12y United States Patent

Greathouse et al.

US009372773B2

(10) Patent No.: US 9,372,773 B2
45) Date of Patent: Jun. 21, 2016

(54) USER-LEVEL HARDWARE BRANCH
RECORDS

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(51)

(52)

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

Joseph Lee Greathouse, Austin, TX
(US); Anton Chernoff, Littleton, MA
(US)

Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 393 days.
13/916,417
Jun. 12,2013

Prior Publication Data

US 2014/0372°734 Al Dec. 18, 2014

Int. CI.

GO6l 9/44 (2006.01)

GO6F 11/30 (2006.01)

GO6F 9/30 (2006.01)

U.S. CL

CPC GO6F 11/30(2013.01); GO6F 9/3005

(2013.01)

Rrsssrmsstinccrsswmassmasss cees e Ll

L NN P [N — O R —

. Processoy

(38) Field of Classification Search
CPC e GO6F 9/38
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,181,600 B1* 2/2007 Uhler GO6F 9/30101
712/229
7,620,803 B2* 11/2009 Kudoccccoeveeeen GOO6F 9/325
712/200

* cited by examiner

Primary Examiner — Cheng-Yuan Tseng
(74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.

(57) ABSTRACT

A processor, a method and a computer-readable medium for
recording branch addresses are provided. The processor com-
prises hardware registers and first and second circuitry. The
first circuitry 1s configured to store a first address associated
with a branch instruction 1n the hardware registers. The first
circuitry 1s further configured to store a second address that
indicates where the processor execution 1s redirected to as a
result of the branch instruction in the hardware registers. The
second circuitry 1s configured to, 1n response to a second
instruction, retrieve a value of at least one of the registers. The
second 1nstruction can be a user-level 1nstruction.

15 Claims, S Drawing Sheets

..

...

y
124 126
120 |

Keme! Mode Bit

\
\
.
.
. x
. > .i £ N
] » .
-~ . N
~ r M
v
b N
N
1m0 e e e e

RARARALELEEE S EELE ARREE R NNEEENEL ARRNELAREEREREL] LR R R R R L BUR

..

U.S. Patent Jun. 21, 2016 Sheet 1 of 5 US 9,372,773 B2

NAE T EEEEEEEEEEEEEE T T T T T T T EEEEEE TSt T T T EE T T T T AT R, AT EEEAGARGRAAS S AR A ATEREREAATEEYE AL MMM EEEEEEEEEALAAATREEALS S ----I‘..O.Q_O_O.Q_O_0.0_0_0_0-0_\"\"\‘\‘b\\\\\\\\\\\\‘-\\‘-\\\
\

+
’
’
¢
i
t
i
i
i
i
t
1 4
4
’
’
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
t
¢
t
t
1
1
i
i
i
i
i
i
1
1
i
i
i
i
i
i
i
i
i
i
1
1
i
i
i
1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
’
i
i
i
i
i
i
i
i
i
i
i
i
1
1
1
1
1
1
i
i
i
i
1
1
1
1
i

LER Registers LBR Control Field

R L LT LR,

AT M M R R RRN R RRN R R R R R R R RRRRR R RRRWR N R RRN R R RN ““‘W‘\
3

——-y

ThARAARARR R R R R R R R R R RRR R R R R R R R R R

""'““‘;?”"""""““““““"“““ "3’?b"

J

“ Son

-y gy oy oo
"..‘-‘-.-'.‘,l‘
oo

ccrcwrc-;-

T x
;
3

Ty

£ 2

-

FRARARRRR RN C Ll DL OOl e P PP JEPEPEPEPE JE JEPE P I

e e, B e e, . B B B v s, e B . e, B B . sl s, s s, s, s s, Bn. B . 2 - -

b4

’,,,,,,,,,,,,,,,,,,,l""""'----"'-""--'

//’"fﬂffff}ff}ffﬁ)ﬁ);/IJ//IIII}J}I}I;JJJJJJJJ-)-JJJJ--J

-

L]
L]
L]
]
1
]
]
1
]
1
1
]
]
]
]
]
]
]

R A A A R AR AR R R R R A R R R A R kA kR hhhhhhh Wl

T AT W -] A . A A P S S R S SN NN N A A A AN AN
ammmmaaa

120

O S W WS B S S S S S S S S G S S SN G S G BN S S BN N S SN BN G S G S R SN BN G S SRR G S G GRS G S S G W W G G G S G R R S W W WS WS B B W W WS WS G B W W W WS WS W WS WS WS W WS WS W WS S G W WS G G G R G G G S G G R S S W B S R B T W W W WS W W W W W W W W W W W .

