
A Power Characterization and Management
of GPU Graph Traversal

Adam McLaughlin† Indrani Paul‡ Joseph L. Greathouse‡ Srilatha Manne‡

Sudhakar Yalamanchili†
†Georgia Institute of Technology ‡AMD Research

Adam27X@gatech.edu, sudha@ece.gatech.edu {indrani.paul, joseph.greathouse, srilatha.manne}@amd.com

ABSTRACT
Graph analysis is a fundamental building block in numerous
computing domains. Recent research has looked into harness-
ing GPUs to achieve necessary throughput goals. However,
comparatively little attention has been paid to improving
the power-constrained performance of these applications.

Through firmware changes on a state-of-the-art commodity
GPU, we characterize the power consumption of Breadth-
First Search (BFS) as a function of the structural properties
of the graph. We choose to study this algorithm since graph
traversals are used as a building block for many other graph
analysis applications. Based on this characterization, we
propose and evaluate a power management algorithm to
maximize power cap efficiency, or the performance under a
fixed power cap. Across a range of benchmark graphs, we
demonstrate power cap efficiency improvements averaging
15.56% on a state-of-the-art GPU.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph
algorithms; B.0 [Hardware]: General—Power management

General Terms
Power Management, GPUs, Graphs

Keywords
Breadth-First Search, DVFS, Power Capping

1. INTRODUCTION
Graph analysis is a fundamental building block in numer-

ous computing domains. Areas as diverse as electronic design
automation [6], optimizing compilers [12], scientific comput-
ing [5], and social networking [7] rely on graph analyses. The
explosive growth of graph sizes towards billions of nodes
has pushed graph analysis to the forefront of data intensive
applications seeking effective high performance computing
solutions. Consequently, recent research has attempted to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASBD ’14, June 15, 2014, Minneapolis, Minnesota, USA
Copyright 2014 ACM 978-1-4503-1439-8/12/04 ...$15.00.

harness the throughput of general purpose graphics process-
ing units (GPUs) for high performance graph analysis.

Algorithms for graph analysis possess different computa-
tional characteristics than traditional scientific workloads.
They exhibit poor memory access locality, and their data
structure accesses are pointer intensive, irregular, and diffi-
cult to predict [10]. They have low compute densities (the
ratio of arithmetic to memory operations) and data depen-
dent control flow that is also difficult to predict. Further,
graph applications exhibit significantly time-varying compute
and memory system behaviors [6, 9, 11, 13]. Considerable
efforts have been devoted to developing fast GPU graph anal-
yses, but little work have been reported for understanding
and effectively managing the power consumption of such
applications. This paper addresses this gap.

Modern processors are thermally and power constrained.
They frequently reconfigure their voltage/frequency state in
order to maximize performance without exceeding a power
level - the power cap - that would cause dangerous tem-
peratures [15]. Commercial processors dynamically allocate
power caps to individual SoC components in an attempt to
prevent damaging hotspots while also maintaining chip-wide
power and thermal limits [16]. As such, it is important to un-
derstand how to dynamically reconfigure these components
to maximize performance under these power caps.

Using measurements on an AMD A10-5800K Accelerated
Processing Unit (APU), we explore the power and perfor-
mance implications of fine grained parallelism in a GPU
implementation of breadth first search (BFS). In particular,
we are interested in how the properties of the graph being
traversed influence power consumption using two power man-
agement techniques - i) Dynamic Voltage and Frequency
Scaling (DVFS) and ii) core scaling - changing the number
of active GPU compute units (CUs). Our study exposes
a fundamental trade-off between frequency and parallelism
when maximizing performance under a fixed power cap. We
chose BFS since graph traversals are a primitive found in
many graph analysis applications, and BFS is the kernel
for the Graph 500 benchmark suite [14]. It is representa-
tive of a class of emergent, data intensive, high performance
computing applications.

This paper seeks to make the following contributions:

• Through firmware changes on a state-of-the-art GPU,
we measure the power consumption of BFS over a range
of graphs as a function of frequency and number of
active GPU cores.

• We present a characterization of the impact of two
power management techniques on the performance of

1

2 3 4

5 6 7 8

9

Iteration: 1, Vertex Frontier: {1}

Iteration: 2, Vertex Frontier: {2,3,4}

Iteration: 3, Vertex Frontier: {5,6,7,8}

Iteration: 4, Vertex Frontier: {9}

Figure 1: A simple graph traversed in breadth-first order

BFS - specifically dynamic voltage frequency scaling
(DVFS) of the GPU and scaling the number of active
GPU cores. We believe this is the first such reported
analysis.

