
US010713059B2

(12) United States Patent
Greathouse et al .

(10) Patent No .: US 10,713,059 B2
(45) Date of Patent : Jul . 14 , 2020

(54) (56) References Cited HETEROGENEOUS GRAPHICS
PROCESSING UNIT FOR SCHEDULING
THREAD GROUPS FOR EXECUTION ON
VARIABLE WIDTH SIMD UNITS

U.S. PATENT DOCUMENTS

6,983,389 B1 * 1/2006 Filippo
(71) Applicant : Advanced Micro Devices , Inc. ,

Sunnyvale , CA (US) 7,617,384 B1 * 11/2009 Coon

2011/0320765 A1 * 12/2011 Karkhanis
(72)

2013/0042090 A1 * 2/2013 Krashinsky

G06F 1/3203
713/324

G06F 9/3851
712/220

G06F 9/30109
712/7

G06F 9/3016
712/214

GOOF 15/8007
712/15

G06F 9/30018
712/208

Inventors : Joseph L. Greathouse , Austin , TX
(US) ; Mitesh R. Meswani , Austin , TX
(US) ; Sooraj Puthoor , Austin , TX
(US) ; Dmitri Yudanov , Austin , TX
(US) ; James M. O'Connor , Austin , TX
(US)

2014/0136816 A1 * 5/2014 Krig
2014/0181477 A1 * 6/2014 Vaidya

(Continued) (73) Assignee : ADVANCED MICRO DEVICES ,
INC . , Sunnyvale , CA (US)

OTHER PUBLICATIONS (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 469 days .

Jiayuan Meng , David Tarjan , Kevin Skadron . “ Dynamic Warp
Subdivision for Integrated Branch and Memory Divergence Toler
ance ” Proceedings of ISCA 2010. *

(Continued) (21) Appl . No .: 14 / 490,213

(22) Filed : Sep. 18 , 2014

(65) Prior Publication Data
US 2016/0085551 A1 Mar. 24 , 2016

Primary Examiner Jacob Petranek
(74) Attorney , Agent , or Firm — Volpe and Koenig , P.C.

(57) ABSTRACT
(51) Int . Ci .

G06F 9/38 (2018.01)
(52) U.S. CI .

CPC G06F 9/3887 (2013.01) ; G06F 9/3851
(2013.01)

(58) Field of Classification Search
CPC G06F 9/30036 ; G06F 9/3851 ; G06F

9 / 3885–3887 ; G06F 17/16 ; GOOF
15 / 80–803 ; G06F 15/8053 ; G06F

1 / 3234–3246 ; GO6F 1 / 3287–329 ; G06F
15/8092 ; G06F 15/16

See application file for complete search history .

A compute unit configured to execute multiple threads in
parallel is presented . The compute unit includes one or more
single instruction multiple data (SIMD) units and a fetch and
decode logic . The SIMD units have differing numbers of
arithmetic logic units (ALUS) , such that each SIMD unit can
execute a different number of threads . The fetch and decode
logic is in communication with each of the SIMD units , and
is configured to assign the threads to the SIMD units for
execution based on such differing numbers of ALUS .

15 Claims , 7 Drawing Sheets
402 404a

Scalar
ALU

400

Scalar
ALU 404b

410 Register file
2 thread wide vector

SIMD unit 406

ALU

ALU 408
Front end fetch and decode logic

416 Register flle
4 thread wide vector

SIMD unit
ALU | ALU

412

ALU | ALU 414

Register file 422

8 thread wide vector SIMD unit 418

ALU | ALUALU | ALU

ALU ALU ALU ALU

420

US 10,713,059 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2014/0344549 A1 * 11/2014 Nilsson

2015/0143083 A1 * 5/2015 Le

G06F 15/8053
712/7

G06F 9/30018
712/205

GO6F 9/30036
712/7

G06F 9/3851
712/206

2015/0242210 A1 * 8/2015 Kim

2016/0132338 A1 * 5/2016 Jin

OTHER PUBLICATIONS

Nicolas Brunie , Sylvain Collange , Gregory Diamos . “ Simultaneous
Branch and Warp Interweaving for Sustained GPU Performance ” ,
39th Annual International Symposium on Computer Architecture
(ISCA) , Portland , OR , United States . pp . 49-60 (Year : 2012) . *