Kemel Mode Bit

W LA A W WS WS WS A .

o e i M W A A R R R R R R R RS S R RS W R S WS WS W R S W W S WS S W W WS RS S W W WS OGS S R W RS RS - R R RrEr AN EEEEEssmmmmmmmm it

VIS -

Processor 11
110

IIII'III'II'II‘VIr-lr-lr-r-lr----na.lnaaaaaaAAAAaannannannannat.at-----------------------.--.--.--.--.-J]’J]’JJ,J],J,,,,,,,,,,,,;;;-’.’----.

'Itlitlitllvlllllllllllllllllaallllaaaaaa:aaaa‘AA‘AAaAA‘Aannannannaaa----------------------------------.--.--.,,,-J})-#}mo}mo})4qooooJ

4
4
4
4
4

I Gr or W O N M R R S R R S R R W R R Er S W W oo oo
I S S S S S S S W S S S W S S S S S S W W S S W W W wr W W oW -

'
'
|}
'
R,

AR AR R AR R AR AR AR AR R AR R R R R R R R R R R R R R R R RRER R R R R R R N N R R N RN A R R L) &S E N EEEEEEEEEEEEE SR EEEEEE AR EEEE AR EE AR EEEEEE SRR R AAAADR R AAAA A A A AT T OO OO OO WM RO W WO WW WY

Operatling Sysiam

EL L L 2 b N N N N BN BN B BN N N N BN BN 3N BN BN N B BN BN BN BN AN AN B N N N BN Y

RERLE LR R Y Y hh L W W LW N n e mnmtmtmtrnmmmmmmwmmtnin owowm o wmrmtmtms T o owm T T T T T Ty Gt i e T T TR TR TR TR TR TR EL TR TR EL WL TR CHL WL TR ER WR W WL VR TR HL W TR TR WL TR TR TR TR TR WL TR ER W TR TR W TR TR TR TR TER W W TR T T, T W T WL W W WL W TR WL YR TR YR YR W W YR VR W VR W W W W W W R YR W W W W W W W W W

U.S. Patent Jun. 21, 2016 Sheet 2 of 5 US 9,372,773 B2

\\\

Switch from kKermel

208~ s‘m’”é
= - mode to user mode

"~

NO

".
¢
\‘-“ "c .
“' \
o
L .
N - :
g . ~,
ﬂﬁ-c' W www +
;ﬁ f ™ e —— ,ARIRAARR R R R R R R R R R BB R R R R AR AR BB R R R R AR R R RE
v, \\“ 3 .‘t
"\ ‘...’
-
- o
e 7
-
r

o

.

et o Y

b, ke ke e e e, ke, g, g, g . gl gl . o, . .. o o o -

U.S. Patent Jun. 21, 2016 Sheet 3 of 5 US 9,372,773 B2

304 .. /™ Determine branch type

",p.*"'. N |
e .
-~ Is branch-type bit setin ~

. ‘\..‘

306 i , . |
s LBR control register? .- §
\ N) Q
N . 3
\«,., & 5\
AN o
™., -

Store branch-from

308 \/'" address in LBR register

310 g"'x Store branch-to address
. in LBR register *

Y

N

N

.

¥y

.............................. tw'ww'wwww'ww'w'w"w'ww'wwwwwwwwwwwwwwwwwwwﬂ
'E

.-ssssss-sss. (S B] lh‘c\\\\\\\\"""""""L"""""""""’""m ““““““““““ '\‘

L3

\

g 312 . Jump o branch-to
G, 3) addrass

U.S. Patent Jun. 21, 2016 Sheet 4 of 5 US 9,372,773 B2

£
-

S S SR W W W W WO W R W WWWWW SR% AdAdAdA AR RARR AR AR ARAS R R IR TR T Y ENYNY Y Y YN Y YN Y YYN Y Y

e instruction ;

Yas . NG
18 register user-mode™
accessibia?

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

e

e, e, e, ke, e, e, e, whe e,

Q@l-.-.—.‘.-,-.".‘.‘h.-.—f’.-."f’.“.“.‘.*"".""“

¥

R S S S ,‘“.‘,“,‘-‘\\"\g"‘\\\‘ --- L]

4
4
4
i
’
i
4
i
/
i
4
i
/
i
’
i
/
i
i
i
4
1
i

L

Retum MSRK valus Return Error

408

BN
-
5y
7
7
\/'

rvavonsnononened e 2 TSI
L J
'IV"'f'f'f(f‘f’f’ff(“'("'!’f"'""

o oo wwwwwwwwDw s w P TS

!for'rrrrrrr(prpdzprcpp

WNT. T T Y Yt h s c Ayt Attt T AR s A AR R LR LR LR AR LR W T W W W WSS WS- -

I EE R R R ERLERERERRERERERERIERIERIDIDI DI B I b S diededie d die g die g d

U.S. Patent Jun. 21, 2016 Sheet 5 of 5 US 9,372,773 B2

WX
2

\\\\\\\\\\\\\\\\\\\\\\\\\\\

'\h'hh'hh'h'h'hhh'h'hhh'h'h'hh'hhtﬁ“-“““"\“““m“ﬁm

{ o *“:ii Main Memory 508

TV ‘

...

