A Taxonomy of GPGPU Performance Scaling

Abhinandan Majumdar
Computer Systems Laboratory
Cornell University
am2352@cornell.edu

Gene Wu
Dept. of Electrical and Computer Engineering
The University of Texas at Austin
Gene.Wu@utexas.edu

Kapil Dev
School of Engineering
Brown University
kapil_dev@brown.edu

Joseph L. Greathouse, Indrani Paul, Wei Huang, Arjun-Karthik Venugopal, Leonardo Piga, Chip Freitag, Sooraj Puthoor

AMD Research, Advanced Micro Devices, Inc.
{Joseph.Greathouse, Indrani.Paul, WeiN.Huang, Arjun.Karthik, Leonardo.Piga, Chip.Freitag, Sooraj.Puthoor} @amd.com

Abstract—Graphics processing units (GPUs) range from small,
embedded designs to large, high-powered discrete cards. While
the performance of graphics workloads is generally understood,
there has been little study of the performance of GPGPU
applications across a variety of hardware configurations. This
work presents performance scaling data gathered for 267 GPGPU
kernels from 97 programs run on 891 hardware configurations
of a modern GPU. We study the performance of these kernels
across a 5x change in core frequency, 8.3x change in memory
bandwidth, and 11x difference in compute units. We illustrate
that many kernels scale in intuitive ways, such as those that
scale directly with added computational capabilities or memory
bandwidth. We also find a number of kernels that scale in non-
obvious ways, such as losing performance when more processing
units are added or plateauing as frequency and bandwidth
are increased. In addition, we show that a number of current
benchmark suites do not scale to modern GPU sizes, implying
that either new benchmarks or new inputs are warranted.

I. INTRODUCTION

Graphics processing units (GPUs) are an increasingly im-
portant class of general-purpose accelerators. Programming
systems such as OpenCL™ allow software developers to
treat GPUs as a general computational resource, a mechanism
dubbed general-purpose programming on GPUs (GPGPU).

GPGPU has seen widespread adoption because of its
potential for performance improvements, but GPUs cover a
wide range of of sizes, frequencies, and memory bandwidth
points. This leads us to ask how GPGPU programs perform
across these many configurations.

We study the performance scaling of 97 applications (com-
prised of 348 samples from 267 separate OpenCL kernels)
across 891 different hardware configurations and observe a
number of common scaling patterns. Intuitive examples include
kernels whose performance relies on the hardware’s peak
computation rate, and those that are coupled to available
bandwidth. We also observe non-intuitive scaling patterns, such
as plateaus caused by interconnect bandwidth and performance
losses from cache thrashing. Finally, we demonstrate that many
benchmarks do not take full advantage of large GPUs.

II. EXPERIMENTAL SETUP
We ran our tests on an AMD FirePro™ W9100 discrete

GPU, which normally runs 44 CUs (2816 function units) at 930
MHz and has 16 GB of GDDRS memory across 16 channels

that run at 1.25 GHz. Each CU has 16 KB of L1 data cache,
while 1 MB of L2 cache is shared across all the CUs. We use
the June 10, 2014, beta version of the AMD FirePro drivers,
version 2.9 of the AMD APP SDK, and AMD CodeXL version
1.4 to measure the performance of the GPGPU kernels.

We changed a number of the GPU’s hardware configuration
parameters for our tests. We vary the core frequency between
200 MHz and 1 GHz (inclusive), at 100 MHz increments
and change the frequency of the GDDRS5 connections from
150 MHz to 1250 MHz (inclusive) in 110 MHz increments,
yielding a range of 38.4-320 GB/s. Finally, we vary the number
of CUs from 4 to 44 (inclusive), in steps of 4. In summary, we
measure each kernel on 891 hardware configurations across a
5x change in frequency, 8.3 x change in memory bandwidth,
and 11x change in parallel compute resources.

III. BENCHMARKS AND GOALS

The goal of this study is to observe how GPGPU kernels
perform on GPUs that are configured in different ways. To
understand the scaling trends, we explore 97 OpenCL™
applications and have measurements for 267 of their kernels.

We inspect benchmarks from Rodinia v3.0 [2], Parboil [&],
OpenDwarfs [6], SHOC [5], Pannotia [I] and a number of
applications from the AMD APP SDK and the Phoronix test
suite. We also run the exascale proxy applications MiniFE,
LULESH, CoMD, and XSBench, a CSR-Adaptive kernel [7],
and implementations of a B+Tree search [3] and the graph500
benchmark [4]. Our performance measurements include neither
the time spent on the host CPU nor the overheads of copying
data from the host to the GPU’s memory.

IV. How GPGPU KERNELS SCALE
A. Compute-Bound Kernels

The performance of compute-bounds kernels, such as Ju-
liaGPU from the Phoronix suite, improves with more compute
resources, which can come from increasing the active CU count
or the core frequency. Memory bandwidth does not affect these
kernels because of their relatively small memory footprints
and/or their well-cached data. Roughly 38% of kernel samples
are compute-bound when frequency is varied, but less than
10% are compute-bound when the CU count is varied since
many benchmarks do not scale to large CU counts.



B. Memory-Bound Kernels

Memory-bound kernels are primarily affected by the avail-
able bandwidth between the GPU and its DRAM. An example
of memory-bound kernel is readGlobalMemoryCoalesced from
the SHOC DeviceMemory microbenchmark. We observed that
over 30% of our kernels are primarily memory bound.

