
Accelerating Matrix Processing with GPUs
(Invited Paper)

Nicholas Malaya, Shuai Che, Joseph L. Greathouse, René van Oostrum, and Michael J. Schulte
AMD Research

Advanced Micro Devices, Inc.
7171 Southwest Pkwy, Austin, TX 78735

Email: Michael.Schulte@amd.com

I. SUMMARY OF WORK

Matrix operations are common and expensive computations in a
variety of applications. They occur frequently in high-performance
computing [1], [2], graphics [3], graph processing [4], [5], and
machine learning [6], [7] applications.

This paper discusses how to map a variety of important matrix
computations, including sparse matrix-vector multiplication (SpMV),
sparse triangle solve (SpTS), graph processing, and dense matrix-
matrix multiplication, to GPUs. Since many emerging systems will
use heterogeneous architectures (e.g. CPUs and GPUs) to attain the
desired performance targets under strict power constraints [8], this
paper discusses implications and future research for matrix processing
with heterogeneous designs.

Conclusions common to the matrix operations discussed in this
paper are: (1) Future algorithms should be written to ensure that
the essential computations fit into local memory, which may require
direct programmer management. (2) Algorithms are needed that ex-
pose high levels of parallelism. (3) While the scale of computation is
often sufficient to support algorithms with superior asymptotic order,
additional considerations, such as memory capacity and bandwidth,
must also be carefully managed. (4) Libraries should be used to
provide portable performance.

II. SPARSE MATRIX-VECTOR MULTIPLICATION (SPMV)
SpMV is a linear algebra primitive that multiplies a matrix stored

in a sparse format by a dense vector, resulting in another dense
vector: y = Ax. SpMV is used in a wide range of applications,
from iterative solvers to machine learning and graph analytics [9],
[10]. The algorithm used to calculate SpMV is heavily dependent on
the data structure used to hold the sparse matrix. Perhaps the most
popular format is compressed sparse row (CSR), since it compresses
most matrices well, and CPU-based algorithms that use CSR are
simple to write and perform well.

Other algorithms (e.g. sparse matrix-dense matrix multiplication)
rely on CSR for their own high-performance implementations [11],
and a great deal of existing code written for CPUs uses CSR.
Recent works have found ways to achieve high GPU-based SpMV
performance while leaving the CSR data structure untouched [12],
[13]. Since these algorithms do not change the CSR structures,
other algorithms can use the matrices without requiring further
transformations.

For example, CSR-Adaptive [12], [13] records the number of non-
zero values in each row when the matrix is first created. It then groups
together adjacent rows into blocks such that each has roughly the
same number of non-zero values. Unlike previous CSR-based SpMV
algorithms, which use one thread per row or which send a fixed
number of rows to each SIMD, CSR-Adaptive changes the number
of rows each SIMD unit operates on depending on the number of
non-zero values in each row.

A block of matrix rows may contain many short rows or a small
number of very long rows, and the algorithm changes the way it
calculates the result for each row depending on how many elements

it is operating on. CSR-Adaptive loads the contiguous rows into on-
chip scratchpad memory with a technique that does not cause memory
divergence. After this, one SIMD thread can be used to calculate each
row, since on-chip scratchpads do not suffer from the same memory
divergence problems as DRAM systems. Alternately, for the case of
an extremely long row, multiple threads can be used to calculate parts
of that row, generating more parallelism.

Modern GPU SpMV algorithms that use CSR are now some of the
highest-performing implementations since they solve the problems
of memory divergence and lack of parallelism. Implementations of
CSR-Adaptive, for instance, are now at the core of open source
sparse BLAS libraries such as ViennaCL [14] and clSPARSE [15].
While current GPU SpMV implementations can reach up to 95%
efficiency for many input matrices, some inputs see much worse
performance. This primarily occurs when the vector inputs do not
cache well. For instance, very wide rows require a large number of
vector memory accesses, which can displace useful data from caches
and cause memory bank and channel conflicts.

Solving these issues is the primary remaining research problem in
this domain. Cache bypassing when vector inputs do not cache well
could raise cache hit rates. In addition, scheduling work for long rows
to other processors (e.g. CPUs), so that they do not cause GPU cache
or memory conflicts, may lead to further improvements.

III. SPARSE TRIANGLE SOLVE (SPTS) ON GPUS

Triangular solves appear (with slight variations) in a broad range
of numerical linear algebra algorithms, such as direct methods,
preconditioned iterative methods, and least squares problems. In HPC,
most of the HPCG benchmark’s execution time is spent in algorithms
like SpTS [16], [17].

Triangle solve corresponds to solving an equation Ax = b for
the values of the vector x. Consider a dense lower triangular 3 × 3
matrix solve:a11 0 0

a21 a22 0
a31 a32 a33

x1

x2

x3

 =

b1
b2
b3

The first two rows are therefore, x1 = b1/a11 and, x2 = (b2 −
a21x1)/a22.