• Using the above-mentioned measurement data, we re-
late the power consumption behavior of BFS to the
structural properties of a graph.

• Based on the preceding, we propose and evaluate a
power management algorithm to maximize power cap
efficiency, which we define as performance under a
fixed power cap. Across a range of benchmark graphs,
we demonstrate that in comparison to employing only
frequency scaling or only GPU core scaling, we can
provide additional execution time improvements by
employing both - an average of 15.6% and 13.6% over
each, respectively.

2. BACKGROUND
This section provides relevant background on the specific

choice of traversal algorithm (BFS), the target heterogeneous
processor utilized in this work, and details regarding our
experimental setup used throughout the paper.

2.1 Breadth-First Search
Graph traversal represents an important class of algorithms

used in a wide variety of fields. For example, betweenness
centrality, a popular graph analytic used to determine influ-
ential people in social networks, requires a graph traversal
starting from every node in the graph, making graph traver-
sal a dominant part of the algorithm’s overall execution time.
Breath-First Search (BFS) is an important general graph
traversal algorithm that often serves as the framework for
the design of customized traversal techniques.

Figure 1 illustrates the progression of BFS for a simple
graph. This example demonstrates the time-varying paral-
lelism exhibited by BFS across iterations and its dependency
on the structure of the graph. The first iteration has just
one node to process, while the third iteration has four nodes
that can each be assigned to parallel threads. Furthermore,
the amount of work done by each thread also varies and is
dependent on the structure of the graph. Using the second
iteration as an example, node 2 has two edges to traverse,
node 3 has one edge to traverse, and node 4 has four edges
to traverse. In Bulk Synchronous Parallel (BSP) implemen-
tations, where nodes in a frontier are distributed amongst
parallel threads, this workload imbalance can leave many
threads stalled at a barrier, waiting for the thread with the
most work. We refer to this work heavy thread as the criti-
cal thread. We later show that these behaviors can have a
significant impact on power cap efficiency.

DVFS State Frequency Voltage
High 800 MHz 1.275 V

Medium 633 MHz 1.2 V
Low 304 MHz 0.9375 V

Table 1: GPU DVFS states for the AMD A10-5800K APU

In this paper, we utilize the parallel algorithm presented by
Luo et al. [11] from the Scalable Heterogeneous Computing
(SHOC) benchmark suite [4]. To the best of our knowledge,
it is the fastest available OpenCL BFS implementation, with
asymptotically optimal O(m + n) linear time complexity.
Graph data is stored in compressed sparse row (CSR) format
[2]. In this implementation, atomic operations are used to
prevent data races and prevent duplicates from being inserted
into the next frontier.

2.2 The GPU Hardware Platform
The AMD A-Series Accelerated Processing Unit (code-

named “Trinity”) used in this study contains two out-of-order
dual-core CPU Compute Units (CUs), a graphics processing
unit (GPU), and shared logic such as the memory controller.
The GPU consists of 384 AMD RadeonTM cores, each capa-
ble of one single-precision fused multiply-add computation
per GPU cycle. The GPU is organized as six SIMD units
(also known as compute units or CUs) each containing 16
processing units that are each four-way VLIW. More details
regarding this processor can be found in [3].

The GPU is on a separate power plane from the CPUs,
which allows its voltage and frequency to be independently
controlled. Table 1 shows the DVFS states for the GPU
in the AMD A10-5800K APU; we will refer to these states
throughout the rest of this paper [15]. Although all CUs in
a GPU share the same voltage plane, individual GPU CUs
can be power gated through software accessible registers.

The current state-of-the-art in GPU power management
is the application of DVFS. In this paper we also consider
scaling the number of active GPU CUs via power gating. We
analyze the value of scaling both frequency and the number
of active CUs in a GPU. Our power management goal is
to maximize performance subject to the power cap using
both management techniques. Finally, we refer to a power
configuration as the combination of a DVFS state and the
number of active CUs in the GPU. There are six SIMD
CUs and three GPU frequencies in the AMD A-series APUs,
resulting in a total of 18 power configurations.