Pl

¥Display interface 502

{ - -~ — - =S Ay Unit 530
*‘x&“"“"“""i["’

|

W e T L T WL L T WL T LWL WL L R L L LT LT L T L L T TR TR L L ML L TR TR T TR TR TR L ML L TR UL TR Y, S L S S S S . S S S 1 1 T 1 2 - -~
\

Secondary Memory 910

b ale o aie ale o sl sl aie aie ol e s s she e ol o

Hard £HSK
512

Communication

Infrastructure E
506

4
Eaat e atatototor oF oF o o an e sl alalyial e o olet e ks

R E R L AR L AES AR IR LAALL L LXC LS

Removabie
Storage Drive

. Removable
Storage Unit

F ol o it et Ty T
E.
i
PR —p——

N \ -
L] \

] L

| \

N :

L] \

: A EE T YT T T T T T T T TY™T

.

N

N

]

|

.

N

: LT T T T T T T W L L L L L L T L W L L T T L L T L L L L WL N, W, WL L LWL W, WL LMWL LY, I
hl

.

|

A

'

: emovapie
‘ intertace

: ~

b

Storage Unit
522

520

FY VY VYV EEYFyVWwyyy

|
|
|
¥ od oF oF o ol ol oF oF oF of oF J o Fn—rl—rrrrrrrr

A‘AL““‘““‘

S S S B R B B R e Tt B R e e R e e e e e Nt il

i----- —— e e e b e b e e T e b e B b b B e b T T T T T T e T T e T, e T T S S

i s Communications

s, e, whe. b e, by, ’."‘."-"_‘.ﬁ'*.—.‘."ﬁ" wh e u_‘.".“ e B i, R e o o A R A A B A A BB B

WWW*W*AM*“—*‘m*m‘*‘““““‘ FY Y

T . o - o [.y o o fopn. o

'

PR A A A R A A A R R
Ay o’ APy Pyt gy Pyt gy i

]
A % ¢ ’ .
“ \ } M
" p interfacs ‘ N e
A S \s E S .
TV 4 E e,
{ L 52 L . n h 2 6
2 - Communications Path
e e e e e e e B A R A R A R R R R R L

v

US 9,372,773 B2

1

USER-LEVEL HARDWARE BRANCH
RECORDS

BACKGROUND

1. Field

The present embodiments relate generally to semiconduc-
tor processors and, 1n particular, to recording software control
flow information in processors.

2. Background

Many software tools could benefit from recerving informa-
tion about the control flow of a piece of code. For example,
control flow information can include information that
describes the order in which program instructions have been
executed. Control flow information can also include a listing
of control transtfers, such as information on where a branch
instruction came from and where the branch jumped to.

Software development tools, such as debuggers, imple-
ment backtrace capabilities that can provide a programmer
with a listing of the instructions and functions that led to the
current point of code execution. The development tools could
benefit from control flow information. Other examples of
software benefitting from control flow information include
software that records the execution of a program for later
replay and software that engages 1n re-execution of code in
environments such as simulators. Additionally, certain types
of programs or processes, such as kernel processes or thread
management libraries, may need to dynamically access the
value of the previous program counter, but accessing this
information can be complicated using existing solutions.
Control flow information can assist in this operation.

Recording this control flow information can be a slow and
laborious process. For example, software-based implementa-
tions that record every branch and return address may cause
significant runtime overheads. Other hardware-based mecha-
nisms for recording branch addresses are not optimized for
runtime execution or are only available in kernel-mode opera-
tion.

BRIEF SUMMARY

Therefore, what are needed are microprocessors with
branch recording hardware that 1s optimized for runtime
execution and accessible to user-mode software.

Some embodiments provide a processor, a method and a
computer-readable medium for recording branch addresses.
The processor comprises a set of hardware registers and first
and second circuitry. The first circuitry 1s configured to store
a first address associated with the branch instruction 1n the set
of hardware registers. The first circuitry 1s further configured
to store a second address that indicates where the processor
execution 1s redirected to as a result of the branch instruction
in the set of hardware registers. The second circuitry retrieves
a value of at least one of the registers 1n response to a second
mstruction. The second instruction can be a user-level
istruction.

