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POWER AND ENERGY ARE FIRST-CLASS DESIGN CONSTRAINTS

 Power and energy have become a first-class design constraint in all areas of 
computing

‒ Phones and laptops must optimize for energy as they are battery operated

‒ Desktops require loud cooling solutions

‒ Supercomputers and other large data centers are constrained by power
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DATA MOVEMENT: A MAJOR SOURCE OF POWER CONSUMPTION

 Data movement through the memory hierarchy thought to be a major source of 
power consumption

 Measurements on real system lacking

‒ Current estimates based on simulation studies

‒ Real-world measurements are coarse-grained and do not give break down for data 
movement

Based on: Shalf et al., “Exascale Computing Technology Challenges,” VECPAR 2010
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THIS TALK IN ONE SENTENCE

A new methodology to measure 
data-movement power on real hardware
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STATE-OF-THE-ART MEASUREMENT APPROACH

G. Kestor et al., "Quantifying the energy cost of data movement in scientific applications,” IISWC 2013
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STATE-OF-THE-ART MEASUREMENT APPROACH
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STATE-OF-THE-ART MEASUREMENT APPROACH

 EL2 = Energy consumed by L2 microbenchmark

 EL1 = Energy consumed by L1 microbenchmark

 Energy cost of moving data from L2 to L1 = EL2  - EL1

 Issue: Over-estimation of data-movement energy

G. Kestor et al., "Quantifying the energy cost of data movement in scientific applications,” IISWC 2013
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STATE-OF-THE-ART MEASUREMENT APPROACH: LIMITATION

Compute

L1

Interconnect

L2

Compute

L1

Interconnect

L2

L2 microbenchmark L1 microbenchmark

Issue: Data-movement power also includes L2-
access power
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A BIT OF BACKGROUND …

Representative block diagram of AMD FirePro™ W9100 GPU
(Previously Code-named “Hawaii”)
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A BIT OF BACKGROUND …

Physical distance traversed by data thought to affect 
data movement power

Representative block diagram of AMD FirePro™ W9100 GPU
(Previously Code-named “Hawaii”)
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OUR PROPOSED APPROACH
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Design microbenchmarks based on data-movement 
distance to properly isolate the interconnect



CHALLENGES



26 |   MEASURING AND MODELING ON-CHIP INTERCONNECT POWER ON REAL HARDWARE |   SEPTEMBER 26, 2016   

CHALLENGES



27 |   MEASURING AND MODELING ON-CHIP INTERCONNECT POWER ON REAL HARDWARE |   SEPTEMBER 26, 2016   

CHALLENGES

OpenCL™ lacks native support to pin threads 
to programmer-specified compute units



28 |   MEASURING AND MODELING ON-CHIP INTERCONNECT POWER ON REAL HARDWARE |   SEPTEMBER 26, 2016   

CHALLENGES

OpenCL™ lacks native support to pin threads 
to programmer-specified compute units

Temperature of device during tests will affect 
the power consumption



29 |   MEASURING AND MODELING ON-CHIP INTERCONNECT POWER ON REAL HARDWARE |   SEPTEMBER 26, 2016   

CHALLENGES

OpenCL™ lacks native support to pin threads 
to programmer-specified compute units

Temperature of device during tests will affect 
the power consumption

Power difference between the two sets of 
microbenchmarks can be hard to observe



30 |   MEASURING AND MODELING ON-CHIP INTERCONNECT POWER ON REAL HARDWARE |   SEPTEMBER 26, 2016   

CHALLENGES



31 |   MEASURING AND MODELING ON-CHIP INTERCONNECT POWER ON REAL HARDWARE |   SEPTEMBER 26, 2016   

CHALLENGES

Only a small difference between used-L2 and 
L1 cache size which can make it challenging to 
write L2-only microbenchmarks



32 |   MEASURING AND MODELING ON-CHIP INTERCONNECT POWER ON REAL HARDWARE |   SEPTEMBER 26, 2016   

CHALLENGES

Only a small difference between used-L2 and 
L1 cache size which can make it challenging to 
write L2-only microbenchmarks

Ensuring that the same amount of work is 
done by the two microbenchmarks can be 
challenging due to NUCA effects 
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ADDRESSING THE CHALLENGES

PINNING THREADS TO CORES WITH OPENCL™

Can be accomplished with some binary hacking
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ADDRESSING THE CHALLENGES

PINNING THREADS TO CORES WITH OPENCL™

1. Use workgroup ID as a placeholder for CU ID
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ADDRESSING THE CHALLENGES

PINNING THREADS TO CORES WITH OPENCL™

3. Identify instruction that writes workgroup ID to the 
register that gets checked in the conditional in binary
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ADDRESSING THE CHALLENGES

PINNING THREADS TO CORES WITH OPENCL™

4. Replace workgroup ID with CU ID (read from read-
only HW register) in the correct register in the binary
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ADDRESSING THE CHALLENGES

PINNING THREADS TO CORES WITH OPENCL™

5. Get functionally equivalent OpenCL snippet
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ADDRESSING THE CHALLENGES

ELIMINATING TEMPERATURE EFFECTS

Solution 1: Run GPU fans at very high speed to limit 
temperature difference between runs
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ADDRESSING THE CHALLENGES

ELIMINATING TEMPERATURE EFFECTS

Solution 2: Model idle power separately and subtract 
from measured power 
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 Power difference between microbenchmarks can be too low to be reliably 
observed

