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ALLREDUCE ENHANCED DIRECT
MEMORY ACCESS FUNCTIONALITY

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to Provisional Patent
Application Ser. No. 63/044,606, entitled “ALLREDUCE
ENHANCED DIRECT MEMORY ACCESS FUNCTION-
ALITY”, filed Jun. 26, 2020, the entirety of which is
incorporated herein by reference.

BACKGROUND
Description of the Related Art

An emerging technology field is machine learning, with a
neural network being one type of a machine learning model.
Neural networks have demonstrated excellent performance
at tasks such as hand-written digit classification and face
detection. Additionally, neural networks have also shown
promise for performing well in other, more challenging,
visual classification tasks. Other applications for neural
networks include speech recognition, language modeling,
sentiment analysis, text prediction, and others. However,
neural networks often use significant amounts of processing
and memory resources.

Implementing neural networks on graphics processing
units (GPUs) or other parallel processing units (e.g., digital
signal processors (DSPs), field programmable gate arrays
(FPGAs), application specific integrated circuits (ASICs))
involves loading and processing large amounts of data.
Neural networks are often implemented on GPUs due to the
rapid increase in the processing power of GPUs. The
increase in processing power is, at least in part, due to
multiple independent processing units (e.g., single instruc-
tion multiple data (SIMD) processors, arithmetic logic units
(ALUs)) that are included in a GPU. In a typical application,
the multiple independent processing units are utilized to
perform parallel computations, calculations, and/or opera-
tions. For example, neural network applications can include
the same sequence of instructions being executed on mul-
tiple parallel data streams to yield a substantial speedup of
operations. However, neural network applications also
include operations that are not able to be performed in an
efficient manner on the traditional processing units of a
GPU.

GPUs include structures that support executing multiple
instantiations of a kernel. As used herein, the term “kernel”
is defined as a function declared in a program. When
operating upon multiple data elements, multiple instances of
a kernel are executed in parallel on multiple processing
elements. Each such instance is referred to as a “thread” or
“work-item” of execution. As used herein, the term “work-
item” is defined as one of a collection of parallel execution
of a kernel invoked on a processing unit by a command. A
group of such threads or work-items is also referred to herein
as a “warp” or “wavefront”. Typically, a GPU kernel has
multiple warps or wavefronts.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the methods and mechanisms
described herein may be better understood by referring to
the following description in conjunction with the accompa-
nying drawings, in which:
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FIG. 1 is a block diagram of one implementation of a
computing system.

FIG. 2 is a block diagram of another implementation of a
computing system.

FIG. 3 is a block diagram of one implementation of an
enhanced DMA engine.

FIG. 4 is a generalized flow diagram illustrating one
implementation of a method for efficiently executing a
machine learning model.

FIG. 5 is a generalized flow diagram illustrating one
implementation of a method for operating a multi-mode
enhanced DMA engine.

FIG. 6 is a generalized flow diagram illustrating one
implementation of a method for operating an enhanced
DMA engine.

FIG. 7 is a generalized flow diagram illustrating one
implementation of a method for converting a kernel into an
alternative type of executable.

FIG. 8 is a generalized flow diagram illustrating one
implementation of a method for operating an enhanced
DMA engine.

DETAILED DESCRIPTION OF
IMPLEMENTATIONS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various
implementations may be practiced without these specific
details. In some instances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown in detail to avoid obscuring the
approaches described herein. It will be appreciated that for
simplicity and clarity of illustration, elements shown in the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

Various systems, apparatuses, and methods for perform-
ing an allreduce operation on an enhanced direct memory
access (DMA) engine are disclosed herein. In one imple-
mentation, a system includes at least a first processor, a
second processor, and one or more memory devices acces-
sible by the first and second processors. In one implemen-
tation, the first processor launches work to be performed on
the second processor. In one implementation, the second
processor includes a plurality of compute units as well as
one or more enhanced DMA engines. Each enhanced DMA
engine can perform one or more arithmetic and/or logical
operations on retrieved data prior to storing the data.