The challenge of accelerating this problem for sparse matricies
on GPUs are: (1) the extra work needed to find data dependencies
between matrix rows and (2) a general lack of parallelism due to these
dependencies. Unless the only non-zero values exist on the diagonal,
some serialization must occur. Determining whether two rows can
run in parallel (i.e. if the second row has no non-zero values in the
column with the first row’s diagonal) is difficult when the matrix is
stored in the CSR format.

Existing solutions generally try to find level sets, which require an
expensive pre-processing analysis that is typically many times slower
than the solution step itself [18]. Other work uses graph coloring [19],
[17], which reorders rows and breaks some transitive dependencies.
While this may accelerate SpTS-style algorithms, it can result in more

iterations, as it is (in essence) solving a different set of equations than
the original problem.

Liu et al. recently showed an SpTS algorithm that does not require
any pre-processed data dependency analysis [20]. Their algorithm
requires the matrix to be in the compressed sparse column (CSC)
format, which is a transposed CSR. With the CSC format, threads
can know which subsequent rows rely on their result, meaning they
can “push” results forward to dependent threads. Threads that have
been fed work are actively computing, while the others spin-loop
waiting for data. The principle limitation of this algorithm is that it
requires a matrix transpose (from CSR to CSC and potentially back
to CSR).

Operations such as SpTS will be increasingly important for future
HPC systems. With billions of concurrent threads, these system have
the potential to be seriously bottlenecked by a lack of parallelism,
and small serial regions can become an Amdahl’s Law limit. In
such systems, heterogeneous processors with cores that can quickly
execute serial regions may be needed to maximize SpTS performance.

IV. GRAPH PROCESSING

Prior research on GPU graph processing has taken a problem-
specific approach by parallelizing and optimizing individual algo-
rithms on the GPU [21], [22]. These advanced techniques usually
are not intuitive for regular programmers because significant code
restructuring is needed to fully use the GPU. A solution to this is
the GPU library, BelRed [23]. This library contains a set of key
building blocks common to many graph algorithms. Table I shows
some sample BelRed functions. BelRed implements graph algorithms
using linear algebra operations [24], [25]. However, optimizing these
operations for the GPU and their proper use in implementing diverse
graph processing applications has not been sufficiently studied by
prior work.

TABLE I: Sample BelRed functions [23]

Functions Description
~u = SpMV (M,~v) sparse-matrix vector multiplication
~u = SpMinDotP lus(M,~v) the min.+ operation
~u = SegReduc Op(M) segmented reduction. Op : +,&,min...
U = SpGeMM(M,N) sparse-matrix and sparse-matrix multiply
U = vOuterSum(~v, ~w) the outer-sum operation
~u = vElemWise Op(~v, ~w) vector elem. wise. Op : +,&,min, .
U = SpElemWise Op(~v, ~w) sparse matrix elem. wise. Op : +,&,min, .

CSR-Adaptive (see Section II) and Liu & Vinter’s algorithm [11]
are used to optimized sparse-matrix and vector, and sparse-matrix
algorithms, respectively. Figure 1 shows an example using min.+ to

Fig. 1: An example of conducting min.+ repeatedly to imple-
ment single-source shortest path (SSSP) [25]. For an element
(j, i) with value w, vertex i connects to vertex j with an edge
weight of w.

solve single-source shortest path (SSSP). Various basic graph algo-
rithms are implemented with BelRed including PageRank, Coloring,
and Floyd-Warshall [23]. BelRed implementations are also provided

for data analytic problems such as Ktruss and Jaccard Coefficients
using the algorithms in [26].

BelRed was initially implemented in OpenCL; support is being
added for HSA [27] and ROCm [28]. Future work will optimize
BelRed for Exascale node architectures [29]. Parallelizing these
operations and partitioning data across nodes without significant load
imbalance is a challenge. Furthermore, efficient runtime techniques
are needed to redistribute workloads dynamically at runtime. In
addition, due to little data reuse and low arithmetic intensity, network
communication is important. Finally, some graph algorithms launch
a series of BelRed functions iteratively. They may exhibit interesting
dependencies among each other where sequential execution is not
required. Thus, it may be feasible to exploit more parallelism with
asynchronous execution to improve the resource utilization.

V. MATRIX-MATRIX MULTIPLY ON GPUS

The product of two matrices is an important operation in ma-
chine learning, particularly in Deep Learning applications [30] and
scientific computing [31], [32]. For dense square matrices with sizes
of a few thousand, the Strassen-Winograd algorithm is the fastest
matrix multiplication implementation [33], [34]. This is due to its
superior asymptotic order: O(n2.807) versus O(n3) for traditional
convolutions.

