
Adaptive GPU Cache Bypassing

Yingying Tian* , Sooraj Puthoor†, Joseph L. Greathouse†,

Bradford M. Beckmann†, Daniel A. Jiménez*

Texas A&M University*, AMD Research†

Outline

• Background and Motivation

• Adaptive GPU Cache bypassing

• Methodology

• Evaluation Results

• Case Study of Programmability

• Conclusion

• Tremendous throughput

• High performance computing

• Target for general-purpose GPU computing

– Programming model: CUDA, OpenCL

– Hardware support: cache hierarchies

– AMD GCN: 16KB L1, NVIDIA Fermi: 16KB/48KB configurable

Graphics Processing Units (GPUs)

• Thousands of concurrent threads

– Low per-thread cache capacity

• Characteristics of GPU workloads

– Large data structures

– Useless insertion consumes energy

– Reducing the performance by replacing useful blocks

• Scratchpad memories filter temporal locality

– Less reuse caught in caches

– Limit programmability

Inefficiency of GPU Caches

• Zero-reuse blocks: inserted into caches without being
accessed again until evicted

• 46% (max. 84%) of L1 cache blocks are only accessed once before eviction

• Consume energy; pollute cache; cause more replacement

Memory Characteristics

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
yn

am
ic

al
ly

 A
cc

e
ss

ed
 C

ac
h

e
B

lo
ck

s

Motivation

• GPU caches are inefficient

• Increasing cache sizes is impractical

• Inserting zero-reuse blocks wastes power

without performance gain

• Inserting zero-reuse blocks causes useful blocks

being replaced to reduce performance

Motivation

• GPU caches are inefficient

• Increasing cache sizes is impractical

• Inserting zero-reuse blocks wastes power

without performance gain

• Inserting zero-reuse blocks causes useful blocks

being replaced to reduce performance

Objective: Bypass zero-reuse blocks

Outline

• Background and Motivation

• Adaptive GPU Cache bypassing

• Methodology

• Evaluation Results

• Case Study of Programmability

• Conclusion

Bypass Zero-Reuse Blocks

• Static bypassing on resource limit [Jia et. al 2014]

– Degrade the performance

• Dynamic bypassing
– Adaptively bypass zero-reuse blocks

– Make prediction on cache misses

– What information shall we use to make
prediction?
• Memory addresses

• Memory instructions

Memory Address vs. PC

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

D
is

ti
n

ct
 C

ac
h

e
 B

lo
ck

s
A

cc
e

ss
e

d

• Using memory addresses is impractical due to storage
• Using memory instructions consumes far less overhead
• PCs generalize the behaviors of SIMD with high accuracy

0
10
20
30
40
50
60
70
80
90

100
110
120

D
is

ti
n

ct
 P

C
s

w
it

h
 L

o
ad

In

st
ru

ct
io

n
s

Adaptive GPU Cache Bypassing

PC-based dynamic Bypass Predictor

• Inspired by dead block prediction in CPU caches

[Lai et. al 2001][Khan et. al 2010]

- If a PC leads to the last access to one block, then the

same PC will lead to the last access to other blocks

• On cache misses, predict if it is zero-reuse

- If yes, requested block will bypass the cache

• On cache hits, verify previous prediction and

make new prediction

L1 cache

Cache accesses (PC, addr)

Structure of PC-based Bypass Predictor

L1 cache

Cache accesses (PC, addr)

Structure of PC-based Bypass Predictor

4-bit counter

Prediction table

128 entries

L1 cache

Cache accesses (PC, addr)

Structure of PC-based Bypass Predictor

4-bit counter

Prediction table

128 entries

Update

Predict

L1 cache

Cache accesses (PC, addr)

Structure of PC-based Bypass Predictor

hashedPC (7-bit)
Tag

LRU bits
Valid bit

metadata

4-bit counter

Prediction table

128 entries

Update

Predict

HashedPC: the hash value of the PC of the last instruction that accessed this block

Example

L1 cache

val

Prediction table

Example

L1 cache

val

Prediction table
(PC, addr)

Example

L1 cache

val

Prediction table
(PC, addr)