In one implementation, the system implements a machine
learning application which includes a first kernel and a
second kernel. The first kernel corresponds to a first portion
of' a machine learning model while the second kernel cor-
responds to a second portion of the machine learning model.
The first processor invokes a first kernel on the plurality of
compute units and converts a second kernel into a collective
communication operation command executable by the
enhanced DMA engine. The first kernel is executed on the
plurality of compute units in parallel with the enhanced
DMA engine executing the collective communication opera-
tion command. In one implementation, as a result of imple-
menting the machine learning application, the system gen-
erates a classification of an input dataset (e.g., an image). In
other implementations, other objectives can be achieved as
a result of implementing the machine learning application.
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Referring now to FIG. 1, a block diagram of one imple-
mentation of a computing system 100 is shown. In one
implementation, computing system 100 includes at least
processors 105A-N, input/output (I/O) interfaces 120, bus
125, memory controller(s) 130, network interface 135,
memory device(s) 140, display controller 150, and display
155. In other implementations, computing system 100
includes other components and/or computing system 100 is
arranged differently. Processors 105A-N are representative
of any number of processors which are included in system
100.

In one implementation, processor 105A is a general-
purpose processor, such as a central processing unit (CPU).
In this implementation, processor 105A executes a driver
106 (e.g., graphics driver) for controlling the operation of
one or more of the other processors in system 100. It is noted
that depending on the implementation, driver 106 can be
implemented using any suitable combination of hardware,
software, and/or firmware. In one implementation, processor
105N is a data parallel processor with a highly parallel
architecture. Data parallel processors include graphics pro-
cessing units (GPUs), digital signal processors (DSPs), field
programmable gate arrays (FPGAs), application specific
integrated circuits (ASICs), and so forth. In some imple-
mentations, processors 105A-N include multiple data par-
allel processors. In one implementation, processor 105N is
a GPU which provides pixels to display controller 150 to be
driven to display 155.

When a neural network is being implemented on multiple
GPUs (or on other types of parallel processors), an allreduce
operation is typically performed using the compute units of
the GPUs. The compute units include the parallel processing
resources of the GPU. As used herein, an “allreduce opera-
tion” is defined as a reduction operation that combines
multiple data inputs into a single data output using an
arithmetic and/or logical operator possibly followed by a
broadcast of the single data set. In a ring-based allreduce
operation, a GPU receives data from a previous node,
reduces the received data with its own data, and then sends
the reduced data to the next node. Other types of allreduce
operations besides ring-based approaches can also be used.
In one implementation, for a distributed deep learning
application, the gradient of the loss function is computed
using a minibatch on each GPU of multiple GPUs. Next, the
mean of the gradients is computed and distributed to the
GPUs using an allreduce operation. Then, the deep learning
model is updated. In other scenarios, other types of appli-
cations can be implemented that perform an allreduce opera-
tion.

Using the compute units to perform allreduce is inefficient
because the compute units are general purpose and could be
doing other useful computation. There are also a limited
amount of execution resources available, and performing
allreduce puts added pressure on the execution resources.
Consequently, there is a negative performance impact asso-
ciated with the traditional allreduce approach. Accordingly,
techniques for enabling the execution of an allreduce opera-
tion on an enhanced DMA engine, rather than on the GPU’s
compute units, will be described throughout the remainder
of this disclosure.

Memory controller(s) 130 are representative of any num-
ber and type of memory controllers accessible by processors
105A-N. While memory controller(s) 130 are shown as
being separate from processor 105A-N, it should be under-
stood that this merely represents one possible implementa-
tion. In other implementations, a memory controller 130 can
be embedded within one or more of processors 105A-N
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and/or a memory controller 130 can be located on the same
semiconductor die as one or more of processors 105A-N.
Memory controller(s) 130 are coupled to any number and
type of memory devices(s) 140. For example, the type of
memory in memory device(s) 140 includes high-bandwidth
memory (HBM), non-volatile memory (NVM), Dynamic
Random Access Memory (DRAM), Static Random Access
Memory (SRAM), NAND Flash memory, NOR flash
memory, Ferroelectric Random Access Memory (FeRAM),
or others.

