

Dynamic GPGPU Power Management Using Adaptive Model Predictive Control

Abhinandan Majumdar^{*}, Leonardo Piga⁺, Indrani Paul⁺, Joseph L. Greathouse⁺, Wei Huang⁺, David H. Albonesi^{*}

*Computer Systems Laboratory, Cornell University *Advanced Micro Devices, Inc.

Model Predictive Control (MPC)

- Previous dynamic power management policies ignore future application behavior
 - · Leads to performance loss or wasted energy
- MPC *looks into the future* to determine the best configuration for the current optimization time step

- Though effective in many domains, overheads far too high for short timescales of dynamic power management
- <u>Our approach</u>: An approximation of MPC that dramatically improves GPGPU energy-efficiency with orders of magnitude lower overhead

Dynamic GPGPU Power Management

- Attempts to maximize performance within power constraints
- Hardware knobs
 - Number of active GPU Compute Units
 - DVFS states

 <u>Goal</u>: Reduce the energy of the GPU application phases compared to the baseline power manager while matching its performance

Applying MPC to Dynamic Power Management

Applying MPC to Dynamic Power Management

Applying MPC to Dynamic Power Management

- MPC has high overhead
 - Complexity scales exponentially with H
 - Minimizing energy under performance cap with discrete HW settings is fundamentally NP-hard
 - Usually requires dedicated optimization solvers, such as CVX, lpsolve, etc.

Approximations to MPC

Greedy Hill Climbing to reduce the search space

 Static search order heuristic to make MPC optimization polynomial rather than exponential

Dynamically tuning of the horizon length H to limit the optimization overhead

MPC Power Manager Architecture

MPC Optimizer

 <u>Objective</u>: Find minimum energy HW setting for each kernel without impacting overall performance

MPC Optimizer

 <u>Objective</u>: Find minimum energy HW setting for each kernel without impacting overall performance

- Greedy Hill Climbing optimization
 - •Select the HW knob with highest energy sensitivity
 - •Search for the lowest energy configuration using hill climbing
- MPC Search Heuristic
 - •Determines a static order without backtracking
 - Search cost becomes polynomial
 - •Details in the paper
- 65X average reduction in total cost evaluations

Adaptive Horizon Generator

 Longer horizon improves savings but increases MPC optimization time

Adaptive Horizon Generator

 Longer horizon improves savings but increases MPC optimization time

- Limit the overhead to a slowdown factor α by dynamically varying the horizon length

$$H_i \le \frac{N}{\mathbb{N}} \frac{(1+\alpha-\frac{1}{i})\frac{i \times T_{total}}{N} - \sum_{j=1}^{i-1} (T_j + T_{MPC,j})}{T_{PPK}}$$

Adaptive Horizon Generator

 Longer horizon improves savings but increases MPC optimization time

- Limit the overhead to a slowdown factor α by dynamically varying the horizon length

$$H_i \le \frac{N}{\mathbb{N}} \frac{(1+\alpha-\frac{1}{i})\frac{i \times T_{total}}{N} - \sum_{j=1}^{i-1} (T_j + T_{MPC,j})}{T_{PPK}}$$

General Idea:

Search order (2, 1, 4, 5, 3, 6)

Experimental Testbed

- AMD A10-7850K APU
 - 2 out-of-order dual core CPUs
 - GPU contains 512 processing elements (8 CUs) at 720 MHz

DVFS states

CPU P States	Voltage (V)	Freq (GHz)
P1	1.325	3.9
P2	1.3125	3.8
P3	1.2625	3.7
P4	1.225	3.5
P5	1.0625	3
P6	0.975	2.4
P7	0.8875	1.7

NB P States	Freq (GHz)	Memory Freq (MHz)
NB0	1.8	800
NB1	1.6	800
NB2	1.4	800
NB3	1.1	333

GPU P States	Voltage (V)	Freq (GHz)	
DPM0	0.95	351	
DPM1	1.05	450	
DPM2	1.125	553	
DPM3	1.1875	654	
DPM4	1.225	720	

NB and GPU share the same voltage rail

Total HW configuration: 336

Experimental Setup

15 GPGPU Benchmarks

- Baseline scheme
 - AMD Turbo Core

- Predict Previous Kernel (PPK)
 - Assume last kernel repeats
 - State-of-the-art: Harmonia ISCA'15, McLaughlin et al. ASBD'14