* cited by examiner

U.S. Patent

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Jul . 14 , 2020

Thread 1

Thread 2

Cycle 1

Sheet 1 of 7

Thread 5

Cycle 2

FIG . 1

US 10,713,059 B2

206

U.S. Patent

200

Storage

204

212

11

202

s

Input driver

Jul . 14 , 2020

Processor

Memory

--214

A

Sheet 2 of 7

Input devices

Output driver
L

208

Output devices

FIG . 2

US 10,713,059 B2

210

U.S. Patent Jul . 14 , 2020 Sheet 3 of 7 US 10,713,059 B2

302 304 FIG . 3
(Prior Art)

300

Scalar
ALU

308a

306a Register file
16 thread wide vector SIMD unit

ALU ALU || ALU ALU || ALU || ALU | ALU ALU

ALU || ALU | ALU | ALU | ALU | ALU | ALU | ALU

308b

306b Register file
16 thread wide vector SIMD unit

ALU ALU || ALUALU || ALU || ALU | ALU ALU

Front end fetch and decode logic ALU || ALU || ALU || ALU || ALU || ALU || ALU ALU

308c

306c Register file
16 thread wide vector SIMD unit

ALU || ALU || ALU ALU || ALU | ALU || ALU ALU

ALU || ALU || ALU || ALU | ALU ALU || ALU ALU

308d

306d
Register file

16 thread wide vector SIMD unit
ALU || ALU || ALU | ALUALU | ALU || ALU | ALU

ALU ALU || ALU ALU || ALU | ALU | ALU ALU

310

U.S. Patent Jul . 14 , 2020 Sheet 4 of 7 US 10,713,059 B2

402 404a

FIG . 4

Scalar
ALU

400

Scalar
ALU 404b

410 Register file
2 thread wide vector

SIMD unit 406

ALU

ALU 408

Front end fetch and decode logic
416 Register file

4 thread wide vector
SIMD unit 412

ALU ALU

ALU || ALU -414

Register file 422

8 thread wide vector SIMD unit 418

ALU ALU || ALU ALU

ALU ALU || ALU || ALU

420

500

U.S. Patent

502

Thread pool

506

5041

-504N

????

-

Jul . 14 , 2020

Issue unit 1

Issue unit N

510

5081

– 508N

Sheet 5 of 7

—

Execution unit 1

Execution unit N

- |

- -

Compute unit 1

Compute unit N

5121

512N

FIG . 5A

US 10,713,059 B2

520

5221

522N

U.S. Patent

Thread pool 1

Thread pool N

5241

-524N

-

—

Jul . 14 , 2020

Issue unit 1

Issue unit N

528

5261

- 526N

Sheet 6 of 7

-

Execution unit 1

Execution unit N

- -

Compute unit 1

Compute unit N

5301

530N

US 10,713,059 B2

FIG . 5B

U.S. Patent Jul . 14 , 2020 Sheet 7 of 7 US 10,713,059 B2

600
Start

602
Determine

available SIMD
units and their

widths

604
Determine the
number of

currently active
threads

606
Assign the active
threads to the
available SIMD

units

608
End

FIG . 6

1

15

20

US 10,713,059 B2
2

HETEROGENEOUS GRAPHICS know which thread will be the laggard because of data
PROCESSING UNIT FOR SCHEDULING dependent loop trip - counts , memory latency , whims of the
THREAD GROUPS FOR EXECUTION ON scheduler , etc.

VARIABLE WIDTH SIMD UNITS Similarly , static techniques cannot know when the vector
5 units will run inefficiently due to issues like wavefront

STATEMENT REGARDING FEDERALLY imbalance , where many threads will be predicated off .
SPONSORED RESEARCH OR DEVELOPMENT

SUMMARY OF EMBODIMENTS
This invention was made with government support under

Prime Contract Number DE - AC52-07NA27344 , Subcon- 10 Some embodiments provide a compute unit configured to
tract Number B600716 awarded by the Department of execute multiple threads in parallel including one or more
Energy (DOE) . The government has certain rights in the single instruction multiple data (SIMD) units and a fetch and
invention . decode logic . The SIMD units have differing numbers of

arithmetic logic units (ALUS) , such that each SIMD unit can TECHNICAL FIELD execute a different number of threads . The fetch and decode
logic is in communication with each of the SIMD units , and The disclosed embodiments are generally directed to is configured to assign the threads to the SIMD units for graphics processing units , and in particular , to parallel

dispatch of instructions in a graphics processing unit . execution based on such differing numbers of ALUs . With
this construction , no thread (or a lesser number of threads)

BACKGROUND will be predicated off .
Some embodiments provide a computing system config