1/0 interfaces 120 are representative of any number and
type of 1/O interfaces (e.g., peripheral component intercon-
nect (PCI) bus, PCI-Extended (PCI-X), PCIE (PCI Express)
bus, gigabit Ethernet (GBE) bus, universal serial bus
(USB)). Various types of peripheral devices (not shown) are
coupled to /O interfaces 120. Such peripheral devices
include (but are not limited to) displays, keyboards, mice,
printers, scanners, joysticks or other types of game control-
lers, media recording devices, external storage devices,
network interface cards, and so forth. Network interface 135
is used to receive and send network messages across a
network (not shown).

In various implementations, computing system 100 is a
computer, laptop, mobile device, game console, server,
streaming device, wearable device, or any of various other
types of computing systems or devices. It is noted that the
number of components of computing system 100 varies
from implementation to implementation. For example, in
other implementations, there are more or fewer of each
component than the number shown in FIG. 1. It is also noted
that in other implementations, computing system 100
includes other components not shown in FIG. 1. Addition-
ally, in other implementations, computing system 100 is
structured in other ways than shown in FIG. 1.

Turning now to FIG. 2, a block diagram of another
implementation of a computing system 200 is shown. In one
implementation, system 200 includes GPU 205, system
memory 225, and local memory 230. System 200 can also
include other components which are not shown to avoid
obscuring the figure. GPU 205 includes at least command
processor 235, control logic 240, dispatch unit 250, compute
units 255A-N, enhanced DMA (EDMA) engine 215A, DMA
engine 215N, memory controller 220, global data share 270,
level one (1) cache 265, and level two (L.2) cache 260. In
other implementations, GPU 205 includes other compo-
nents, omits one or more of the illustrated components, has
multiple instances of a component even if only one instance
is shown in FIG. 2, and/or is organized in other suitable
manners. In one implementation, the circuitry of GPU 205
is included in processor 105N (of FIG. 1).

In wvarious implementations, computing system 200
executes any of various types of software applications. As
part of executing a given software application, a host CPU
(not shown) of computing system 200 launches work to be
performed on GPU 205. In one implementation, command
processor 235 receives kernels from the host CPU and uses
dispatch unit 250 to issue corresponding wavefronts to
compute units 255A-N. Wavefronts executing on compute
units 255A-N read and write data to global data share 270,
L1 cache 265, and L2 cache 260 within GPU 205. Although
not shown in FIG. 2, in one implementation, compute units
255A-N also include one or more caches and/or local
memories within each compute unit 255A-N.

In one implementation, each compute unit 255A-N is a
Single Instruction Multiple Data (SIMD) processing core.
As referred to herein, a “compute unit” is a pipeline, or
programming model, where respective instantiations of the
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same kernel are executed concurrently. Each processing
element in a compute unit executes a respective instantiation
of the same kernel. An instantiation of a kernel, along with
its associated data, is called a work-item or thread. Thus, a
kernel is the code for a work-item, and a work-item is the
basic unit of work on a compute unit. All instantiations of a
kernel executing on compute units 255A-N comprise a
global domain of work-items. This global domain of work-
items can represent the entire computation domain, and a
work-item within the computation domain represents a
particular task to be performed. In order to simplify execu-
tion of work-items on GPU 205, work-items are grouped
together into wavefronts. A wavefront is a collection of
related work-items that execute together on a single compute
unit.

In parallel with command processor 235 launching wave-
fronts on compute units 255A-N, enhanced DMA engine
215A performs various DMA operations along with addi-
tional arithmetic and/or logical operations on the data
retrieved during the DMA operations. It is noted that DMA
engines 215A-N are representative of any number of DMA
engines. DMA engines 215A-N can include any number of
enhanced DMA engines as well as any number of regular
DMA engines. While enhanced DMA engine 215A and
regular DMA engine 215N each include traditional DMA
control logic, enhanced DMA engine 215A also include an
arithmetic logic unit (ALU) for performing arithmetic and/or
logical operations on the retrieved data. For example, the
ALU can perform one or more of addition, multiplication,
maximum, minimum, reduction, average, XOR, and/or other
operations.