Further features and advantages of the embodiments, as
well as the structure and operation of various embodiments,
are described 1n detail below with reference to the accompa-
nying drawings. It 1s noted that the embodiments are not
limited to the specific embodiments described herein. Such
embodiments are presented herein for illustrative purposes
only. Additional embodiments will be apparent to persons
skilled 1n the relevant art(s) based on the teachings contained
herein.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

The accompanying drawings, which are incorporated
herein and form part of the specification, illustrate the
embodiments and, together with the description, further serve
to explain the principles of the embodiments and to enable a
person skilled in the relevant art(s) to make and use the
embodiments.

FIG. 1 1s a block diagram of an 1illustrative computer pro-
cessor operating environment, according to an embodiment.

FIG. 2 1llustrates an exemplary method of resetting LBR
registers when switching from user mode to kernel mode,
according to an embodiment.

FIG. 3 1llustrates an exemplary method of storing branch
tracing information in LBR registers depending on branch
types, according to an embodiment.

FIG. 4 illustrates an exemplary method of reading LRU
registers, where MSR registers are used as LRU registers,
according to an embodiment.

FIG. 5 1s an illustration of an example computer system 1n
which embodiments, or portions thereof, can be i1mple-
mented.

The features and advantages of the embodiments waill
become more apparent from the detailed description set forth
below when taken 1n conjunction with the drawings, 1n which
like reference characters identily corresponding elements
throughout. In the drawings, like reference numbers gener-
ally indicate 1dentical, functionally similar, and/or structur-
ally similar elements. The drawing in which an element first
appears 1s indicated by the leftmost digit(s) in the correspond-
ing reference number.

DETAILED DESCRIPTION

In the detailed description that follows, references to “one
embodiment,” “an embodiment,” “an example embodiment,”
etc., indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular fea-
ture, structure, or characteristic. Moreover, such phrases are
not necessarily referring to the same embodiment. Further,
when a particular feature, structure, or characteristic i1s
described in connection with an embodiment, 1t 1s submaitted
that 1t 1s within the knowledge of one skilled 1n the art to atfect
such feature, structure, or characteristic in connection with
other embodiments whether or not explicitly described.

The term “embodiments™ does not require that all embodi-
ments include the discussed feature, advantage or mode of
operation. Alternate embodiments may be devised without
departing from the scope of the disclosure, and well-known
clements of the disclosure may not be described 1n detail or
may be omitted so as not to obscure the relevant details. In
addition, the terminology used herein 1s for the purpose of
describing particular embodiments only and 1s not intended to
be limiting of the disclosure. For example, as used herein, the
singular forms “a,” “an” and ““the” are intended to include the
plural forms as well, unless the context clearly indicates oth-
erwise. It will be further understood that the terms “com-
prises,” “comprising,” “includes™ and/or “including,” when
used herein, specily the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other fea-
tures, integers, steps, operations, elements, components, and/
or groups thereof.

Modern microprocessors can operate in kernel mode or

user mode. When 1n kernel mode, a processor allows access to

2?2 46

US 9,372,773 B2

3

read and write certain registers that are otherwise inaccessible
in user mode. For example, Model-Specific Registers (MSRs)
can typically only be accessed using privileged kernel mode
instructions. The operating system can set the processor into
kernel mode and execute kernel mode instructions. However,
user-level processes running in the operating system may not
be able to set the processor 1nto kernel mode.

The present embodiments are directed at providing user-
level processes with access to branch tracing information.
The embodiments are further directed at providing branch
tracing information to user-level processes, while maintain-
ing the security of kernel-level branch tracing information.
More specifically, 1in certain embodiments, a processor can
provide access to branch tracing to a user-level process with-
out permitting this process access to branch tracing informa-
tion related to other processes.

FIG. 1 1s a block diagram of an 1illustrative computer pro-
cessor operating environment 100, according to an embodi-
ment. In one example, operating environment 100 includes a
processor 110 interacting with an operating system 130.

In one example, a processor 110 includes a last branch
record (LBR) block 120 and a mechanism to indicate whether
the processor 110 1s executing a kernel-mode process (or
instruction) or a user-mode process (or istruction). In some
embodiments, the mechanism to indicate whether the proces-
sor 110 1s executing a kernel-mode process (or instruction) or
a user-mode process (or mstruction) includes a storage ele-
ment (e.g., aregister, a flip tlop, etc.) to store a kernel mode bit
112. LBR block 120 includes LBR registers 122, a control
register to store a LBR control field 124 and a storage element
to store a user-mode LBR control bit (UMLBR) 126.

