmotov, and A. Avetisyan. Automatically Tuning
Sparse Matrix-Vector Multiplication for GPU Architectures. In Proc.
of the Int’l Conf. on High Performance Embedded Architectures and
Compilers (HiPEAC), 2010.

[16] M. Naumov, L. S. Chien, P. Vandermersch, and U. Kapasi. CUS-
PARSE Library. Presented at the GPU Technology Conference, 2010.

[17] I. Reguly and M. Giles. Efficient Sparse Matrix-Vector Multiplication
on Cache-based GPUs. In Proc. of Innovative Parallel Computing
(InPar), 2012.

[18] K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - A High Level Linear
Algebra Library for GPUs and Multi-Core CPUs. In Int’l Workshop
on GPUs and Scientific Applications (GPUScA), 2010.

[19] L. O. Steven Dalton, Nathan Bell and M. Garland. Cusp: Generic
parallel algorithms for sparse matrix and graph computations, 2015.

[20] B.-Y. Su and K. Keutzer. clSpMV: A Cross-Platform OpenCL SpMV
Framework on GPUs. In Proc. of the Int’l Conf. on Supercomputing
(ICS), 2012.

[21] W. T. Tang, R. Zhao, M. Lu, Y. Liang, H. P. Huynh, X. Li, and
R. S. M. Goh. Optimizing and Auto-tuning Scale-free Sparse Matrix-
Vector Multiplication on Intel Xeon Phi. In Proc. of the Int’l Symp.
on Code Generation and Optimization (CGO), 2015.

[22] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A Library of
Automatically Tuned Sparse Matrix Kernels. In Proc. of SciDAC,
Journal of Physics: Conf. Series, 2005.

[23] R. W. Vuduc. Automatic Performance Tuning of Sparse Matrix
Kernels. PhD thesis, University of California, Berkeley, 2003.

[24] S. Yan, C. Li, Y. Zhang, and H. Zhou. yaSpMV: Yet Another SpMV
Framework on GPUs. In Proc. of the Symp. on Principles and Practice
of Parallel Programming (PPoPP), 2014.