Referring now to FIG. 3, a block diagram of one imple-
mentation of an enhanced DMA engine 300 is shown.
Enhanced DMA engine 300 includes at least control logic
305 and arithmetic logic unit (ALU) 310. In one embodi-
ment, the components of enhanced DMA engine 300 are
included within enhanced DMA engine 215A (of FIG. 2).
The operation of control logic 305 and ALU 310 is deter-
mined based on the values of various control parameters
such as loop iteration number 315, start load addresses
320A-N, end load addresses 325A-N, load strides 330A-N,
start store addresses 335A-N, end store addresses 340A-N,
store strides 345A-N, operator flag(s) 350, and other param-
eters. In one implementation, these parameters are set based
on data values and/or flags associated with one or more
commands stored in a queue in memory, stored in a register
associated with enhanced DMA engine 300, or stored in
another location by a CPU, GPU, or other device. It should
be understood that the list of parameters shown in FIG. 3 is
merely representative of one particular implementation. In
other implementations, other types of parameters than those
shown in FIG. 3 can be programmed by an external device
and used by enhanced DMA engine 300.

In one implementation, control logic 305 includes a state
machine and logic for generating read and write commands.
The state machine implements a loop for a number of
specified iterations. Control logic 305 is also coupled to
ALU 310 for performing any of various arithmetic and/or
logical operations on retrieved data. A traditional DMA
engine (e.g., DMA engine 215N of FIG. 2) would typically
include control logic 305 but not ALU 310. In one imple-
mentation, commands received by enhanced DMA engine
300 include flags specifying which arithmetic and/or logical
operations to perform on the retrieved data. These operations
can include, but are not limited to, addition, multiplication,
maximum value, averaging, reduction, XOR, and others. In
one implementation, these operations can be performed as
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part of a machine learning algorithm. For example, in one
embodiment, while the compute units of a processor (e.g.,
GPU 205 of FIG. 2) are executing compute kernels of the
machine learning algorithm, enhanced DMA engine 300
performs an allreduce operation of the machine learning
algorithm.

In one implementation, loop iteration number 315 stores
the number of times the loop should be iterated by control
logic 305. Start load addresses 320A-N and end load
addresses 325A-N specify the start and end addresses,
respectively, of locations from which to load data. Load
strides 330 specify a stride or pattern of addresses from
which data is loaded for each separate set of load addresses.
Any number of sets of load addresses can be specified, from
1 to N, where N is a positive integer greater than 1. Start
store addresses 335A-N and end store addresses 340A-N
specify the start and end addresses, respectively, of where
data should be stored. Store strides 345A-N specity a stride
or pattern of addresses at which data is stored for each
separate set of store addresses. Any number of sets of store
addresses can be specified, from 1 to N. Operator flag(s) 350
specify the arithmetic and/or logical operations that ALU
310 should perform on the loaded data. These operations can
include, but are not limited to, addition, multiplication,
maximum, reduction, average, XOR, and/or other opera-
tions. In one implementation, if a first operator flag 350 is
set, AL U 310 performs a reduce operation to load a plurality
of values from an input array and store the output in a single
memory location. In other implementations, other operator
flag(s) 350 can be set to specify other types of operations
(e.g., reduce-scatter) to be performed.

Depending on the implementation, ALLU 310 can include
different type of units to perform operations on different
types of operands. For example, in one implementation,
ALU 310 can include units which can perform operations on
32-bit integers, 64-bit integers, 32-bit floating point num-
bers, and 64-bit floating point numbers. In other implemen-
tations, ALU 310 can include units for performing opera-
tions on operands which are stored in other types of formats.
For example, formats that can be specified include, but are
not limited to, bitfield, signed integer, unsigned integer,
characters, standard floating-point (e.g., Institute of Electri-
cal and Electronics Engineers (IEEE) 754 floating point),
custom floating point, fixed-point fractions, a bit-width field,
and/or combinations of multiple values (e.g., complex data
types with a real component and an imaginary component).
It is noted that enhanced DMA engine 300 represents one
particular type of an enhanced DMA engine that can be
implemented. Other types of enhanced DMA engines with
other components and/or structured in other suitable man-
ners are possible and are contemplated.