The Strassen algorithm is a recursive approach that reduces the
number of multiplication operations in a matrix multiply while
increasing the number of addition operations. Consider the matrix
multiplication of the 2× 2 matrices A and B, i.e. C = AB,(
c11 c12
c21 c22

)
=

(
a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a21 ∗ b21 a21 ∗ b12 + a22 ∗ b22

)
.

which requires 8 multiplies and 4 additions.
Consider instead the Strassen algorithm, which forms surrogate

values,

P1 = (a11 + a22)(b11 + b22)

P2 = (a21 + a22)(b11)

P3 = (a11)(b12 − b22)

P4 = (a22)(b21 − b11)

P5 = (a11 + a12)(b22)

P6 = (a21 − a11)(b11 + b12)

P7 = (a12 − a22)(b21 + b22)

and then computes the matrix elements as c11 = P1+P4−P5+P7,
c12 = P3 + P5, c21 = P2 + P4, and c22 = P1 + P3 − P2 + P6.
Counting these equations indicates that the Strassen algorithm has
reduced the number of multiplies from eight to seven, at the cost of 18
additions. Notice also this algorithm can be applied to larger 2k×2k
matrices. This only requires treating each element (e.g. a12) as a
separate k × k sub-matrix. For sufficiently large matrices, replacing
O(n3) matrix multiplications by O(n2) matrix additions results in
a speedup. Submatrices can be computed recursively as long as they
are large enough to benefit from the surrogate values approach.

Given the importance of matrix-matrix multiplications for a variety
of workloads, this will remain a critical algorithm for future super-
computers. A critical bottleneck in parallelizing Strassen’s algorithm
is the communication between the processors [35]. Effective and
well-supported distributed memory dense linear algebra libraries
are still largely unavailable, although some frameworks are emerg-
ing [36]. Some recent work has sought to combine Strassen-Winograd
and sparse matrix computations [37] to accelerate convolutions,
for instance, by making the neural network weights sparse. FFTs,
which provide an alternative method to reduce computation while
simultaneously requiring more memory capacity and bandwidth, are
also commonly used [38].

REFERENCES

[1] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Benchmark:
Past, Present and Future,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803–820, 2003.

[2] J. Dongarra, M. A. Heroux, and P. Luszczek, “HPCG Benchmark: a New
Metric for Ranking High Performance Computing Systems,” University
of Tennessee Electrical Engineering and Computer Science Department,
Knoxville, Tennessee, Tech. Rep. UT-EECS-15-736, November 2015.

[3] D. Shreiner, G. Sellers, J. Kessenich, and B. Licea-Kane, OpenGL R©
Programming Guide, 8th ed. Pearson Education, 2013.

[4] K. Bryan and T. Leise, “The $25,000,000,000 Eigenvector: The Linear
Algebra behind Google,” SIAM Review, vol. 48, no. 3, pp. 569–581,
2006.

[5] S. Che, B. M. Beckmann, and S. K. Reinhardt, “BelRed: Constructing
GPGPU Graph Applications with Software Building Blocks,” in Proc. of
the IEEE High Performance Extreme Computing Conf. (HPEC), 2014.

[6] O. Abdel-Hamid, A. r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,
“Convolutional Neural Networks for Speech Recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 22,
no. 10, pp. 1533–1545, Oct 2014.

[7] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba, “End to End Learning for Self-Driving Cars,” CoRR, vol.
abs/1604.07316, 2016.

[8] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. Schulte, M. Ignatowski,
I. Paul, B. Beckmann, S. Reinhardt, W. Brantley, J. Greathouse, O. Kayi-
ran, M. Poremba, W. Huang, A. Karunanithi, G. Sadowski, V. Sridharan,
S. Raasch, and M. Meswani, “Design and Analysis of an APU for
Exascale Computing,” in Proceedings of The 23rd IEEE Symposium
on High Performance Computer Architecture (HPCA), February 2017.

[9] E.-J. Im and K. Yelick, “Optimization of Sparse Matrix Kernels for Data
Mining,” in Proc. of the Workshop on Text Mining, 2001.

[10] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-performance Graph
Algorithms from Parallel Sparse Matrices,” in Proc. of the Int’l Work-
shop on Applied Parallel Computing, 2006.

[11] W. Liu and B. Vinter, “An Efficient GPU General Sparse Matrix-Matrix
Multiplication for Irregular Data,” in Proc. of the Int’l Parallel and
Distributed Processing Symp. (IPDPS), 2014.

[12] J. L. Greathouse and M. Daga, “Efficient Sparse Matrix-Vector Multipli-
cation on GPUs using the CSR Storage Format ,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2014.

[13] M. Daga and J. L. Greathouse, “Structural Agnostic SpMV: Adapting
CSR-Adaptive for Irregular Matrices,” in Proc. of the Int’l Conf. on High
Performance Computing (HiPC), 2015.