The performnace of a subset of these kernels eventually
start falling as CUs are added. An example of such a
performance peak appears in [bm from the Parboil suite. This
problem occurs due to destructive interference in the shared
L2 cache; as more CUs are added, the chip’s parallel working
set eventually overflows the cache and causes heightened
bandwidth requirements.

C. Balanced Kernels

The performance of balanced kernels, such as sgemmNN
from the SHOC GEMM benchmark, depends on both compu-
tational capability and memory bandwidth. Such kernels have
some compute-to-bandwidth ratio that maximizes performance.
Less bandwidth causes memory stalls, while fewer compu-
tational resources causes instruction throughput bottlenecks.
About 16% of the total kernels show balanced behavior when
scaling CU count and memory bandwidth.

D. Kernels That Do Not Scale

Surprisingly, many of the kernels that we studied do not
scale with added CUs nor with added memory bandwidth.
This behavior often happens because of programming errors
or algorithmic limitations. Kernel normalize_weights_kernel,
for instance, does not scale with CU count because its hot
loop (a prefix sum) is completely serial. Kernel setZero of
the swat benchmark is also unscalable because it has only 13
instructions. As a result, the hardware consumes most of the
time assigning workgroup to its CUs. astar from OpenDwarfs,
and myocyte from Rodinia are also unscalable because they
do not launch enough work to utilize modern GPUs. Overall,
nearly 15% of the kernels we analyzed are unscalable.

E. Performance Plateaus

Another interesting scaling trend is a performance plateau.
Here, the kernel scales with additional hardware resources up to
a point, whereafter it flattens out regardless of any additional
compute and memory resources. BlackScholes shows such
behavior because, for large input sizes, it allocates its memory
in the host space instead of in the device’s memory. This causes
its performance to be limited by the host-to-GPU interconnect
bandwidth. Alternately, the performance of Ngueens plateaus
because it assigns one workgroup per CU, which is not enough
work to hide latency through fine-grain multithreading.

In a related manner, Bottom_scan from the Sort benchmark
shows multiple “terraces” because it has a limited amount of
available parallelism. Its small number of workgroups each
takes a roughly equal amount of time to finish, meaning
that, unless enough CUs are added to evenly divide the
work, the remainder workgroups will prevent any performance
improvements. About 18% of the kernels we studied showed
some type of performance plateau behavior.

V. CONCLUSIONS AND FUTURE WORK

In this work, we studied how GPGPU kernels scale as
hardware configurations change. In total, we examined 348
iterations from 267 kernels which come from 97 benchmarks.
We analyzed 891 hardware configurations, comprising a 5x
change in core frequency, 8.3 change in memory bandwidth,
and 11x difference in CUs.

While many kernels scale in intuitive ways (e.g. increasing
performance as more CUs are added), a surprising number of
kernels either do not scale at all or their performance eventually
plateaus. Roughly 40% of the kernel iterations we studied do
not scale to modern GPU sizes. While there are numerous
reasons for this lack of scalability, GPU sizes will continue to
increase for the foreseeable future. Future studies should look at
whether existing benchmarks (and input sets) are representative
of the workloads that will be run on future cores.

Future works could study more advanced applications and
other hardware configurations, such as cache sizes, double-
precision floating point rate, and changes in memory channels
rather than frequency. Finally, power and energy studies
are equally important, and would complement our current study.

AMD, the AMD Arrow logo, FirePro, and combinations
thereof are trademarks of Advanced Micro Devices, Inc.
OpenCL is a trademark of Apple, Inc. used by permission
by Khronos. Other names used in this publication are for
identification purposes only and may be trademarks of their
respective companies.

REFERENCES

[1] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron,

“Pannotia: Understanding Irregular GPGPU Graph Applications,”

in Proc. of the IEEE Int’l Symp. on Workload Characterization

(IISWC), 2013.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,

and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous

Computing,” in Proc. of the IEEE Int’l Symp. on Workload

Characterization (IISWC), 2009.

[3] M. Daga and M. Nutter, “Exploiting Coarse-grained Parallelism
in B+ Tree Searches on an APU,” in Proc. of the Workshop on
Irregular Applications: Architectures & Algorithms (IA3), 2012.

[4] M. Daga, M. Nutter, and M. Meswani, “Efficient Breadth-First
Search on a Heterogeneous Processor,” in Proc. of the IEEE Int’l
Conf. on Big Data (IEEE BigData), 2014.

[5] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The Scalable
HeterOgeneous Computing (SHOC) Benchmark Suite,” in Proc.
of the Workshop on General-Purpose Computation on Graphics
Processing Units (GPGPU), 2010.

[6] W. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the
13 Dwarfs: A Work in Progress,” in Proc. of the Int’l Conf. on
Performance Engineering (ICPE), 2012.

[7] J. L. Greathouse and M. Daga, “Efficient Sparse Matrix-Vector

Multiplication on GPUs using the CSR Storage Format,” in Proc.

of the Conference on High Performance Computing, Networking,

Storage and Analysis (SC), 2014.

J. A. Stratton, C. Rodrigues, 1.-J. Sung, N. Obeid, L.-W. Chang,

N. Anssari, G. D. Liu, and W. W. Hwu, “Parboil: A Revised

Benchmark Suite for Scientific and Commercial Throughput

Computing,” University of Illinois at Urbana-Champaign, Tech.

Rep. IMPACT-12-01, March 2012.

[2

—

(8

—_—