Hash(PC)

Get prediction

Example

L1 cache

val

Prediction table
(PC, addr)

Hash(PC)

Get prediction

? Val >= threshold

Example

L1 cache

val

Prediction table
(PC, addr)

Hash(PC)

Get prediction

? Val >= threshold

block

CU

Bypass

Example

L1 cache

val

Prediction table

Example

L1 cache

val

Prediction table
(PC, addr)

Example

L1 cache

val

Prediction table
(PC, addr)

Verify prediction

HashedPC

Example

L1 cache

val

Prediction table
(PC, addr)

Verify prediction

val = val -1
HashedPC

Example

L1 cache

val

Prediction table
(PC, addr)

Verify prediction

val = val -1
HashedPC

Example

L1 cache

val

Prediction table

Example

L1 cache

val

Prediction table

Verify prediction

HashedPC

Example

L1 cache

val

Prediction table

Verify prediction

val = val +1
HashedPC

Example

L1 cache

val

Prediction table

Verify prediction

val = val +1
HashedPC

Misprediction Correction

• Bypass misprediction is irreversible

• Cause additional penalties to access lower level caches

• Utilize this procedure to help verify misprediction

• Each L2 entry contains an extra bit: BypassBit

– BypassBit == 1 if the requested block will bypass L1

– Intuition: if it is a bypass misprediction, this block should be re-
referenced soon, and will be hit in the L2 cache

• Miscellaneous

– Set dueling

– Sampling

Outline

• Background and Motivation

• Adaptive GPU Cache bypassing

• Methodology

• Evaluation Results

• Case Study of Programmability

• Conclusion

Methodology

GPU cache configuration

CUs 8, 1GHz, 64 scalar units by 4 SIMDs

L1 cache 8-way, 16KB, 1-cycle tag, 4-cycle data access

Shared L2 cache 16-way, 256KB, 4-cycle tag, 16-cycle data access

Shared L3 cache 16-way, 4MB, 15-cycle tag, 30-cycle data access

• In-house APU simulator that extends Gem5

- Similar to AMD Graphics Core Next architecture

• Benchmarks: Rodinia, AMD APP SDK, OpenDwarfs

Storage Overhead

• Evaluated Techniques

PC-based bypass predictor

Prediction table/L1 cache 4-bit * 128 entries

Metadata/L1 block 7 bits

Metadata/L2 block 1 bit

Total cost 224 bytes out of 16KB L1 (1.5%)
0.5KB out of 256KB L2 (0.2%)

Counter-based bypass predictor

Prediction table/L1 cache 128* 128 entries, 5-bits

Metadata/L1 block 20 bits (hashedPC, counters, prediction)

Total cost 10.625KB out of 16KB L1 (66.4%)

Outline

• Background and Motivation

• Adaptive GPU Cache bypassing

• Methodology

• Evaluation Results

• Case Study of Programmability

• Conclusion

Energy Savings

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
e

rc
e

n
ta

ge
 o

f
C

ac
h

e

M
is

se
s

B
yp

as
se

d

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

L1
D

 E
n

e
rg

y
U

sa
ge

 v
s.

1

6
K

B
 C

ac
h

e

• 58% of cache fills are prevented with cache bypassing
• The energy cost of L1 cache is reduced by up to 49%, on average by 25%
• Reduces dynamic power by 18% , increases the leakage power by only 2.5%

Performance Improvement

0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09

1.1
1.11
1.12
1.13
1.14

P
e

rf
o

rm
an

ce
 N

o
rm

al
iz

e
d

 t
o

 1
6

K
B

 L
1

D 32KB Cache PC-based Counter-based

Performance Improvement

0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09

1.1
1.11
1.12
1.13
1.14

P
e

rf
o

rm
an

ce
 N

o
rm

al
iz

e
d

 t
o

 1
6

K
B

 L
1

D 32KB Cache PC-based Counter-based

Outperforms counter-based predictor
Achieves performance of 32KB upper-bound

Prediction Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
e

rc
e

n
t

o
f

L1
D

 A
cc

e
ss

e
s

false positives coverage

• False positives: incorrectly bypassed to-be-reused blocks

• Coverage: the ratio of bypass prediction to all prediction

Coverage ratio is 58.6%, false positive rate is 12%

Outline

• Background and Motivation

• Adaptive GPU Cache bypassing

• Methodology

• Evaluation Results

• Case Study of Programmability

• Conclusion

Scratchpad Memories vs.Caches

• Store reused data shared within a compute unit

• Programmer-managed vs. hardware-controlled

• Scratchpad memories filter out temporal locality

• Limited programmability
– Explicitly remapping from memory address space to the