In one example, kernel mode bit 112 can be set by the
operating system 130 1n order to access privileged processor
registers and execute privileged instructions. For example,
operating system 130 can set kernel mode bit 112 when
performing a context-switch between processes running in
the system, 1n order to access privileged registers that main-
tain the state of the current process.

In an embodiment, processor 110 can store branch tracing
addresses 1n LBR registers 122 every time a branch instruc-
tion executes. In an embodiment, every time a branch instruc-
tion executes, processor 110 can store the address execution 1s
jumping from (branch-from address) 1n one of the LBR reg-
isters 122, and store the address execution 1s jumping to
(branch-to address) in another of the LBR registers 122. In an
embodiment, processor 110 also to stores whether the branch
was taken (moving control flow to the branch-to address) or
not taken (moving execution to the next instruction in pro-
gram order). In an embodiment, processor 110 may utilize
specialized circuitry and/or micro-code instructions to store
the branch-from addresses, branch-to addresses, and taken
statuses 1n the LBR registers 122, as would be envisioned by
those skilled 1n the relevant arts.

LBR registers 122 can be any type of hardware registers for
holding data within the processor. In an embodiment, LBR
registers 122 can be a Model Specific Register (MSR). In the
case MSRs are used as LBR registers 122, since MSRs can
typically only be read in kernel-mode, processor 110 can
include an additional user-mode variant of the read MSR
instruction. In an embodiment, LBR registers 122 are sepa-
rate specialized registers, and processor 110 includes an addi-
tional instruction to read the LBR registers 122.

In an embodiment, processor 110 provides user-mode read
instructions that allow processes to read LBR registers 122. In
this way, any process that desires branch tracing information,
such as those described above, can easily and efficiently
access this information.

10

15

20

25

30

35

40

45

50

55

60

65

4

LBR control field 124 can be configured to specity the
types of branches for which branch tracing information 1s
recorded 1n LBR registers 122. For example, processor 110
can be configured to only record branch information for cer-
tain types of branch instructions. Types of branch instructions
can include, by way of example, near jumps, far jumps, loop
instructions, calls, returns, etc. In an embodiment, processor
110 can be configured to only record branch information for
taken branches (or, conversely, not-taken branches) of any of

a specified type. In an embodiment, LBR control field 124
contains a bit for each type of branch instruction as well as a
bit each for taken and not-taken branches. I the bit for a type
of branch 1nstruction 1s set, processor 110 will record branch
tracing information when 1t executes a branch instruction of
that type. If the bit for that type of branch 1s not set, processor
110 will not store any branch tracing information for that
branch 1nstruction. This allows a user to fine-tune the branch
tracing information recorded to gather more useful informa-
tion and decrease performance overheads.

L.LBR control bit 126 can be used to cause processor 110 to
clear branch tracing information when the processor switches
from kernel mode to user mode. When LBR control bit 126 1s
cleared, processor 110 will clear out branch tracing informa-
tion in LBR, registers 122. Processor 110 can by default clear
L.BR control bit 126, and 1t 1s up to operating system 130 to set
L.LBR control bit 126 in order to maintain branch tracing
information through a kernel to user mode context switch.
This can be done 1n order to maintain backward compatibility
with existing operating systems and protect sensitive branch
tracing information, as further explained below. For example,
it may be undesirable to allow a user-mode process to access
the branch tracing information of another process because
this could lead to security breaches.

Operating system 130 may or may not support branch
tracing information management. If operating system 130 1s
designed to take advantage of the branch tracing capabilities
of processor 110, operating system 130 can set LBR control
bit 126. In one example, during a context-switch from a first
process to second process, operating system 130 sets proces-
sor 110 1nto kernel mode 1n order to access privileged regis-
ters of the processor. Because LBR control bit 126 1s set, LBR
registers 122 are not cleared, the operating system 130 can
save the branch tracing information of the first process to
memory, and restore any branch tracing information of the
second process being switched 1n.

On the other hand, 1f operating system 130 does not support
branch tracing information management LBR control bit 126
will remain 1n 1ts default cleared value. Therefore, when
operating system 130 sets processor 110 into kernel mode
during a context-switch, the LBR registers 122 will be cleared
and the mncoming process will not be able to read the branch
tracing information of the previous process. In this way, pro-
cessor 110 can maintain the security of branch tracing infor-
mation regardless of whether operating system 130 has been
designed to manage this data.

FIG. 2 1llustrates an exemplary method 200 of resetting the
LBR registers when switching from user mode to kernel
mode, according to an embodiment. It is to be appreciated that
not all operations need to be performed, or be performed in
the order shown.

At step 202, the operating system sets the processor to
kernel mode. This can be accomplished, for example, by
setting a kernel triode bit 1n the processor.