Current graphics processing units (GPUs) issue and ured to execute multiple threads in parallel including a
execute groups of threads called a " wavefront . " GPU archi plurality of single instruction multiple data (SIMD) units
tectures issue wavefronts of a constant , fixed size that 25 and a plurality of issue units . The SIMD units have differing
depends on the GPU hardware's microarchitecture . In some numbers of arithmetic logic units (ALUs) , such that each
implementations , a wavefront is a group of 64 threads , SIMD unit can execute a different number of threads . Each
which are issued in groups of 16 threads through a 16 thread issue unit is configured to assign the threads to the SIMD
wide single instruction , multiple data (SIMD) unit over four units for execution based on such differing numbers of
cycles . In many cases , all 64 threads are executing . But some 30 ALUs . With this construction , no thread (or a lesser number
of these threads may be predicated off at various times , of threads) will be predicated off .
meaning that they execute but the results of the executed Some embodiments provide a method for executing mul
instructions are discarded . Predicating the threads is done to tiple threads in parallel . One or more single instruction
simplify the microarchitecture , yielding a smaller area and multiple data (SIMD) units are provided , wherein the SIMD
better chip - wide performance . But predicating the threads is 35 units have differing numbers of arithmetic logic units
also a source of inefficiency in the pipeline , as the predicated (ALUS) , such that each SIMD unit can execute a different
instructions take up space and power in the vector pipeline number of threads . The threads are assigned to the SIMD
of the GPU . units for execution based upon such differing numbers of

FIG . 1 shows how an eight thread wide wavefront can be ALUS .
executed over two cycles on a four thread wide GPU 40 Some embodiments provide a non - transitory computer
microarchitecture . Threads 1-4 are issued on the first cycle , readable storage medium storing a set of instructions for
and threads 5-8 are issued on the second cycle . Some of execution by one or more processors to facilitate manufac
these threads may be predicated off (for example , threads 3 , ture of an integrated circuit to execute multiple threads in
4 , and 6-8) and are shown in FIG . 1 as empty boxes , showing parallel . The set of instructions includes a providing code
inefficiencies in the GPU pipeline . 45 segment and an assigning code segment . The providing code
Many GPU workloads are non - uniform , and have numer segment provides one or more single instruction multiple

ous wavefronts with predicated - off threads . These instruc data (SIMD) units , wherein the SIMD units have differing
tions still take up space in the pipeline . Unfortunately , the numbers of arithmetic logic units (ALUS) , such that each
predicated instructions take up space , waste power , produce SIMD unit can execute a different number of threads . The
heat , and produce no useful output . 50 assigning code segment assigns the threads to the SIMD
Modern GPU microarchitectures have vector , scalar , and units for execution based upon such differing numbers of

other functional units within the GPU cores . The type of ALUS .
instruction to be performed determines which unit of the
pipeline will execute that particular instruction . For instance , BRIEF DESCRIPTION OF THE DRAWINGS
scalar instructions (which are used for control flow) execute 55
on the scalar units , while vector math instructions are A more detailed understanding may be had from the
combined into wavefronts and executed in parallel on vector following description , given by way of example in conjunc
pipelines . This approach allows the compiler / finalizer to tion with the accompanying drawings , wherein :
make certain tradeoffs that are knowable at compile time FIG . 1 shows an example of predicated - off threads ;
(e.g. , that an operation is replicated across all lanes of the 60 FIG . 2 is a block diagram of an example device in which
vector , and thus can be executed once on a scalar unit and one or more disclosed embodiments may be implemented ;
have its single result shared with all threads) . FIG . 3 is a block diagram of a portion of an existing

The current approaches do not address dynamic runtime compute unit within a GPU ;
behavior that is difficult or impossible to know at compile FIG . 4 is a block diagram of a portion of a compute unit
time . For example , there may be instances where all but one 65 with different sizes of SIMD units ;
thread is waiting at a barrier for the one thread to complete . FIG . 5A is a diagram of a portion of a GPU with multiple
Unfortunately , at compile time , it is often impossible to issue units and a single thread pool ;

202 may

US 10,713,059 B2
3 4

FIG . 5B is a diagram of a portion of a GPU with multiple with an associated register file 308a - 308d . Each of the
issue units and multiple thread pools ; and vector SIMD units 306 includes 16 ALUS 310 .