2.3 Experimental Methodology
Changing the DVFS state on the GPU requires sending

memory-mapped messages through the GPU driver to the
chip’s power-management firmware. The overhead for chang-
ing the GPU DVFS state is on the order of a few microsec-
onds, which is notably smaller than the time required to
execute a typical search iteration.

Digital estimates provided by the power-management firm-
ware are used to measure the power of the GPU [15]. Since
the hardware does not directly support power capping, our
analysis methodology involves performing exhaustive mea-
surements on the entire search space in real hardware and
post-processing the data to evaluate the consequences of the
power management schemes.

We measure and record (for offline analysis) the power and
execution time at each of the 18 possible power configurations
(three DVFS states, up to six active CUs) for each BFS

Name Vertices Edges Significance
af shell10 1,508,065 25,582,130 Sheet Metal

Forming
asia.osm 11,950,757 12,711,603 Street Network
coPapersCiteseer 434,102 16,036,720 Social Network
delaunay n23 8,388,608 25,165,784 Random

Triangulation
G3 circuit 1,585,478 3,037,674 Circuit

Simulation
hugebubbles-
00020

21,198,119 31,790,179 2D Dynamic
Simulation

in-2004 1,382,908 13,591,473 Web Crawl
kkt power 2,063,494 6,482,320 Nonlinear

Optimization
ldoor 952,203 22,785,136 Sparse Matrix
packing 500
x100x100-b050

2,145,852 17,488,243 Fluid Mechanics

rgg n 2 22 s0 4,194,304 30,259,198 Random
Geometric Graph

Table 2: Suite of benchmark graphs

iteration on each input graph. The power measured is for
the GPU only and not the CPU nor the rest of the system.
CPU power consumption was relatively constant regardless
of input since the graph traversal is entirely offloaded to the
GPU. When analyzing this data with respect to a power cap,
a configuration is marked ineligible for a given iteration if the
average power for the iteration exceeds the power cap. The
oracle looks at the execution times of the graph traversal for
all eligible configurations and chooses the single configuration
for all iterations that yields the fastest time.

We choose this offline methodology because we cannot
change existing hardware management algorithms. In the
future, the algorithms we describe could run in the same
power management firmware that currently assigns power
caps to the components of an SoC. A GPU with a particular
hardware configuration would use some amount of power to
run BFS kernel iterations. As the firmware observes this
power usage, it could use the algorithms we will describe
to dynamically change the GPU’s hardware configuration
in order to maximize performance while meeting the power
limit. This future hardware could not use our oracle, but we
will later describe an algorithm that could be used online.

We focus our analyses on a power cap that is approximately
62% of the maximum GPU power dissipated on this proces-
sor, i.e. the thermal design power (TDP). The methodology
is essentially to emulate processors with different TDP val-
ues (or components with different thermally-driven dynamic
power caps) using the AMD A10-5800K APU. The choice
of the actual power cap value was motivated by a design
point with enough power for useful throughput while being
low enough to be challenging and thus resulting in useful
levels of power efficiency. Note that the absolute value of
this power cap is not artificial: it is within the range of GPU
power limits in mid-range laptop chips.

We evaluate performance relative to two baseline config-
urations that never exceed this power cap. The throughput
baseline is defined as the 304 MHz DVFS state with four
active CUs. This baseline configuration emphasizes exploit-
ing parallelism over frequency for performance. The latency
baseline is defined as the 633 MHz DVFS state with two
active CUs. This baseline instead emphasizes exploiting fre-
quency over parallelism. Power is measured on real hardware
at a sampling rate of one millisecond. Typical BFS iteration
times observed are on the order of a few milliseconds, so

2 4 6 8 10 12

0
50

00
0

10
00

00
15

00
00

Iteration Number

V
er

te
x

F
ro

nt
ie

r

(a) coPapersCiteseer (n=434,102,
m=16,036,720)

0 1000 2000 3000 4000

0
20

00
40

00
60

00
80

00

Iteration Number

V
er

te
x

F
ro

nt
ie

r
(b) hugebubbles-00020 (n=21,198,119,
m=31,790,179)

Figure 2: Workload over time for two input graphs

the instantaneous power throughout an iteration is approxi-
mately constant. Experiments are run under CentOS release
6.4 with AMD CatalystTM 13.6 Beta drivers. A fixed-time
cool-down period is applied before each run to eliminate any
variations in leakage power resulting from different initial
temperatures. Many iterations of each benchmark graph are
run and averaged to eliminate run-to-run variance in our
hardware measurements.