At step 204, the processor checks the value of user-mode

LBR control bit (UMLBR). If the UMLBR 1s cleared, the
processor continues to step 206 and clears the LBR registers.

US 9,372,773 B2

S

If UMLBR 1s set, the processor skips step 206 and does not
clear the values 1n the LBR registers.

FIG. 3 illustrates an exemplary method 300 of storing
branch tracing information in LBR registers depending on
branch types, according to an embodiment. It 1s to be appre-
ciated that not all operations need to be performed, or be
performed 1n the order shown.

At step 302, the processor fetches a branch instruction.

At step 304, the processor determines the type of the
branch instruction. The type of branch instructions might be
based on, for example, the type of instruction (e.g., jump,
loop, call, return, etc.) or the branch-from and branch-to
addresses (e.g., near jump, far jump, etc.).

At step 306, the processor checks the LBR control register
for the bit corresponding to the determined type of the branch
instruction. If the bit for the branch type 1s set, the processor
continues to steps 308 and 310 and stores a branch-from
address and branch-to addresses 1n the LBR registers. In an
embodiment, the processor stores addresses 1n LBR registers
in a first-in first-out (FIFO) manner, thus keeping the last n
branch addresses 1n the LBR registers. In an embodiment, the
processor can adjust the number n of LBR registers by assign-
ing more or less registers to serve as LBR registers. Other
ways ol allocating LBR registers, as will be envisioned by
those skilled in the relevant arts, are meant to be encompassed
herein.

If at step 306 the processor finds the bit for the branch type
1s not set, the processor skips steps 308 and 310 and continues
to step 312.

At step 312, the processor executes the branch instruction
by jumping to the branch-to address.

As previously mentioned, the processor can use MSR reg-
1sters as LBR registers, 1.e., to maintain branch tracing infor-
mation. In such a case, the processor can provide a user-mode
variant of the read MSR 1nstruction (e.g., RDMSRU), 1n order
to allow user-mode processes to access the branch tracing
information. FIG. 4 illustrates an exemplary method 400 of
reading LRU registers, where MSR registers are used as LRU
registers, according to an embodiment. It 1s to be appreciated
that not all operations need to be performed, or be performed
in the order show.

At step 402, the processor fetches a RDMSRU instruction
reading an MSR register.

At step 404, the processor verifies whether the MSR reg-
ister of the read instruction 1s one of the MSR registers
assigned as LBR registers. If the MSR register 1s assigned as
an LBR register, the processor proceeds to step 406 and loads
the value of the MSR register. If the MSR register 1s not
assigned as an LBR register, the processor proceeds to step
408 and returns an error, or otherwise denied access to the
MSR register. In an embodiment, if at step 404 the MSR
register 1s not one of the assigned LBR registers, the value
may nevertheless be returned 1f the processor 1s on kernel
mode. However, this step 1s optional, since the operating
system can use a kernel-mode read MSR 1nstruction for this
purpose.

The embodiments have been described above with the aid
of functional building blocks illustrating the implementation
of specified functions and relationships thereof. The bound-
aries of these functional building blocks have been arbitrarily
defined herein for the convenience of the description. Alter-
nate boundaries can be defined so long as the specified func-
tions and relationships thereof are appropriately performed.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the embodiments that
others can, by applying knowledge within the skill of the art,
readily modily and/or adapt for various applications such

10

15

20

25

30

35

40

45

50

55

60

65

6

specific embodiments, without undue experimentation, with-
out departing from the general concept of the present embodi-
ments. Therefore, such adaptations and modifications are
intended to be within the meaning and range of equivalents of
the disclosed embodiments, based on the teaching and guid-
ance presented herein. It 1s to be understood that the phrase-
ology or terminology herein 1s for the purpose of description
and not of limitation, such that the terminology or phraseol-
ogy ol the present specification 1s to be interpreted by the
skilled artisan 1n light of the teachings and guidance.

Various aspects of embodiments of the present embodi-
ments may be implemented in software, firmware, hardware,
or a combination thereof. FIG. § 1s an 1illustration of an
example computer system 500 in which embodiments, or
portions thereof, can be implemented as computer-readable
code. For example, the methods illustrated in the present
disclosure can be implemented 1n portions system 500. Vari-
ous embodiments are described in terms of this example
computer system 500. After reading this description, 1t will
become apparent to a person skilled 1n the relevant art how to
implement embodiments using other computer systems and/
or computer architectures.