FIG . 6 is a flowchart of a method for assigning threads to FIG . 4 is a block diagram of a portion of a compute unit
a compute unit with different sizes of SIMD units . 400 with different sizes of SIMD units . It is noted that the

5 compute unit 400 includes various additional components
DETAILED DESCRIPTION not shown in FIG . 4. FIG . 4 only shows the portions of the

compute unit 400 relevant to understanding the concepts
A compute unit configured to execute multiple threads in described herein .

parallel is presented . The compute unit includes one or more The compute unit 400 includes a front end fetch and
single instruction multiple data (SIMD) units and a fetch and 10 decode logic 402 and one or more scalar arithmetic logic
decode logic . The SIMD units have differing numbers of units (ALUS) 404a , 404b . The compute unit 400 also
arithmetic logic units (ALUS) , such that each SIMD unit can includes a number of different sizes of SIMD units . A two
execute a different number of threads . The fetch and decode thread wide vector SIMD unit 406 includes two ALUS 408
logic is in communication with each of the SIMD units , and and has an associated register file 410. A four thread wide
is configured to assign the threads to the SIMD units for 15 vector SIMD unit 412 includes four ALUS 414 and has an
execution based on such differing numbers of ALUs . associated register file 416. An eight thread wide vector

FIG . 2 is a block diagram of an example device 200 in SIMD unit 418 includes eight ALUS 420 and has an asso
which one or more disclosed embodiments may be imple ciated register file 422 .
mented . The device 200 may include , for example , a com It is noted that while the compute unit 400 is shown with
puter , a gaming device , a handheld device , a set - top box , a 20 two scalar ALUs 404 , one two thread wide vector SIMD unit
television , a mobile phone , or a tablet computer . The device 406 , one four thread wide vector SIMD unit 412 , and one
200 includes a processor 202 , a memory 204 , a storage 206 , eight thread wide vector SIMD unit 418 , the compute unit
one or more input devices 208 , and one or more output 400 may be constructed with different numbers of the scalar
devices 210. The device 200 may also optionally include an units and the SIMD units without affecting the overall
input driver 212 and an output driver 214. It is understood 25 operation of the compute unit 400. Alternatively , SIMD
that the device 200 may include additional components not units 406 , 412 , and 418 may initially have the same width
shown in FIG . 2 . (e.g. , each being an eight thread wide SIMD unit) but may

The processor include a central processing unit be configured (on a demand basis) to deactivate (e.g. ,
(CPU) , a graphics processing unit (GPU) , a CPU and GPU through gating mechanisms , disabling , powering off , etc.) to
located on the same die , or one or more processor cores , 30 have different widths (e.g. , a two thread wide , a four thread
wherein each processor core may be a CPU or a GPU . The wide , and an eight thread wide SIMD unit , as described
memory 204 may be located on the same die as the processor above , by deactivating , six , four , and zero , respectively ,
20 or may be located separately from the processor 202 . pipes or ALUs in each unit) .
The memory 204 may include a volatile or non - volatile By providing a set of execution resources within each
memory , for example , random access memory (RAM) , 35 GPU compute unit tailored to a range of execution profiles ,
dynamic RAM , or a cache . the GPU can handle irregular workloads more efficiently .

The storage 206 may include a fixed or removable stor Current GPUs (for example , as shown in FIG . 3) only
age , for example , a hard disk drive , a solid state drive , an support a single uniform wavefront size (for example , logi
optical disk , or a flash drive . The input devices 208 may cally supporting 64 thread wide vectors by piping threads
include a keyboard , a keypad , a touch screen , a touch pad , 40 through 16 thread wide vector units over four cycles) . Vector
a detector , a microphone , an accelerometer , a gyroscope , a units of varying widths (for example , as shown in FIG . 4)
biometric scanner , or a network connection (e.g. , a wireless may be provided to service smaller wavefronts , such as by
local area network card for transmission and / or reception of providing a four thread wide vector unit piped over four
wireless IEEE 802 signals) . The output devices 210 may cycles to support a wavefront of 16 element vectors . In
include a display , a speaker , a printer , a haptic feedback 45 addition , a high - performance scalar unit may be used to
device , one or more lights , an antenna , or a network con execute critical threads within kernels faster than possible in
nection (e.g. , a wireless local area network card for trans existing vector pipelines , by executing the same opcodes as
mission and / or reception of wireless IEEE 802 signals) . the vector units . Such a high performance scalar unit may , in