• Maximum overhead $\alpha = 5\%$

Category	Benchmarks	Benchmark Suite	Regular Expression	
	mandelbulbGPU	Phoronix	A ²⁰	
Regular	Nbody	AMD APP SDK	A ¹⁰	
	juliaGPU	Phoronix	A ¹⁰	
Irregular with	EigenValue	AMD APP SDK	(AB) ⁵	
repetitive pattern	XSBench	Exascale	(ABC) ²	
Irregular with non- repetitive pattern	Spmv	SHOC	A ¹⁰ B ¹⁰ C ¹⁰	
	Kmeans	Rodinia	AB ²⁰	
Irregular with kernels varying with input	swat	OpenDwarfs		
	color	Pannotia		
	pb-bfs	Parboil		
	mis	Pannotia	Complex pattern	
	srad	Rodinia		
	lulesh	Exascale		
	lud	Rodinia		
	hybridsort	Rodinia		

Energy-Performance Gains

Energy-Performance Gains

Energy-Performance Gains

MPC Overhead

MPC Overhead

Ramification of Prediction Inaccuracy

- RF: 12% Power, 25% Perf
- 15% Power, 10% Perf: Wu et al. [HPCA 2015]
- 5% Power, 5% Perf: Paul et al. [ISCA 2015]

Conclusions

- MPC looks into the future to determine the best configuration for the current optimization time step
- Though effective in many domains, overheads far too high for short timescales of dynamic power management
- We devise an approximation of MPC that dramatically improves GPGPU energy-efficiency with orders of magnitude lower overhead
- Our approach reduces energy by 24.8% with only a 1.8% performance impact

Questions

Backup Slides

Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration, workload characteristics, programming model, and node-level objective/constraints

Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration, workload characteristics, programming model, and node-level objective/constraints

Optimum node-level power efficiency is a complex function of SOC configuration, workload characteristics, programming model, and node-level objective/constraints

 Optimum node-level power efficiency is a complex function of SOC configuration, workload characteristics, programming model, and node-level objective/constraints

 Optimum node-level power efficiency is a complex function of SOC configuration, workload characteristics, programming model, and node-level objective/constraints

 Optimum node-level power efficiency is a complex function of SOC configuration, workload characteristics, programming model, and node-level objective/constraints

Reduce energy of the GPGPU kernel phase while performing better than a target

 MPC looks into the future to determine the best configuration for the current optimization time step

- Though effective in many domains, overheads far too high for short timescales of dynamic power management
- <u>Our approach</u>: An approximation of MPC that dramatically improves GPGPU energy-efficiency with orders of magnitude lower overhead

- CPU and GPU consume significant power in servers
- Previous approaches to dynamic power management are locally predictive and ignore future kernel behavior
 - Performance loss or wasted energy

- CPU and GPU consume significant power in servers
- Previous approaches to dynamic power management are locally predictive and ignore future kernel behavior
 - Performance loss or wasted energy

Model Predictive Control *Proactively* looks ahead into the future

- CPU and GPU consume significant power in servers
- Previous approaches to dynamic power management are locally predictive and ignore future kernel behavior
 - Performance loss or wasted energy

Model Predictive Control Proactively looks ahead into the future

 Applying MPC is challenging for short timescales of dynamic power management

- CPU and GPU consume significant power in servers
- Previous approaches to dynamic power management are locally predictive and ignore future kernel behavior
 - Performance loss or wasted energy

Model Predictive Control Proactively looks ahead into the future

- Applying MPC is challenging for short timescales of dynamic power management
- Goal: Approximations to MPC that save GPGPU energy within the timescales of a typical server operation without degrading performance

• **Goal:** Reduce GPGPU energy within the timescales of a typical server operation without degrading performance

Computationally Intensive

- NP-Hard
- Challenging for short timescales of dynamic power management
- Idea: Improve energy efficiency by looking into future phases
 - Model Predictive Control (MPC)
 - Dynamically vary computation to limit performance overhead