Turning now to FIG. 4, one implementation of a method
400 for efficiently executing a machine learning model is
shown. For purposes of discussion, the steps in this imple-
mentation and those of FIG. 5-8 are shown in sequential
order. However, it is noted that in various implementations
of the described methods, one or more of the elements
described are performed concurrently, in a different order
than shown, or are omitted entirely. Other additional ele-
ments are also performed as desired. Any of the various
systems or apparatuses described herein are configured to
implement method 400.

A first processor receives a software application for
implementing a machine learning model (block 405). The
first processor detects a first kernel and a second kernel of
the software application, where the first kernel involves a
computation phase and the second kernel involves a collec-
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tive communication phase of the machine learning model
(block 410). In response to detecting the first kernel, the first
processor invokes the first kernel on a plurality of compute
units of a second processor to cause a first portion of the
machine learning model to be implemented (block 415). In
response to detecting the second kernel, the first processor
converts the second kernel into an enhanced DMA engine
command routine (block 420). In other words, the first
processor converts the second kernel into one or more
commands which are executable on the enhanced DMA
engine. Next, the enhanced DMA engine executes the
enhanced DMA engine command routine to cause a second
portion of the machine learning model to be implemented
(block 425).

In one implementation, the second portion of the machine
learning model involves performing an allreduce operation.
For example, in this implementation, the first portion of
machine learning model involves computing updates to the
machine learning model (i.e., gradients). The first portion
can be performed across multiple processors. In this imple-
mentation, the second portion of the machine learning model
involves exchanging the gradients among the multiple pro-
cessors. Next, a sum of the gradients is computed and then
an average gradient is calculated from the sum. In other
implementations, the second portion of the machine learning
model involves performing other types of operations. It is
noted that blocks 415 and 425 are performed in parallel so
that the compute units are performing the computation phase
while the enhanced DM A engine is simultaneously perform-
ing the collective communication phase. After blocks 415
and 425, method 400 ends. By performing method 400, the
machine learning model is implemented more efficiently on
the computing system by distributing the workload between
the compute units and the enhanced DM A engine rather than
implementing both first and second kernels on the compute
units.

Referring now to FIG. 5, one implementation of a method
500 for operating a multi-mode enhanced DMA engine is
shown. An enhanced DMA engine detects an indication that
a command has been added to a command queue which is
associated with the enhanced DMA engine (block 505). The
indication can be generated and detected in a variety of
different manners. For example, in one implementation, the
enhanced DMA engine monitors the command queue to
detect new commands. In another implementation, a device
(e.g., CPU) writing the command to the command queue
sends a wake-up signal to the enhanced DMA engine. In
other implementations, other mechanisms can be used for
detecting that a command has been added to the command
queue.

In response to detecting the indication, the enhanced
DMA engine retrieves the command (block 510). If a first
flag is set in the retrieved command (conditional block 515,
“yes” leg), then the enhanced DM A engine operates in a first
mode when executing the command (block 520). In one
implementation, the first mode involves performing an
operation on data in between reading the data from a first
location and writing the data to a second location. In other
implementations, the first mode can involve other types of
actions. If the first flag is not set in the retrieved command
(conditional block 515, “no” leg), then the enhanced DMA
engine operates in a second mode when executing the
command (block 525). In one implementation, the second
mode involves performing a traditional DMA operation by
copying data from a first location to a second location. After
blocks 520 and 525, method 500 ends.
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Turning now to FIG. 6, one implementation of a method
600 for operating an enhanced DMA engine is shown. A
processor provides a start address, end address, optional
stride, and an operation flag to an enhanced DMA engine
(block 605). The processor can also provide other param-
eters (e.g., iteration number) to the enhanced DMA engine.
The operation flag specifies a mathematical or logical opera-
tion to perform on the data being loaded. Then, the enhanced
DMA engine is woken up to perform an enhanced DMA
transfer process (block 610). In response to being woken up,
the enhanced DMA engine generates load operations and
store operations for the system based on the start address,
end address, and optional stride (block 615).

Subsequent to performing one or more load operations,
the enhanced DMA engine performs the specified operation
on the corresponding data prior to storing the data to one or
more target addresses (block 620). In one implementation,
the specified operation is a reduction operation. In another
implementation, the specified operation is a compare-and-
swap operation, and the compare-and-swap operation takes
in multiple input values, compares them, and then optionally
swaps multiple input values with multiple separate output
locations. In other implementations, other operations can be
performed in block 620. If all load operations have been
performed (conditional block 625, “no” leg), then method
600 ends. Otherwise, if there are more load operations to
perform (conditional block 625, “yes” leg), then method 600
returns to block 620.