The input driver 212 communicates with the processor certain instances , allow for a laggard thread (as described
202 and the input devices 208 , and permits the processor 202 50 above) to be accelerated . By dynamically issuing wavefronts
to receive input from the input devices 208. The output to the execution unit best suited for their size and perfor
driver 214 communicates with the processor 202 and the mance needs , better performance and / or energy efficiency
output devices 210 , and permits the processor 202 to send than existing GPU architectures may be obtained .
output to the output devices 210. It is noted that the input If a wavefront has 64 threads (but only 16 active threads) ,
driver 212 and the output driver 214 are optional compo- 55 instead of scheduling the wavefront to a 16 thread wide
nents , and that the device 200 will operate in the same SIMD unit , the wavefront may be scheduled to a four thread
manner if the input driver 212 and the output driver 214 are wide SIMD unit . Based on demand (a need basis) , the
not present . scheduler determines whether to schedule the wavefront to

FIG . 3 is a block diagram of a portion of an existing all four thread wide SIMD units or just to a subset of the
compute unit 300 within a GPU . It is noted that the compute 60 SIMD units . The threads migrating between these functional
unit 300 and the GPU include various additional compo units can have their context (register values) migrated with
nents not shown in FIG . 3. FIG . 3 only shows the portions the help of software (using “ spill ” and “ fill ” instructions) or
of the compute unit 300 relevant to understanding the with dedicated hardware that helps the migration . Alter
concepts described herein . nately , only the data needed for the upcoming instruction or

The compute unit 300 includes a front end fetch and 65 instructions can be forwarded along with the work through
decode logic 302 , a scalar arithmetic logic unit (ALU) 304 , a register - functional unit crossbar or other interconnection .
four 16 thread wide vector SIMD units 306a - 306d , each This determination provides a finer granularity control over

US 10,713,059 B2
5 6

how the threads are executed . By dispatching work to a information is reported back to the issue logic every cycle ,
narrower vector unit compared to the baseline wide vector and once the issue logic determines what is needed in terms
unit , it is possible to execute only as many threads as will of overall thread width for execution , it dispatches the
actually produce results , thereby saving power . instructions for execution to the appropriate unit (s) .

Taken to the extreme , when there are a very small number 5 The issue logic dynamically determines which execution
of active threads within a GPU kernel , the GPU's architec unit to target for a given collection of threads (a wavefront)
ture can be more inefficient . Current GPU pipelines are based on a variety of factors . For instance , if the number of
optimized for throughput at the expense of latency . How active threads in a wavefront is very small (for example , one
ever , if these few active threads (for example , one) are or two) , the threads may be dispatched to the high - perfor
critical to entering the next phase of computation (or they are 10 mance scalar unit , where the instruction will complete in
the last threads that must be completed before a kernel is only a couple of cycles . This enables threads that are
finished) , then the heavily - threaded GPU execution engine potentially the bottleneck of computation to be executed
adds significant latency and provides no benefit . Being able more quickly and efficiently than would occur on a heavily
to dispatch these threads to a higher - performing scalar unit underutilized 64 element wide vector pipeline .
would increase total performance and improve power and 15 In another example , if performance counters or backpres
energy efficiency . sure signals from the memory system indicate that memory

This approach also works well with branch divergence in bandwidth is a bottleneck , issuing instructions to a narrower
a wavefront . Because of branch divergence , some threads execution engine (e.g. , a four thread wide engine over 16
follow a control flow path , and other threads will not follow clock cycles rather than a 16 thread wide engine over four
the control flow path , which means that many threads are 20 clock cycles) may prove more power efficient at no discern
predicated off . So effectively , there will only be a few ible performance cost .
subsets of threads running . When it is determined that the Different factors may be used to determine how to group
active threads can be run in a smaller width SIMD unit , then the threads together into a wavefront . This grouping may be
the threads will be moved to the smaller width SIMD unit , performed via a heuristic (for example , multiple if - then
and any unused SIMD units will not be powered up . 25 evaluations) . There is a trade - off between the complexity of

Similarly , if control divergence or other issues reduce the this analysis and wanting to group the threads as quickly as
number of active threads in a wavefront , the narrower possible , meaning that the best algorithm might take too
execution resource may be more efficient as well . For long to provide the best results .
example , some divergent wavefronts may have only half of Current GPUs (for example , as shown in FIG . 3) are
their threads enabled at any one time . In this case , it would 30 designed with a 16 thread wide SIMD unit , and there may
be preferable to execute the threads on an eight thread wide be multiple front - ends (multiple issue units) sharing multiple
vector pipeline over four cycles , rather than executing on a back - end units . The design may be modified to include N
16 thread wide vector pipeline over four cycles where the issue units that share M SIMD units , and those SIMD units
last two cycles are only issuing “ useless ” work that con may be of different thread widths .
sumes power for no results . The N issue units may be built as a distributed system ,

