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ABSTRACT
Buffer overflows are a common source of program crashes, data
corruption, and security exploits. While many tools exist to find
these issues in CPU programs, buffer overflows are also problematic
in heterogeneous systems serviced by languages such as OpenCL™.
Existing buffer overflow detectors for heterogeneous systems are
either limited to particular vendors or require heavyweight instru-
mentation that results in large runtime overheads.

This work describes clARMOR, an open source buffer overflow
detector for OpenCL kernels and APIs. clARMOR is vendor and
device neutral; we demonstrate its operation on multiple device
types from a variety of vendors. Rather than requiring heavyweight
kernel instrumentation, clARMOR uses canary regions to quickly
tell if data is written outside of any global memory buffer. Rather
than analyzing everymemory access, clARMOR instead verifies that
the canary regions have not been modified after each user kernel
finishes. In some cases, clARMOR uses the target device to check
these canary regions, further reducing the overheads. We show
experiments demonstrating that, across 143 open source OpenCL
benchmarks, clARMOR causes an average slowdown of 9.6% while
still finding multiple real kernel buffer overflows.
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1 INTRODUCTION
Buffer overflows are a well-acknowledged challenge in the CPU
world, andmany detection tools exist to help developers find them [1,
8, 12, 13]. Buffer overflows are also a challenge on heterogeneous
accelerators, but there are markedly fewer tools for their detection.

Heterogeneous systems now share memory between hosts and
devices, meaning that overflows from OpenCL™ devices may not
only crash accelerator kernels, but also run the risk of corrupting
host memory. These errors are particularly difficult to debug, since
traditional tools, such as host-based watchpoints, may not even
see the corruption happen. Recent research has demonstrated that
accelerator buffer overflows can allow remote code execution on
the device [2, 7], and this implies host-side code injection may also
be possible. These challenges make a case for robust, fast overflow
detection tools for heterogeneous accelerators.

Existing overflow detectors for accelerators have severe limi-
tations. CUDA-MEMCHECK, for instance, only works on GPUs
from Nvidia and on programs built using their proprietary CUDA
language [5]. The WebCL Validator only works on kernels written
in WebCL, which has seen little adoption [6]. Oclgrind includes a
memory checking tool, and it works on OpenCL kernels, meaning
that it is not vendor-limited and can work on a great deal of existing
code [9]. Unfortunately, it presents itself to the kernels as a CPU de-
vice and then instruments the execution; this can cause it to run up
to 300x slower than native execution, limiting its use on production
code. GPU Ocelot’s overheads present a similar challenge [4].

2 CLARMOR
This work presents clARMOR, an open source buffer overflow de-
tector for OpenCL™ kernels. clARMOR requires no source modifi-
cations, because it uses the Linux® LD_PRELOAD facility to wrap
OpenCL APIs [10]. In addition, it works on devices from multiple
vendors; we have verified that it works on CPUs from AMD and
Intel and GPUs from AMD and Nvidia.

clARMOR utilizes canary regions to quickly identify writes out-
side of OpenCL buffers caused by kernels and memory APIs. Buffer
allocations APIs, such as clCreateBuffer, are caught and the buf-
fer is extended to include extra guard values. clARMOR then catches
kernel enqueues, and checkers verify that these guard values have
not changed after the kernel completes. On some devices, such as
GPUs, we asynchronously launch these checkers to the same device
as the original kernel to decrease performance overheads [3].

Across 143 benchmarks, we observed an average performance
overhead of 9.7%, as shown in Figures 1 and 2. We used 4KB canary
regions, which caused an average memory overhead of 9.6%.
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Figure 1: The runtime of 143 OpenCL™ benchmarks when using clARMOR normalized to their runtime without clARMOR.
We tested using an AMD Ryzen™ 7 1800X CPU and AMD Radeon™ Vega Frontier Edition GPU running ROCm 1.7. The geo-
metric mean of the slowdown caused by clARMORwas 9.6%, while the worst program (UnsharpMark from the AMDAPP SDK
samples) ran 2.39× slower because it had many short dependent kernels that exposed the overhead of clARMOR’s checkers.
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Figure 2: Normalized clARMOR execution time across various benchmark suites. Each bar shows the geometric mean (blue
bar), minimum (bottom whisker), and maximum (top whisker) slowdown across the benchmarks within each suite.

clARMOR can detect overflows in global memory buffers, sub-
buffers, OpenCL images, and both coarse- and fine-grained shared
virtual memory regions. Since our initial academic publication
about clARMOR [3], we have added support for detecting under-
flows (or, more precisely, overflows with negative indices) on all
non-image buffer types. In addition, we added support for Intel’s
OpenCL runtime with CPU targets and AMD’s ROCm platform.

We previously demonstrated that clARMOR found real buffer
overflows in numerous open source OpenCL programs and ben-
chmarks [3], many of which were fixed by their developers. Since
then, we have used clARMOR to find that the CG benchmark in
the SNU OpenCL version of the NAS Parallel Benchmarks has a
number of data races that result in non-deterministic buffer un-
derflows [11], and we have found and corrected multiple errors in
proprietary programs.

clARMOR is available under an MIT license and can be found on
GitHub at https://github.com/ROCm-Developer-Tools/clARMOR.
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