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6th Gen. AMD A-Series Processor “Carrizo” High-Level System Design Points
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• Some CPU design spaces:
• How large?

• How many CPUs?

• How fast should the CPUs run?

• How much power should it use?

6th Gen. AMD A-Series Processor “Carrizo”
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• Some CPU design spaces:
• How large?

• How many CPUs?

• How fast should the CPUs run?

• How much power should it use?

• Some GPU design spaces:
• How much parallelism?
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Various Designs Using AMD GPUs

Name CUs Max 
Freq. 
(MHz)

Max DRAM 
BW

(GB/s)

AMD E1-6010 APU 2 350 11

AMD A10-7850K APU 8 720 35

Microsoft Xbox One™ Processor 12 853 68

Sony PlayStation® 4 Processor 18 800 176

AMD Radeon™ R9-280X 32 1000 286

AMD Radeon™ R9-290X 44 1000 352

AMD Radeon™ R9 Fury X 64 1000 512
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Power and thermals on a real heterogeneous processor
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Power and thermals on a real heterogeneous processor

• Real applications of interest are large and complex
• Not microbenchmarks, can run for minutes or hours

• Performance and power can rely on what happened in the past

• Complex interactions between various heterogeneous devices
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Power and thermals on a real heterogeneous processor

~2.5 trillion CPU instructions, ~60 trillion GPU operations

• Real applications of interest are large and complex
• Not microbenchmarks, can run for minutes or hours

• Performance and power can rely on what happened in the past

• Complex interactions between various heterogeneous devices
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• Microarchitecture simulators (e.g., gem5, Multi2Sim, SESC, GPGPU-Sim)
• Excellent for low-level details.

• Too slow for broad design space explorations of full applications:
• 6 minutes * 60s/min * 4 CPU cores * ~1.75GHz (AMD A8-4555M) + 

6 minutes * 60s/min * 6 CUs * 64 FPU/CU * 425MHz (AMD Radeon™ HD 7600G) =

~60 trillion operations ≈ 1 year of simulation time @ 2 MIPS
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• Much faster than SW simulation, just as detailed, but require a nearly-complete design
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• Emulators (e.g., Cadence Palladium, Synopsys ZeBu, Mentor Veloce, IBM AWAN)
• Much faster than SW simulation, just as detailed, but require a nearly-complete design

• Functional simulators (e.g., AMD SimNow, Simics, QEMU, etc.)
• Faster than microarchitectural simulators, good for software bring-up

• No relation to hardware performance

• Spreadsheet analyses
• Great for first-order analyses. Much faster and easier than lower-level simulators

• Difficult to analyze application differences.
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• Gather from running application of interest on real hardware:

1
5

GPU Hardware

GPU Kernel
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• Gather from running application of interest on real hardware:

• Measured performance and power

• Information about how the application used the hardware (e.g., performance counters)
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• Gather from running application of interest on real hardware:

• Measured performance and power

• Information about how the application used the hardware (e.g., performance counters)

• Estimate performance and power for different hardware design points
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THE “HIGH-LEVEL” DESIGN SPACE EXPLORED IN THIS TALK
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• Changes to the following GPU parameters:

• Number of parallel compute units (CUs)

• Core frequency

• Memory bandwidth

• Changes to GPU kernel:

• Performance

• Dynamic power
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GPU KERNEL PERFORMANCE SCALING WITH HW DESIGNS (5)
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GPU KERNEL PERFORMANCE SCALING WITH HW DESIGNS (6)
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Training Set
Kernel 1 Kernel 2 Kernel 3

Kernel 4 Kernel 5 Kernel 6
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• Performance counters indicate how the kernel uses the hardware
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… … …

Perf. Counter 0

Perf. Counter 1

Perf. Counter N

Cluster 0

Cluster 1

Cluster M

• Performance counters indicate how the kernel uses the hardware

• Counters may thus help indicate which cluster a kernel is in with only one measurement
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Half the CUs but 

same bandwidth?
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Performance
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ACCURACY FROM ONE HW POINT TO ALL OTHERS
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PREPARING GOOD DATA IS CHALLENGING
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• This model needs a lot of data:
• Multiple applications, many kernels

• Numerous design points per application

• What kernels are representative?

• How to get clean performance and power data?
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• Modern systems have a large heterogeneous hardware design space

• We need tools to do early design space exploration to help guide designs

• ML techniques help perform hardware-driven scaling studies

• Reasonable accuracy and very fast!

• But building clean, meaningful data sets presents a challenge
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QUESTIONS?
Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, 
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS 
flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise 
this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY 
INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL 
AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, Radeon, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Xbox One is a trademark of the Microsoft Corporation. 
PlayStation is a trademark or registered trademark of Sony Computer Entertainment, Inc. Other names used herein are for identification purposes only and may be 
trademarks of their respective companies.
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BACKUP SLIDES
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CPU0

Time

CPU1

GPU

Example when everything except CPU1 gets 2x faster:

Performance 
Difference

CPU0

CPU1

GPU

Less than 2x gain because CPU1 
now on new critical path

APPLICATION’S USE OF ALL HARDWARE MATTERS
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In phase 1, gather SW-level relationship between each segments

Use these relationships to build a legal execution order on simulated system

Gather ordering from library calls like pthread_create(), clWaitForEvents(), etc.

Could also split segments on user API calls, program phases

CPU0

CPU1

GPU

① ② ⑦

⑥③ ④

⑤

RECONSTRUCTING APPLICATION CRITICAL PATHS