Traditional Energy Management

Static

Predefined set of decisions

Reactive

Act after sensing a change in behavior

Locally Predictive

Predict the immediate behavior

Traditional Energy Management

Static

Predefined set of decisions

Reactive

Act after sensing a change in behavior

Locally Predictive

Predict the immediate behavior

Performance loss or wasted energy

Traditional Energy Management

Static

Predefined set of decisions

Reactive

Act after sensing a change in behavior

Locally Predictive

Predict the immediate behavior

Performance loss or wasted energy

Proactive Energy Management Adapt from past and look-ahead into the future

- Baseline
 - AMD Turbo Core

Hardware Knobs

• DVFS states, GPU CUs

- Baseline
 - AMD Turbo Core
- Hardware Knobs
 - DVFS states, GPU CUs
- Predict Previous Kernel (PPK):
 - Assume last kernel repeats
 - State-of-the-art: Harmonia ISCA'15, McLaughlin et al. ASBD'14
- Theoretically Optimal (TO):
 - Perfect knowledge of future
 - Impractical

Baseline

AMD Turbo Core

Hardware Knobs

- DVFS states, GPU CUs
- Predict Previous Kernel (PPK):
 - Assume last kernel repeats
 - State-of-the-art: Harmonia ISCA'15, McLaughlin et al. ASBD'14
- Theoretically Optimal (TO):
 - Perfect knowledge of future
 - Impractical

Baseline

AMD Turbo Core

Hardware Knobs

- DVFS states, GPU CUs
- Predict Previous Kernel (PPK):
 - Assume last kernel repeats
 - State-of-the-art: Harmonia ISCA'15. McLaughlin et al. ASBD'14
- Theoretically Optimal (TO):
 - Perfect knowledge of future
 - Impractical

Kmeans

Kmeans

Kmeans

60

Kmeans

Background

Typical GPGPU application phase

Kernel Performance Scaling

Energy-optimal configuration differ across kernels

(c) Peak: writeCandidates

(b) Memory-bound: readGlobalMemoryCoalsced

(d) Unscalable: astar

- MPC Components
 - Accurate system model
 - Future input forecast
 - Optimization

- MPC Components
 - Accurate system model Power and performance prediction model
 - Future input forecast ——• Kernel pattern extractor

Feedback-based Performance Tracker

Performance Power Model

- Trained offline using Random Forest Learning Algorithm
- Estimates performance and power for any HW configuration

Kernel Pattern Extractor

- Extracts kernel execution pattern upon the first encounter
- Stores the performance counters of dissimilar kernels and retunes it

MPC Optimizer

- Greedy Hill Climbing optimization
 - Using the predictor, select the HW knob with highest energy sensitivity
 - Search for low energy configuration using hill climbing

MPC Optimizer

- Greedy Hill Climbing optimization
 - Using the predictor, select the HW knob with highest energy sensitivity
 - Search for low energy configuration using hill climbing

NB DVFS

GPU DVFS

GPU CU

- Greedy Hill Climbing optimization
 - Using the predictor, select the HW knob with highest energy sensitivity
 - Search for low energy configuration using hill climbing

- Greedy Hill Climbing optimization
 - Using the predictor, select the HW knob with highest energy sensitivity
 - Search for low energy configuration using hill climbing

- Greedy Hill Climbing optimization
 - Using the predictor, select the HW knob with highest energy sensitivity
 - Search for low energy configuration using hill climbing

- Greedy Hill Climbing optimization
 - Using the predictor, select the HW knob with highest energy sensitivity
 - Search for low energy configuration using hill climbing

- Greedy Hill Climbing optimization
 - Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing

- Greedy Hill Climbing optimization
 - Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing
- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

- Greedy Hill Climbing optimization
 - Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing
- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

- Greedy Hill Climbing optimization
 - Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing
- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

- Greedy Hill Climbing optimization
 - Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing
- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

- Greedy Hill Climbing optimization
 - Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing
- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea

- High to low performance (e.g. Spmv): Optimize low performing kernels first
- Low to high performance (e.g. Kmeans): Optimize high performing kernels first
- Search cost becomes polynomial

- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

 $65 \times \text{cost}$

- MPC Search Heuristic
 - Determine a static order requiring no backtracking
 - General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
 - Search cost becomes polynomial

MPC runs between kernel invocations

- Longer horizon increases MPC optimization time
- Limit the overhead α by dynamically varying the horizon length

- Longer horizon increases MPC optimization time
- Limit the overhead α by dynamically varying the horizon length
- General Idea:

 $(Total Time of i - 1 kernels) + (Est. MPC Opt. Time) + (Est. Time of kernel i) \le 1 + \alpha$

Baseline Time of i kernels

- Longer horizon increases MPC optimization time
- Limit the overhead α by dynamically varying the horizon length
- General Idea:

$$H_i \le \frac{N}{\mathbb{N}} \frac{(1+\alpha-\frac{1}{i})\frac{i \times T_{total}}{N} - \sum_{j=1}^{i-1} (T_j + T_{MPC,j})}{T_{PPK}}$$