scratchpad address space

Scratchpad Memories vs.Caches

• Store reused data shared within a compute unit

• Programmer-managed vs. hardware-controlled

• Scratchpad memories filter out temporal locality

• Limited programmability
– Explicitly remapping from memory address space to the

scratchpad address space

To what extent can L1 cache bypassing make up
for the performance loss caused by removing

scratchpad memories?

Case Study: Needleman-Wunsch (nw)

• nw:
– Global optimization algorithm

– Compute-sensitive

– Very little reuse observed in L1 caches

• Rewrote nw to remove the use of scratchpad
memories: nw-noSPM

– Not simply replace _local_ functions with _global_
functions

– Best-effort re-written version

Case Study (cont.)

0
20
40
60
80

100
120
140
160
180
200

K
er

n
el

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

e
co

n
d

s)

Case Study (cont.)

0
20
40
60
80

100
120
140
160
180
200

K
er

n
el

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

e
co

n
d

s)

• Nw-noSPM takes 7X longer than nw

Case Study (cont.)

0
20
40
60
80

100
120
140
160
180
200

K
er

n
el

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

e
co

n
d

s)

• Nw-noSPM takes 7X longer than nw

• With bypassing, the gap is reduced by 30%

Case Study (cont.)

0
20
40
60
80

100
120
140
160
180
200

K
er

n
el

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

e
co

n
d

s)

• Nw-noSPM takes 7X longer than nw

• With bypassing, the gap is reduced by 30%

• 16KB L1 cache + bypassing outperforms 64KB L1 cache

Case Study (cont.)

0
20
40
60
80

100
120
140
160
180
200

K
er

n
el

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

e
co

n
d

s)

• Nw-noSPM takes 7X longer than nw

• With bypassing, the gap is reduced by 30%

• 16KB L1 cache + bypassing outperforms 64KB L1 cache

• Note that scratchpad memory is 64KB while L1 is only 16KB

Conclusion

• GPU caches are inefficient

• We propose a simple but effective GPU cache
bypassing technique

• Improves GPU cache efficiency

• Reduces energy overhead

• Requires far less storage overhead

• Bypassing allows us to move towards more
programmable GPUs

Thank you!

Questions?

Backup

• Do all zero-reuse actually streaming?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
yn

am
ic

al
ly

 A
cc

e
ss

e
d

 C
ac

h
e

 B
lo

ck
s

lifeLongNoReuse

zero-reuse

GPU Cache Capacity

1

1.1

1.2

1.3

1.4

1.5

32KB 64KB 128KB 256KB 512KB 1024KB

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
e

n
t

N
o

rm
al

iz
e

d

to
 1

6
K

B
 L

1
 C

ac
h

e

sizes of L1 cache

• Caches are useful, but current cache size are too small to gain benefit

• Performance benefit by increasing cache sizes << extra area taken up

• Adding more computational resources

• Leading to lower per-thread cache capacity

Power Overhead

Energy (nJ) 16KB baseline bypassing

per tag access 0.00134096 0.0017867

per data access 0.106434 0.106434

per prediction table access N/A 0.000126232

Dynamic Power (mW) 44.2935 36.1491

Static Power (mW) 7.538627 7.72904

Compare with SDBP

• SDBP is designed for LLCs, where much of the
temporal locality has been filtered

• our technique is designed for GPU L1 caches,
where temporal information is complete. We
use PCs because of the observation of
characteristics of GPGPU memory accesses.

• GPU kernels are small and frequently
launched, the interleaving changes frequently.