It should be noted that the simulation, synthesis and/or
manufacture of various embodiments may be accomplished,
in part, through the use of computer readable code, including
general programming languages (such as C or C++), hard-
ware description languages (HDL) such as, for example, Ver-
1log HDL, VHDL, Altera HDL (AHDL), other available pro-
gramming and/or schematic capture tools (such as circuit
capture tools), or hardware-level instructions implementing
higher-level machine code instructions (e.g., microcode).
This computer readable code can be disposed 1n any known
computer-usable medium including a semiconductor, mag-
netic disk, optical disk (such as CD-ROM, DVD-ROM). As
such, the code can be transmitted over communication net-
works including the Internet. It 1s understood that the func-
tions accomplished and/or structure provided by the systems
and techniques described above can be represented 1n a core
(e.g., a CPU core) that 1s embodied 1n program code and can
be transformed to hardware as part of the production of inte-
grated circuits.

Computer system 3500 includes one or more processors,
such as processor 504. Processor 504 may be a special pur-
pose or a general-purpose processor. For example, 1n an
embodiment, processor 110 of FIG. 1 may serve the function
of processor 504. Processor 504 1s connected to a communi-
cation infrastructure 506 (e.g., a bus or network).

Computer system 500 also includes a main memory 508
(e.g., random access memory (RAM)), and may also include
a secondary memory 510. Secondary memory 510 can
include, for example, a hard disk drive 512, a removable
storage drive 514, and/or a memory stick. Removable storage
drive 514 can include a floppy disk drive, a magnetic tape
drive, an optical disk drive, a flash memory, or the like. The
removable storage drive 514 reads from and/or writes to a
removable storage unit 518 in a well-known manner. Remov-
able storage unit 518 can comprise a floppy disk, magnetic
tape, optical disk, etc. which 1s read by and written to by
removable storage drive 514. As will be appreciated by per-
sons skilled in the relevant art, removable storage unit 518
includes a computer-usable storage medium having stored
therein computer software and/or data.

In alternative implementations, secondary memory 510
can include other similar devices for allowing computer pro-
grams or other instructions to be loaded into computer system
500. Such devices can include, for example, a removable
storage unit 522 and an interface 520. Examples of such

US 9,372,773 B2

7

devices can include a program cartridge and cartridge inter-
face (such as those found 1n video game devices), a removable
memory chip (e.g., EPROM or PROM) and associated socket,
and other removable storage units 522 and interfaces 520
which allow software and data to be transferred from the
removable storage unit 522 to computer system 500.

Computer system 500 can also include a communications
intertace 524. Communications interface 524 allows sotftware
and data to be transferred between computer system 500 and
external devices. Communications interface 524 can include
a modem, a network interface (such as an Ethernet card), a
communications port, a PCMCIA slot and card, or the like.
Software and data transferred via communications interface
524 are 1n the form of signals which may be electronic,
electromagnetic, optical, or other signals capable of being
received by communications interface 524. These signals are
provided to communications interface 524 via a communica-
tions path 526. Communications path 526 carries signals and
can be implemented using wire or cable, fiber optics, a phone
line, a cellular phone link, a RF link or other communications
channels.

In this document, the terms “computer program medium”™
and “computer-usable medium™ are used to generally refer to
media such as removable storage unit 518, removable storage
unit 522, and a hard disk installed in hard disk drive 512.
Computer program medium and computer-usable medium
can also refer to memories, such as main memory 508 and
secondary memory 510, which can be memory semiconduc-
tors (e.g., DRAMSs, etc.). These computer program products
provide software to computer system 500.

Computer programs (also called computer control logic)
are stored 1 main memory 508, secondary memory 510
and/or removable storage units 518 and 522. Computer pro-
grams may also be recerved via communications interface
524. Such computer programs, when executed, enable com-
puter system 500 to implement embodiments as discussed
herein. In particular, the computer programs, when executed,
enable processor 504 to implement processes of embodi-
ments, such as the steps 1n the methods illustrated by the
flowcharts of the figures discussed above. Accordingly, such
computer programs represent controllers of the computer
system 500. Where embodiments are implemented using
software, the software can be stored 1n a computer program
product and loaded 1nto computer system 500 using remov-
able storage drive 514, interface 520, hard drive 512, or com-
munications intertace 524.

Embodiments are also directed to computer program prod-
ucts including software stored on any computer-usable
medium. Such software, when executed 1in one or more data
processing device, causes a data processing device(s) to oper-
ate as described herein. Embodiments employ any computer-
usable or -readable medium, known now or in the future.
Examples of computer-usable mediums include, but are not
limited to, primary storage devices (e.g., any type of random
access memory), secondary storage devices (e.g., hard drives,
floppy disks, CD ROMS, ZIP disks, tapes, magnetic storage
devices, optical storage devices, MEMS, nanotechnological
storage devices, etc.), and communication mediums (e.g.,
wired and wireless communications networks, local area net-
works, wide area networks, intranets, etc.).