Dynamic GPGPU Power Mgmt. Formulation

 Minimize energy over N GPU kernels such that the performance target is met

$$\min_{\overrightarrow{s}}\sum_{i=1}^{N}E_{i}(s_{i})$$

such that

$$\frac{\sum_{i=1}^{N} I_i}{\sum_{i=1}^{N} T_i(s_i)} \ge \frac{I_{total}}{T_{total}}$$

 $s_i \in S \quad \forall 1 \le i \le N$ $S = \overrightarrow{cpu} \times \overrightarrow{nb} \times \overrightarrow{gpu} \times \overrightarrow{cu}$

Theoretically Optimal

 GLPK to solve the Integer Linear Programming (ILP) formulation

$$\min\sum_{i=1}^N\sum_{j\in S}E_i(j)X_{ij}$$

such that

$$\sum_{i=1}^{N} I_i - \frac{I_{total}}{T_{total}} \sum_{i=1}^{N} \sum_{j \in S} T_i(j) X_{ij} \ge 0$$
$$\sum_{j \in S} X_{ij} = 1 \quad \forall \ 1 \le i \le N$$

 $X_{ij} \in \{0, 1\}$ $1 \le i \le N \text{ and } \forall j \in S$

Predict Previous Kernel (PPK)

 Minimize energy of kernel *i* such that the runtime performance so far exceeds the target

 $\min_{s_i\in S} E_i(s_i)$

such that

$$\frac{\sum_{j=1}^{i} I_j}{\sum_{j=1}^{i} T_j(s_j)} \ge \frac{I_{total}}{T_{total}} \quad \forall 1 \le i \le N \text{ and } \forall s_j \in S$$

MPC-based GPGPU Power Manager

• Optimize energy for next *H* kernels such that the runtime performance at the end of *H* kernels exceeds the target

$$\min_{\vec{s}} \sum_{j=i}^{i+H-1} E_j(s_j)$$

such that

$$\frac{\sum_{j=1}^{i+H-1} I_j}{\sum_{j=1}^{i+H-1} T_j(s_j)} \ge \frac{I_{total}}{T_{total}} \quad \forall 1 \le i \le N \text{ and } \forall s_j \in S$$

Runtime Performance Tracker

Performance requirement of kernel, k, is enforced as follows:

$$\frac{\sum_{j=1}^{k-1} I_j + \mathbb{E}[I_k]}{\sum_{j=1}^{k-1} T_j(s_j) + \mathbb{E}[T_k(s_k)]} \ge \frac{I_{total}}{T_{total}}$$

Kernel time headroom is updated according to:

$$\mathbb{E}[T_k(s_k)] \le \left(\sum_{j=1}^{k-1} I_j + \mathbb{E}[I_k]\right) \left| \left(\frac{I_{total}}{T_{total}}\right) - \sum_{j=1}^{k-1} T_j(s_j)\right|$$

Feedback-based Performance Tracker

Greedy Hill Climbing optimization

• Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing

Greedy Hill Climbing optimization

• Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing

MPC Search Heuristic

- Determine a static order requiring no backtracking
- General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
- Search cost becomes polynomial
- 65X average reduction in total cost evaluations

An Example

Greedy Hill Climbing optimization

• Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing

MPC Search Heuristic

- Determine a static order requiring no backtracking
- General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
- Search cost becomes polynomial
- 65X average reduction in total cost evaluations

An Example

Greedy Hill Climbing optimization

• Select the HW knob with highest energy sensitivity and search for low energy configuration using hill climbing

MPC Search Heuristic

- Determine a static order requiring no backtracking
- General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
- Search cost becomes polynomial
- 65X average reduction in total cost evaluations

An Example

- Greedy hill climbing optimization
 - **Greedy**: Select the HW knob with highest energy sensitivity
 - **Hill Climbing**: Continue finding low energy configuration (within perf target), and stop
 - Reduces search cost by 20X

- · Determine a static order requiring no backtracking
- General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
- Search becomes polynomial

An Example

- Greedy hill climbing optimization
 - **Greedy**: Select the HW knob with highest energy sensitivity
 - **Hill Climbing**: Continue finding low energy configuration (within perf target), and stop
 - Reduces search cost by 20X