Referring now to FIG. 7, one implementation of a method
700 for converting a kernel into an alternative type of
executable is shown. A first processor receives a kernel
which targets a plurality of compute units on a second
processor (block 705). Rather than dispatching the kernel to
the plurality of compute units, the first processor converts
the kernel into a set of commands that are executable by an
enhanced DMA engine (block 710). Then, the first processor
issues the set of commands to the enhanced DMA engine
(block 715). Next, the enhanced DMA engine executes the
set of commands (block 720). After block 720, method 700
ends. By performing method 700, the original application
does not need to be modified by the programmer to target a
system with an enhanced DMA engine. Rather, existing
applications can be converted during run-time by the first
processor for systems employing enhanced DMA engines.

Turning now to FIG. 8, one implementation of a method
800 for operating an enhanced DMA engine is shown. The
enhanced DMA engine detects a command stored in a
command queue, where the command targets the enhanced
DMA engine (block 805). The enhanced DMA engine
retrieves an operation flag from the detected command
(block 810). If the operation flag has a first value (condi-
tional block 815, “yes” leg), then the enhanced DMA engine
operates in a first mode (block 820). While operating in the
first mode, the enhanced DMA engine causes an internal
ALU to enter a reduced-power state (block 825). Also,
control logic of the enhanced DMA engine performs a DMA
transfer operation (block 830). It is noted that a DMA
transfer operation refers to a traditional DMA operation
where data is copied from one or more first locations to one
or more second locations without any operations being
performed on the data. After block 830, method 800 ends.

If the operation flag has a second value (conditional block
815, “second” leg), then the enhanced DMA engine wakes
up the internal ALU if the ALU is currently in a reduced-
power state (block 835). Also, control logic of the enhanced
DMA engine performs one or more read operations to load
first data into the enhanced DMA engine (block 840). Next,
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the control logic of the enhanced DMA engine causes the
internal AL U to perform one or more operations on the first
data to generate second data (block 845). It is noted that in
one implementation, the command includes a data-type flag
which specifies a data format of operands of the first data
being operated on by the ALU. For example, the data-type
flag specifies integer or floating-point in one implementa-
tion. In another implementation, the data-type flag also
specifies a precision of the data format (e.g., single-precision
floating point, double-precision floating point). After block
845, the control logic of the enhanced DMA engine performs
one or more write operations to store the second data (block
850). After block 850, method 800 ends.

In various implementations, program instructions of a
software application are used to implement the methods
and/or mechanisms described herein. For example, program
instructions executable by a general or special purpose
processor are contemplated. In various implementations,
such program instructions are represented by a high level
programming language. In other implementations, the pro-
gram instructions are compiled from a high level program-
ming language to a binary, intermediate, or other form.
Alternatively, program instructions are written that describe
the behavior or design of hardware. Such program instruc-
tions are represented by a high-level programming language,
such as C. Alternatively, a hardware design language (HDL)
such as Verilog is used. In various implementations, the
program instructions are stored on any of a variety of
non-transitory computer readable storage mediums. The
storage medium is accessible by a computing system during
use to provide the program instructions to the computing
system for program execution. Generally speaking, such a
computing system includes at least one or more memories
and one or more processors configured to execute program
instructions.

It should be emphasized that the above-described imple-
mentations are only non-limiting examples of implementa-
tions. Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims
be interpreted to embrace all such variations and modifica-
tions.

What is claimed is:

1. An enhanced direct memory access (DMA) engine
comprising:

an arithmetic logic unit (ALU); and

control logic comprising circuitry configured to:

detect a command that identifies an operation, wherein
the command corresponds to a kernel converted into
one or more commands executable by the enhanced
DMA;
perform a DMA transfer operation, comprising at least
a read operation to a memory to load data into the
enhanced DMA engine, responsive to an operation
flag in the command having a first value; and
responsive to the operation flag in the command has
having a second value:
perform one or more read operations to the memory
to load first data comprising multiple data inputs
into the enhanced DMA engine;
cause the ALU to combine the multiple data inputs
into a single data output; and
convey the single data output.