[14] K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL - A High Level Linear
Algebra Library for GPUs and Multi-Core CPUs,” in Int’l Workshop on
GPUs and Scientific Applications (GPUScA), 2010.

[15] J. L. Greathouse, K. Knox, J. Poła, K. Varaganti, and M. Daga,
“clSPARSE: A Vendor-Optimized Open-Source Sparse BLAS Library,”
in Proc. fo the Int’l Workshop on OpenCL (IWOCL), 2016.

[16] K. Kumahata, K. Minami, and N. Maruyama, “High-performance
Conjugate Gradient Performance Improvement on the K Computer,”
Int. J. High Perform. Comput. Appl., vol. 30, no. 1, pp. 55–70, Feb.
2016. [Online]. Available: http://dx.doi.org/10.1177/1094342015607950

[17] E. Phillips and M. Fatica, “A CUDA Implementation of the High
Performance Conjugate Gradient Benchmark,” in International Work-
shop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems. Springer, 2014, pp. 68–84.

[18] M. Naumov, “Parallel solution of sparse triangular linear systems in
the preconditioned iterative methods on the GPU,” Nvidia white paper,
2011.

[19] M. Naumov and P. Castonguay and J. Cohen, “Parallel Graph Coloring
with Applications to the Incomplete-LU Factorization on the GPU,”
Nvidia White Paper, 2015.

[20] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, A Synchronization-
Free Algorithm for Parallel Sparse Triangular Solves. Cham: Springer
International Publishing, 2016, pp. 617–630.

[21] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU Graph
Traversal,” in Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Feb 2012.

[22] S. Che, B. Beckmann, S. Reinhardt, and K. Skadron, “Pannotia: Un-
derstanding Irregular GPGPU Graph Algorithms,” in Proceedings of
the IEEE International Symposium on Workload Characterization, Sept
2013.

[23] S. Che, B. M. Beckmann, and S. K. Reinhardt, “Programming GPGPU
graph applications with linear algebra building blocks,” International
Journal of Parallel Programming, pp. 1–23, 2016.

[24] A. Buluc and J. R. Gilbert, “The Combinatorial BLAS: Design, Im-
plementation, and Applications,” International Journal of High Perfor-
mance Computing Applications, vol. 25, no. 4, Nov. 2011.

[25] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Society for Industrial and Applied Mathematics, Jan. 2011.

[26] D. Hutchison, J. Kepner, V. Gadepally, and B. Howe, “From NoSQL Ac-
cumulo to NewSQL Graphulo: Design and Utility of Graph Algorithms
inside a BigTable Database,” in Proc. of the IEEE High Performance
Extreme Computing Conf. (HPEC), Sept 2016.

[27] Heterogeneous System Architecture (HSA), “Web resource,”
http://hsafoundation.com/.

[28] ROCm, “Web resource,” https://radeonopencompute.github.io/install.html.
[29] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C.

Brantley, S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and
G. Rodgers, IEEE Micro, vol. 35, no. 4, pp. 26–36, 2015.

[30] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4013–4021.

[31] D. McDougall, N. Malaya, and R. D. Moser, The Parallel C++
Statistical Library for Bayesian Inference: QUESO. Cham: Springer
International Publishing, 2016, pp. 1–38.

[32] M. Lee, N. Malaya, and R. D. Moser, “Petascale direct numerical
simulation of turbulent channel flow on up to 786k cores,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: ACM, 2013, pp. 61:1–61:11. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503298

[33] A. R. Benson and G. Ballard, “A Framework for Practical Parallel
Fast Matrix Multiplication,” CoRR, vol. abs/1409.2908, 2014. [Online].
Available: http://arxiv.org/abs/1409.2908

[34] P.-W. Lai, H. Arafat, V. Elango, and P. Sadayappan, “Accelerating
Strassen-Winograd’s matrix multiplication algorithm on GPUs,” in High
Performance Computing (HiPC), 2013 20th International Conference
on. IEEE, 2013, pp. 139–148.

[35] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz,
“Communication-Optimal Parallel Algorithm for Strassen’s Matrix
Multiplication,” CoRR, vol. abs/1202.3173, 2012. [Online]. Available:
http://arxiv.org/abs/1202.3173

[36] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond,
and N. A. Romero, “Elemental: A New Framework for Distributed
Memory Dense Matrix Computations,” ACM Trans. Math. Softw.,
vol. 39, no. 2, pp. 13:1–13:24, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2427023.2427030

[37] S. Li, J. Park, and P. T. P. Tang, “Enabling Sparse Winograd Convolution
by Native Pruning,” arXiv preprint arXiv:1702.08597, 2017.

[38] M. Mathieu, M. Henaff, and Y. LeCun, “Fast Training of Convolutional
Networks Through FFTs,” arXiv preprint arXiv:1312.5851, 2013.