- · Determine a static order requiring no backtracking
- General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
- Search becomes polynomial

An Example

- Greedy hill climbing optimization
 - **Greedy**: Select the HW knob with highest energy sensitivity
 - **Hill Climbing**: Continue finding low energy configuration (within perf target), and stop
 - Reduces search cost by 20X

- · Determine a static order requiring no backtracking
- General Idea
 - High to low performance (e.g. Spmv): Optimize low performing kernels first
 - Low to high performance (e.g. Kmeans): Optimize high performing kernels first
- Search becomes polynomial
- Average reduction in total cost evaluations: 65X

An Example

GPGPU Benchmarks

Category	Benchmarks	Benchmark Suite	Regular Expression	
	mandelbulbGPU	Phoronix	A ²⁰	
Regular	Nbody	AMD APP SDK	A ¹⁰	
	juliaGPU	Phoronix	A ¹⁰	
Irregular with repetitive pattern	EigenValue	AMD APP SDK	(AB) ⁵	
	XSBench	Exascale	(ABC) ²	
Irregular with non- repetitive pattern	Spmv	SHOC	A ¹⁰ B ¹⁰ C ¹⁰	
	Kmeans	Rodinia	AB ²⁰	
	swat	OpenDwarfs		
	color	Pannotia		
Irregular with kernels varying with input	pb-bfs	Parboil		
	mis	Pannotia	Complex pattern	
	srad	Rodinia		
	lulesh	Exascale		
	lud	Rodinia		
	hybridsort	Rodinia		

Experimental Testbed (Detailed)

- AMD A10-7850K APU
 - 2 out-of-order dual core CPUs
 - GPU contains 512 processing elements (8 CUs) at 720 MHz
 - Each CU has 4 SIMD Vector Units
 - 16 PEs per SIMD vector unit

DVFS states

CPU P States	Voltage (V)	Freq (GHz)
P1	1.325	3.9
P2	1.3125	3.8
P3	1.2625	3.7
P4	1.225	3.5
P5	1.0625	3
P6	0.975	2.4
P7	0.8875	1.7

NB P States	Freq (GHz)	Memory Freq (MHz)
NB0	1.8	800
NB1	1.6	800
NB2	1.4	800
NB3	1.1	333

						B
						DDR3 PHY
NB	and GP	U share	t	he same	voltage i	rail
		Memory		GPU P States	Voltage (V)	Freg (GHz)

0.95

1.05

NB1	1.6	800	DPM2	1.125	553
NB2	1.4	800	DPM3	1.1875	654
NB3	1.1	333	DPM4	1.225	720
				-	

DPM0

DPM1

- GPU CUs and DVFS states changed in multiples of 2
- Total HW configuration: 336

351

450

Experimental Setup

15 GPGPU Benchmarks

- Sampled from 73 benchmarks
- 75% irregular
- 44% vary with input

Baseline scheme

AMD Turbo Core

Algorithms

- PPK
- MPC
- TO

Category	Benchmarks	Benchmark Suite	Regular Expression		
outegory	mandelbulbGPU	Phoronix	A ²⁰		
Regular	Nbody	AMD APP SDK	A ¹⁰		
	juliaGPU	Phoronix	A ¹⁰		
Irregular	EigenValue	AMD APP SDK	(AB) ⁵		
with repetitive pattern	XSBench	Exascale	(ABC) ²		
Irregular	Spmv	SHOC	A ¹⁰ B ¹⁰ C ¹⁰		
with non- repetitive					
pattern	Kmeans	Rodinia	AB ²⁰		
	swat	OpenDwarfs			
	color	Pannotia			
Irregular	pb-bfs	Parboil			
with kernels	mis	Pannotia	Complex pettern		
varying with	srad	Rodinia			
input	lulesh	Exascale			
	lud	Rodinia			
	hybridsort	Rodinia			

Results based on real hardware traces

Polynomial MPC w/ Theoretical Optimal

Polynomial MPC w/ Theoretical Optimal

GPU Energy Savings

MPC Energy-Performance w.r.t PPK

Amortization of Initial Loses

Final Takeaway

- MPC is a versatile scheme
 - Does not hurt gains of regular benchmarks
 - Improves energy savings
 - Reduces performance loss
- Online MPC reduces performance loss compared to traditional approaches
- Online MPC is resilient to prediction inaccuracy due to
 - Performance feedback
 - MPC's greedy and heuristic approximations depend minimally on prediction models