2. The enhanced DMA engine as recited in claim 1,
wherein when the operation flag has the second value, the
command includes a field specifying the one or more read
operations to be performed by the ALU.
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3. The enhanced DMA engine as recited in claim 1,
wherein the control logic operates in a first mode when the
operation flag has the first value, and wherein the control
logic operates in a second mode when the operation flag has
the second value.

4. The enhanced DMA engine as recited in claim 1,
wherein the kernel targets a plurality of compute units of a
processor.

5. The enhanced DMA engine as recited in claim 1,
wherein the enhanced DMA engine is configured to broad-
cast the single data output.

6. The enhanced DMA engine as recited in claim 1,
wherein the command includes a data-type flag which
specifies a data format of operands being operated on by the
ALU.

7. The enhanced DMA engine as recited in claim 6,
wherein the data-type flag specifies one or more of bitfield,
signed integer, unsigned integer, characters, standard float-
ing-point, custom floating point, fixed-point fractions, bit-
width, and/or combinations of multiple values.

8. A method comprising:

detecting, by circuitry of an enhanced direct memory

access (DMA) engine, a command that identifies an
operation, wherein the command corresponds to a
kernel converted into one or more enhanced DMA
commands;

performing a DMA transfer operation, comprising at least

a read operation to a memory to load data into the
enhanced DMA engine, responsive to an operation flag
in the command having a first value;

responsive to the operation flag in the command having a

second value, the circuitry of the enhanced DMA

engine:

performing one or more read operations to load first
data comprising multiple data inputs into the
enhanced DMA engine;

causing an arithmetic logic unit (ALU) to combine the
multiple data inputs into a single data output; and

conveying the single data output.

9. The method as recited in claim 8, wherein when the
operation flag has the second value, the command includes
a field specifying the one or more read operations to be
performed by the ALU.

10. The method as recited in claim 8, further comprising:

operating in a first mode when the operation flag has the

first value; and

operating in a second mode when the operation flag has

the second value.

11. The method as recited in claim 8, wherein the com-
mand corresponds to a collective communication phase of a
machine learning model.

12. The method as recited in claim 8, further comprising
broadcasting the single data output.

13. The method as recited in claim 8, wherein the com-
mand includes a data-type flag which specifies a data format
of operands being operated on by the ALU.

14. The method as recited in claim 13, wherein the
data-type flag specifies one or more of bitfield, signed
integer, unsigned integer, characters, standard floating-point,
custom floating point, fixed-point fractions, bit-width, and/
or combinations of multiple values.

15. A system comprising:

a plurality of compute units comprising circuitry config-

ured to execute a given workload; and

an enhanced direct memory access (DMA) engine com-

prising circuitry configured to:
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detect a command targeting the enhanced DMA engine,
wherein the command corresponds to a kernel con-
verted into one or more commands executable by the
enhanced DMA;
perform a DMA transfer operation, comprising at least
a read operation to a memory to load data into the
enhanced DMA engine, responsive to an operation
flag in the command having a first value; and
responsive to the operation flag in the command having
a second value:
perform one or more read operations to the memory
to load first data comprising multiple data inputs
into the enhanced DMA engine;
combine the multiple data inputs into a single data
output; and
convey the single data output.
16. The system as recited in claim 15, wherein when the
operation flag has the second value, the command includes
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a field specifying the one or more read operations to be
performed.

17. The system as recited in claim 16, wherein the
enhanced DMA engine operates in a first mode when the
operation flag has the first value, and wherein the enhanced
DMA engine operates in a second mode when the operation
flag has the second value.

18. The system as recited in claim 17, wherein the
enhanced DMA engine causes an ALU to enter a reduced-
power state when operating in the first mode.

19. The system as recited in claim 15, wherein the
enhanced DMA engine is configured to broadcast the single
data output.

20. The system as recited in claim 15, wherein the
command includes a data-type flag which specifies a data
format of operands being operated on by the enhanced DMA
engine.