Table 2 shows the set of benchmark graphs used for this
study. These graphs are taken from the 10th DIMACs Im-
plementation Challenge [1].

3. WORKLOAD CHARACTERIZATION
This section provides a characterization of the power con-

sumption of graph traversal. We focus on how properties
of the graph being traversed influence power consumption
using the two power management techniques - i) Dynamic
Voltage and Frequency Scaling (DVFS), and ii) CU scaling,
or adjusting the number of active CUs.

3.1 Sensitivity to Graph Structure
The workload experienced by graph traversal algorithms is

highly input-dependent. Consider Figure 2, which illustrates
variation in the size of the vertex frontier for two example
graphs as a function of the iteration number. These graphs
are representative of two broad categories of graphs that we
study in this work. The first category, represented by coPa-
persCiteseer, corresponds to graphs where BFS exhibits a
small number of iterations. However, some of these iterations
process a large number of nodes because some of the nodes
in the graph have a very high degree (i.e. are connected

49.31% 65.75% 82.18% 98.62%
0

0.5

1

1.5

2

2.5

304MHz/1CU

633MHz/1CU

633MHz/2CU
633MHz/4CU

800MHz/5CU
800MHz/6CU

Power Cap

E
xe

cu
tio

n
T

im
e

(s
)

49.31% 65.75% 82.18% 98.62%
0

5

10

15

20

25

30

304MHz/1CU

633MHz/1CU

304MHz/5CU
633MHz/6CU

800MHz/6CU

Power Cap

E
xe

cu
tio

n
T

im
e

(s
)

Figure 3: Optimal power configuration for G3 Circuit and delaunay n23 as a function of power cap

to a large number of nodes). Power law graphs, such as
web crawls of the Internet, tend to fall into this category [8].
The second category, demonstrated by hugebubbles-00020,
corresponds to graphs whose nodes have a smaller, more
consistent node degree. BFS over these graphs takes signifi-
cantly more iterations to traverse with a smaller number of
nodes searched per iteration. Graphs that represent meshes
for simulation of physical phenomena or road networks tend
to fall into this category [1].

To characterize the power efficiency of BFS, we exhaus-
tively measured the BFS execution times for each of the
18 possible power configurations on the AMD A10-5800K
APU, recording the average power consumption as well as
the elapsed time. These measurements were repeated for a
range of power caps that were fixed as a percentage of TDP.
We define the best power configuration for each power cap to
be that with the smallest execution time that has an average
power consumption that is less than the power cap.

Figure 3 shows the behavior and makeup of the best power
configuration as a function of the power cap. Consider the
power cap of 82% of the maximum GPU power; for the
G3 Circuit graph input, the best configuration under this
power cap is the high-frequency DVFS state with five active
CUs. In contrast, it is the mid-frequency DVFS state with
six active CUs that is optimal for the delaunay n22 graph
input. This implies that the execution behavior of BFS on
the former graph is more sensitive to frequency while on the
latter graph, it is more sensitive to number of active CUs.

3.2 Graph Classification
In this section, we analyze the issues encountered in se-

lecting a single power configuration that provides the best
performance for a given power cap for the BFS traversal
of a specific input graph. Our goal is to understand the
effectiveness of frequency scaling or CU scaling in improving
the power cap efficiency of various types of graphs.

Figure 4 shows the execution time for a power cap set to
62% of the maximum observed GPU power. The execution
time is normalized to that of the throughput baseline, which
is 4 CUs running at low frequency (see Section 2.3). For
each graph, with the number of active CUs held at the
baseline, frequency is scaled until either the highest DVFS
state is reached or the next DVFS state would, at some point,
cause the GPU to go over its power cap. Similarly, we also
examine varying the number of active CUs while maintaining
the DVFS state at the baseline until either the maximum

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(s
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

af del in pack

Throughput Baseline
Frequency Scaling
CU Scaling
Oracle

Figure 4: Comparison of potential scaling techniques at a
62% power cap

number of CUs is reached or the power cap is exceeded.
Finally, we compare these execution times with that of an
oracle with knowledge of the best power configuration, i.e.,
the one that minimizes execution time while staying under
the power cap.