In another example , assume that a wavefront includes 16 where the issue units all pull from the same pool of available
threads to be scheduled to a 16 thread wide SIMD unit , and threads . For instance , if the system includes one thread pool
only four of the threads are executing (the remaining 12 and N issue units , the N issue units would agree on which
threads are not executing) . So there are 12 threads doing issue unit will issue thread X in the current cycle and which
" useless ” work , but they are also filling up pipeline cycles , 40 issue unit will issue thread Y in the current cycle . This may
thereby wasting energy and power . By using smaller (and be achieved by having all N issue units connected through
different) sizes of SIMD units (or vector pipelines) , the a crossbar or other on - chip network to a shared thread pool .
wavefronts can be dynamically scheduled to the appropriate Alternately , each issue unit may be associated with a private
width SIMD units , and the other SIMD units may be thread pool and could “ push ” control of a thread to other
powered off (e.g. , power gated off or otherwise deactivated) . 45 issue units or “ pull ” threads from another issue unit .
By doing so , the saved power may be diverted to the active The N issue units may share all M execution units , and
SIMD units to clock them at higher frequencies to boost would decide how to schedule the threads based on a
their performance . consensus algorithm . For example , each issue unit has an

The smaller width SIMD units may be , for example , one , execution unit (or set of execution units) which it prioritizes ,
two , four , or eight threads wide . When a larger thread width 50 and that issue unit can only issue threads to other execution
SIMD unit is needed , any available smaller thread width units if all other issue units agree to allow it . A different
SIMD units may be combined to achieve the same result . consensus algorithm would be to allow issue units to send
There is no performance penalty if , for example , the wave threads to an execution unit on a first - come , first - serve basis .
front needs a 16 thread wide SIMD unit , but the hardware But this does not mean that all issue units in the GPU must
only includes smaller thread width SIMD units . 55 be able to communicate with all execution units in the GPU ;

In some embodiments , the collection of heterogeneous the N issue units and M execution units may be grouped into
execution resources is shared among multiple dispatch " compute units ” that only make up part of the total resources
engines within a compute unit . For instance , rather than on a GPU .
having four 16 thread wide vector units , four dispatchers FIG . 5A is a diagram of a portion of a GPU 500 with a
could feed three 16 thread wide vector units , four four thread 60 single thread pool 502 and multiple issue units 504 , -5047 .
wide vector units , and four high - performance scalar units . The issue units 504 , -504y may be connected to each other
The dispatchers could arbitrate for these units based on their and to the thread pool 502 by a crossbar 506 or other type
required issue demands . of interconnection . Each issue unit 504 has one or more

The issue logic (the front - end of the hardware pipeline) associated execution units 508 , -508y . The execution units
needs to know the number and thread width of the available 65 508 , -508y are connected to the issue units 504 , -504y by a
SIMD units every cycle . The issue logic also needs to know crossbar 510 or other type of interconnection . Each issue
which threads are enabled or disabled every cycle . This unit 504 and its associated execution unit (s) 508 may be

35

1

US 10,713,059 B2
7 8

grouped together as a compute unit 512. As noted above , the ered vector units , other vector units (perhaps those running
execution units 508 may be associated with a single issue more performance - critical threads) could be overclocked to
unit 504 or may be shared among all of the issue units . yield higher overall program performance .

FIG . 5B is a diagram of a portion of a GPU 520 with FIG . 6 is a flowchart of a method 600 for assigning
multiple thread pools 522 , -522y and multiple issue units 5 threads to a compute unit with different sizes of SIMD units .
524 , -524y . Each thread pool 522,1-522y is associated with The number of available SIMD units and the width of each
a single issue unit 524 , -524y . Each issue unit 524 has one SIMD unit are determined (step 602) . The number of
or more associated execution units 526 , -526y . The execu currently active threads is determined (step 604) . The active
tion units 526 , -526y are connected to the issue units 524 , threads are assigned to the SIMD units , in a combination
5247 by a crossbar 528 or other type of interconnection . 10 such that work is not wasted (step 606) , and the method then
Each issue unit 524 and its associated execution unit (s) 526 terminates (step 608) .
may be grouped together as a compute unit 530. As noted It should be understood that many variations are possible
above , the execution units 526 may be associated with a based on the disclosure herein . Although features and ele
single issue unit 524 or may be shared among all of the issue ments are described above in particular combinations , each
units . 15 feature or element may be used alone without the other
Heterogeneous vector pipeline resources can be defined as features and elements or in various combinations with or