‒ Unless the amount of data going through the interconnect increases

ADDRESSING THE CHALLENGES
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 Power difference between microbenchmarks can be too low to be reliably 
observed

‒ Unless the amount of data going through the interconnect increases

 Difficult to saturate interconnect bandwidth without increasing the number of 
wavefronts

‒ Fewer wavefronts can result in stalling exposing latency difference issues

 More wavefronts can lead to one of the following issues

‒ More L1 hits when accesses per thread is low

‒ Register pressure and memory spills if access per thread is high

 Solution: Modify firmware to artificially shrink L1 cache size and then increase 
number of wavefronts

ADDRESSING THE CHALLENGES

SATURATING INTERCONNECT BANDWIDTH
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CHALLENGES

Only a small difference between used-L2 and 
L1 cache size which can make it challenging to 
write L2-only microbenchmarks

Ensuring that the same amount of work is 
done by the two microbenchmarks can be 
challenging due to NUCA effects 

Additional details in the paper



CHARACTERIZATION

STUDIES
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PARAMETERS AFFECTING INTERCONNECT POWER
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PARAMETERS AFFECTING INTERCONNECT POWER

Average interconnect distance

Data toggle rate

Bandwidth observed on the interconnect

Interconnect’s voltage and frequency
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INTERCONNECT POWER VS DISTANCE

Our experiments confirm that the distance 
traversed by data affects power consumption
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INTERCONNECT POWER VS DISTANCE

Within 15% of industrial estimates for 
energy/bit/mm
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INTERCONNECT POWER VS DISTANCE

Linear relationship observed between data-
movement distance and interconnect power
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INTERCONNECT POWER VS TOGGLE RATE

Linear relationship observed between toggle rate 
and interconnect power

(0% Toggle) (0% Toggle) (0% Toggle)

11111111 00000000 10101010 0x0x0x0x xxxxxxxx
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INTERCONNECT POWER VS TOGGLE RATE

Approximately 10% of interconnect power goes 
towards arbitration, etc.

(0% Toggle) (0% Toggle) (0% Toggle)

11111111 00000000 10101010 0x0x0x0x xxxxxxxx
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INTERCONNECT POWER VS TOGGLE RATE

Transmitting 0s slightly more expensive than 1s

(0% Toggle) (0% Toggle) (0% Toggle)

11111111 00000000 10101010 0x0x0x0x xxxxxxxx
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INTERCONNECT POWER VS VOLTAGE AND FREQUENCY

Impact of voltage and frequency as expected
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PUTTING IT ALL TOGETHER

 Interconnect Power = Energy/bit/mm * avg. distance * avg. bits/sec * scaled 
voltage2 x scaled frequency * avg. toggle rate

 For real applications, 

‒ Avg. bits per second is calculated from performance counters (e.g. L1 and L2 accesses)

‒ The other parameters are pre-computed or pre-measured (e.g. Distance is measured 
from layout; energy/bit/mm is computed to be 110 fJ/bit/mm)



EVALUATION OF

APPLICATIONS
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ENERGY COST OF DATA MOVEMENT ON REAL APPLICATIONS
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ENERGY COST OF DATA MOVEMENT ON REAL APPLICATIONS

Up to 14% dynamic power spent on interconnects in 
today’s chips
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ENERGY COST OF DATA MOVEMENT ON REAL APPLICATIONS

Even non-memory bound applications can show 
high interconnect power (but at different hierarchy)
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ENERGY COST OF DATA MOVEMENT ON REAL APPLICATIONS

Data-movement power problem exacerbated in 
future technology nodes



OPTIMIZATIONS
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INTERCONNECT POWER OPTIMIZATIONS

 Layout-Based Optimizations

We explore how much impact layout-based optimization can have on 
real world applications

We examine two layouts – one reduces distance between L1 and L2 and 
the other reduces distance between L2 and memory controller

Cache Resizing (details in the paper)

 Increasing cache size decreases average data movement distance (most 
data is fetched from nearer memories)

We quantify the magnitude of difference when we increase the cache 
size 4 times
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INTERCONNECT POWER OPTIMIZATIONS – LAYOUT OPTIMIZATION

L1-$ L2-$ Mem Controller

L1 to L2 = 17.0 units

L2 to MC = 7.6 units

L1 to L2   =   3.5 units

L2 to MC = 12.0 units

Optimized to reduce L2-MC distance.
Not too different from current GPUs.
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INTERCONNECT POWER OPTIMIZATIONS – LAYOUT OPTIMIZATION

L1-$ L2-$ Mem Controller

L1 to L2 = 17.0 units

L2 to MC = 7.6 units

L1 to L2   =   3.5 units

L2 to MC = 12.0 units

Optimized to reduce L1-L2 distance. 
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INTERCONNECT POWER OPTIMIZATIONS – LAYOUT OPTIMIZATION

Interconnect power reduces by 48% on average when we use an L1-L2 distance optimized layout



74 |   MEASURING AND MODELING ON-CHIP INTERCONNECT POWER ON REAL HARDWARE |   SEPTEMBER 26, 2016   

CONCLUSION

 Distance-based microbenchmarking is a promising approach to measure data 
movement power

 Over 14% of dynamic power can go towards on-chip data movement in today’s 
chips

‒ Lesser than past estimates as we separated out data access power from data 
movement power

‒ Can increase to 22% by 7nm technology

 Optimizing on-chip interconnects to reduce the distance of frequently accessed 
portions can reduce on-chip data movement power by 48%
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