What 1s claimed 1s:

1. A processor comprising:

at least one bit configured to indicate whether the processor
1s operating 1n a kernel mode or a user mode, wherein the
processor 1n the kernel mode allows access to read and
write to registers that are inaccessible 1n the user mode;

5

10

15

20

25

30

35

40

45

50

55

60

65

8

a plurality of hardware registers configured to store one or
more branch tracing addresses when a branch instruc-
tion 1s executed, wherein the hardware registers may be
read by both a kernel mode instruction and a user mode
instruction;

circuitry configured to, 1n response to executing a branch
instruction, store a branch-from address and a branch-to
address 1n the hardware registers; and

a control bit that indicates whether to maintain the stored
branch tracing addresses in the plurality of hardware
registers when the processor switches between the ker-
nel mode and the user mode.

2. The processor of claim 1, wherein the storing of the
branch-from address and the branch-to address depends on a
type of the branch instruction.

3. The processor of claim 1, further comprising a control
register, wherein the control register comprises at least one
bit, the at least one bit corresponding to a type of branch, and
wherein the storing of the branch-from address and the
branch-to address depends on whether the at least one bit
corresponding to the type of the branch instruction 1s set.

4. The processor of claim 1, wherein the type of the branch
instruction comprises a near jump, a far jump, a loop 1nstruc-
tion, a call instruction, a return instruction, a taken branch or
a not-taken branch.

5. The processor of claim 1, wherein at least one of the
registers comprises a model specific register.

6. A computer-implemented method comprising:

determining whether a processor 1s operating 1n a kernel
mode or a user mode, wherein the processor in the kernel
mode allows access to read and write to registers that are
inaccessible in the user mode;

retrieving a branch instruction;

storing one or more branch tracing addresses 1n a plurality
of hardware registers when a branch instruction 1is
executed, wherein the hardware registers may be read by
both a kernel mode instruction and a user mode 1nstruc-
tion and the one or more branch tracing addresses
include a branch-from address and a branch-to address;
and

determining whether to maintain the stored branch tracing
addresses 1n the plurality of hardware registers when the
processor switches between the kernel mode and the
user mode.

7. The method of claim 6, wherein the storing of the
branch-from address and the branch-to address depends on a
type of the branch 1nstruction.

8. The method of claim 6, further comprising: reading a
control register, wherein the control register comprises at
least one bit, the at least one bit corresponding to a type of
branch, and storing of the branch-from address and the
branch-to address depends on whether the at least one bit
corresponding to the type of the branch instruction 1s set.

9. The method of claim 6, wherein the type of the branch
instruction 1s selected from the group consisting of a near
jump, a far jump, a loop 1nstruction, a call instruction, a return
istruction, a taken branch and a not-taken branch.

10. The method of claim 6, further comprising using a
model specific register as at least one of the registers.

11. A non-transitory computer-readable storage medium
having 1nstructions stored thereon, execution of which by a
processor cause the processor to perform operations, the
operations comprising;:

determining whether the processor 1s operating 1n a kernel
mode or a user mode, wherein the processor 1n the kernel
mode allows access to read and write to registers that are
1naccessible in the user mode;

US 9,372,773 B2

9

retrieving a branch instruction;

storing one or more branch tracing addresses in a plurality
of hardware registers when a branch instruction 1is
executed, wherein the hardware registers may beread by
both a kernel mode instruction and a user mode 1nstruc-
tion and the one or more branch tracing addresses
include a branch-from address and a branch-to address;
and

determining whether to maintain the stored branch tracing

addresses 1n the plurality of hardware registers when the
processor switches between the kernel mode and the
user mode.

12. The non-transitory computer-readable storage medium
of claim 11, wherein the storing of the branch-from address
and the branch-to address depends on a type of the branch
mstruction.

13. The non-transitory computer-readable storage medium
of claim 11, further comprising: reading a control register,
wherein the control register comprises at least one bit, the at
least one bit corresponding to a type of branch, and storing of
the branch-from address and the branch-to address depends
on whether the at least one bit corresponding to the type of the
branch instruction 1s set.

14. The non-transitory computer-readable storage medium
of claam 11, wherein the type of the branch instruction 1s
selected from the group consisting of a near jump, a far jump,
a loop 1nstruction, a call instruction, a return instruction, a
taken branch and a not-taken branch.

15. The non-transitory computer-readable medium of
claam 11, wherein at least one of the registers comprises a
model specific register.

e o e e o

10

15

20

25

30

10

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description/Claims
	Page 11 - Claims