an array R [t] [i] , where t is a resource type and i is a resource without other features and elements .
identifier . A resource type in this case may be vector The methods provided may be implemented in a general
instructions or integer instructions , for example . Similarly , purpose computer , a processor , or a processor core . Suitable
heterogeneous decode and issue resources can be defined as 20 processors include , by way of example , a general purpose
an array D [t] [j] , where t is the decode type and jis a resource processor , a special purpose processor , a conventional pro
identifier . The mapping D T can be a “ few - to - many ” cessor , a digital signal processor (DSP) , a plurality of
operation . The scheduler dynamically maps D [t] [j] > R [t] [i] microprocessors , one or more microprocessors in associa
in such a way that instructions can be decoded and issued tion with a DSP core , a controller , a microcontroller , Appli
from a small (perhaps centralized) set of resources for this 25 cation Specific Integrated Circuits (ASICs) , Field Program
wavefront to any available vector stages for that type of mable Gate Arrays (FPGAs) circuits , any other type of
instruction . In some cases , it may be preferable to use both integrated circuit (IC) , and / or a state machine . Such proces
the regular vector pipelines and the smaller pipelines to sors may be manufactured by configuring a manufacturing
maximize total throughput of the system . process using the results of processed hardware description

As an example , two sets of threads , each trying to perform 30 language (HDL) instructions and other intermediary data
different operations , can be waiting to be scheduled within including netlists (such instructions capable of being stored
a GPU . The first set , threads 0-12 (13 threads) , are to on a computer readable media) . The results of such process
perform a floating point multiplication . The second group , ing may be maskworks that are then used in a semiconductor
threads 2013-2017 (five threads) , are to perform an integer manufacturing process to manufacture a processor which
addition . However , only two floating point units (FPUs) and 35 implements aspects of the embodiments .
two integer units (IUS) are available . The methods or flow charts provided herein may be

In this example , therefore , the constant wavefront of a implemented in a computer program , software , or firmware
classical GPU architecture would be two threads . The clas incorporated in a non - transitory computer - readable storage
sical GPU architecture would schedule the floating point medium for execution by a general purpose computer or a
multiplications over seven cycles across the two FPUs and 40 processor . Examples of non - transitory computer - readable
would schedule the integer instructions over three cycles storage mediums include a read only memory (ROM) , a
across the two IUs . So , the classical GPU architecture random access memory (RAM) , a register , cache memory ,
performs 14 threads of floating point work and six threads of semiconductor memory devices , magnetic media such as
integer work — wasted work for 13 and five threads worth of internal hard disks and removable disks , magneto - optical
work , respectively . 45 media , and optical media such as CD - ROM disks , and

Instead , for the floating point multiplication , six cyclesx digital versatile disks (DVDs) .
two FPUs and one cyclexone FPU may be scheduled , doing What is claimed is :
exactly 13 threads of work (the remaining FPU may be 1. A processing apparatus comprising a plurality of com
powered off , for instance) . Similarly , for the integer addi pute units configured to execute a plurality of threads , at
tion , two cyclesxtwo IUs and one cyclexone IU may be 50 least one compute unit comprising :
scheduled . a plurality of single instruction multiple data (SIMD)

If execution resources R [t] of different types can cover units , each of the plurality of SIMD units comprising (i)
certain computations , then the scheduler can schedule that a different fixed number of arithmetic logic units
computation over different heterogeneous resources . In the (ALUS) to execute a different fixed number of threads
example above , if the FPUs were also able to execute integer 55 and (ii) an associated register file separate from asso
operations (perhaps the IUs cannot execute floating point ciated register files of other SIMD units ;
operations , however) , then the extra integer operations avail one or more scalar ALUs each configured to execute a
able during the trailing cycle of the floating point operation thread of the plurality of threads faster than each of the
could be used by the integer instructions , further increasing plurality of SIMD units ;
pipeline efficiency . a fetch and decode logic in communication with each of

Finally , if these different types of units ran at different the plurality of SIMD execution units and each of the
frequencies (or if they were on different voltage islands , one or more scalar ALUS , the fetch and decode logic
allowing them to change voltage and frequency on demand) , configured to :
then it may be possible to schedule some threads on execu determine a number of active threads of a group of the
tion units running at different frequencies and with different 65 plurality of threads to be executed ;
thread widths , again potentially improving power efficiency . determine a width for the group of threads based on a
By utilizing the power saved by executing on lower - pow branch divergence of the group of threads ;

60

10

15

US 10,713,059 B2
9 10

determine , for each SIMD unit , a number of activated 7. The processing apparatus according to claim 6 , wherein
ALUS currently available to execute the group of the one or more processors is configured to assign the group
threads , wherein at least one SIMD unit has a different of threads to the SIMD units for execution such that a result
number of currently available activated ALUs than of the execution of each of the group of threads is not
another SIMD unit ; 5 discarded .

select one or more SIMD units to execute the group of 8. The processing apparatus according to claim 6 , wherein
threads based on the width and the number of activated the one or more processors are further configured to dynami ALUs currently available ; and cally change the number of activated ALUs of each SIMD assign , for execution , the number of active threads to the unit to one , two , four , eight , or sixteen ALUS . selected one or more SIMD units . 9. The processing apparatus according to claim 6 , wherein 2. The processing apparatus according to claim 1 , wherein

the one or more processors is configured to assign the the group of threads to be executed is a wavefront . group
of threads to the SIMD units for execution such that a result 10. The processing apparatus according to claim 6 , further
of the execution of each of the group of threads is not comprising :
discarded . one thread pool , shared by each of the plurality of issue

units . 3. The processing apparatus according to claim 1 , wherein
the one or more processors is further configured to dynami 11. The computing system according to claim 6 , further
cally change the number of activated ALUs of each SIMD comprising :
unit to one , two , four , eight , or sixteen ALUS . a plurality of thread pools , wherein one of the plurality of

4. The processing apparatus according to claim 1 , wherein 20 thread pools is associated with one of the plurality of
the group of threads to be executed is a wavefront . issue units .

5. The processing apparatus according to claim 1 , wherein 12. The processing apparatus according to claim 6 ,
the fetch and decode logic is further configured to dynami wherein any one of the plurality of issue units is configured
cally change the number of activated ALUs , of one or more to assign a thread to any one of the plurality of SIMD units .
of the plurality of SIMD units , currently available to execute 25 13. The processing apparatus according to claim 6 ,
the group of threads based on the number of active threads wherein each of the plurality of issue units has an associated
by deactivating one or more of the number of activated SIMD unit and is configured to assign a thread to any one of ALUs of the one or more SIMD units . the plurality of SIMD units . 6. A processing apparatus comprising a plurality of com 14. A method for executing a plurality of threads , com pute units configured to execute a plurality of threads , at 30 prising : least one compute unit comprising :

a plurality of single instruction multiple data (SIMD) executing a group of threads of the plurality of threads via
a plurality of single instruction multiple data (SIMD) units , each of the plurality of SIMD units comprising (i)

a different fixed number of arithmetic logic units units each comprising (i) a different fixed number of
(ALUs) to execute a different fixed number of threads 35 arithmetic logic units (ALUS) to execute a different
and (ii) an associated register file separate from asso fixed number of threads and (ii) an associated register
ciated register files of other SIMD units ; file separate from associated register files of other

SIMD units ; one or more scalar ALUs each configured to execute a
thread of the plurality of threads faster than each of the determining a number of active threads of the group of

threads ; plurality of SIMD units ;
a plurality of issue units in communication with the determining a width for the group of threads based on a

plurality of SIMD units , the plurality of issue units branch divergence of the group of threads ;
configured to : determining , for each SIMD unit , a number of activated

determine a number of active threads of a group of the ALUs currently available to execute the group of
plurality of threads to be executed ; threads , wherein at least one SIMD unit has a different

determine a width for the group of threads based on a number of currently available activated ALUs than
branch divergence of the group of threads ; another SIMD unit ;

determine , for each SIMD unit , a number of activated selecting one or more SIMD units to execute the of group
threads based on the width and the number of activated ALUs currently available to execute the group of

threads , wherein at least one SIMD unit has a different 50 ALUS currently available ;
number of currently available activated ALUS than assigning , for execution , the number of active threads to
another SIMD unit ; the selected one or more SIMD units ; and

select one or more SIMD units to execute the group of executing , via the plurality of SIMD units , the number of
threads based on the width and the number of activated active threads .

ALUs currently available ; and 15. The method according to claim 14 , wherein the group
of threads to be executed is a wavefront . assign , for execution , the number of active threads to the

selected one or more SIMD units .

40

45

55