Results in Figure 4 show that the execution of delau-
nay n23 (del) is more sensitive to CU scaling than frequency
scaling; CU scaling alone can match the performance of the
oracle. In contrast, the execution of af shell10 (af) is more
sensitive to frequency scaling rather than CU scaling, since
frequency scaling can match the performance of the oracle.
The af shell10 graph has many nodes of high degree and
a large variance in node degree across the vertex frontier.
The thread processing the node with the largest degree (the
critical thread) will have many edges to traverse while other
threads in the workgroup are waiting at a barrier. This
consumes power in a GPU, since all threads in a wavefront
must go through the pipeline if any thread still has work
to do. Speeding up the critical thread with frequency scal-
ing improves performance, similar to speeding up the serial
fraction of parallel programs.

Conversely, for graphs such as delaunay n23, the node
degrees are more balanced. Thus, when nodes in a vertex
frontier are distributed across threads the workload tends
to be more balanced across all threads and the effect of
critical threads is less pronounced. Such graphs are more
sensitive to CU scaling, which effectively exploits parallelism

0 0.5 1 1.5 2 2.5
x 107

0

10

20

30

40

Graph Classification via Clustering

Number of Vertices

A
ve

ra
ge

 D
eg

re
e

Frequency Sensitive

CU Sensitive

Figure 5: Graph classification as frequency- or CU-sensitive

across nodes in the vertex frontier. Frequency scaling may
increase the algorithm’s performance for these graphs, but
at a disproportionate increase in power (since power usage
increases faster than frequency). As such, when operating
under a power cap, these type of graphs are better served by
added parallelism.

The remaining two cases are especially interesting. For
packing 500x100x100-b050 (pack), increasing CU count pro-
vides limited benefit. Reducing the number of CUs slightly
from the 4-CU baseline so that frequency scaling is possible
provides the configuration chosen by the oracle. This result
demonstrates that, while frequency scaling and CU scaling
are independently useful, combining them can be better.

The in-2004 (in) web crawl graph also exemplifies this
result; sufficient room exists under the power cap for both
frequency and CU scaling, though a combination of both is
needed to achieve the best performance. The issue now is to
classify graphs into categories for which the graph traversal
is more or less sensitive to frequency scaling vs. CU scaling.

We found that the number of vertices and the average
degree of each node are good indicators of the sensitivity
of power cap efficiency to frequency or CU scaling. While
complicated metrics such as the diameter of a graph or the
distribution of its edges tend to provide additional insight
regarding the graph’s structure, they rarely offer better re-
sults. Intuitively, the higher the node degree, the higher the
probability of load imbalance in a workgroup. Additionally,
this information tends to be available with the graph data
itself such that no preprocessing of graph input is required
for our scheme.

We classify graphs using the k-means clustering algorithm
to create two groups of graphs: frequency-sensitive and CU-
sensitive. Figure 5 depicts the classification of our particular
set of input graphs. The circles indicate coPapersCiteseer
and hugebubbles-00020, the graphs we originally classified
to initialize the algorithm (and shown in Figure 2). The x’s
indicate the remaining graphs that were classified by k-means
clustering. The set of analyzed graphs come from a diverse
set of industrial and scientific domains and are dominated
by graphs for which BFS is frequency sensitive.

4. POWER MANAGEMENT ALGORITHM
We propose and evaluate a power management algorithm

for maximizing power cap efficiency - recall that power cap
efficiency is defined as performance under a fixed power cap.
The algorithm statically chooses a single power configuration
for the duration of execution of the traversal.

Algorithm 1: Algorithm for Power Management of GPU
Graph Traversal. Run Once per Graph.

Input: Total number of nodes and the average degree of each
node in the input graph

1 Class← classify graph(total nodes, average degree)
2 Setting ← Pmin #304 MHz, 1 CU
3 if Class = frequency sensitive then
4 Setting ← scale frequency()
5 if Remaining Headroom then
6 Setting ← scale CUs()

7 else if Class = CU sensitive then
8 Setting ← scale CUs()
9 if Remaining Headroom then

10 Setting ← scale frequency()

11 return Setting

Our power management algorithm, shown in Algorithm
1, uses the graph classification described in Section 3.2 to
determine whether BFS across an input graph is frequency
or CU-sensitive based on simple graph metadata. Once this
input classification is made, the algorithm then chooses to
maximize either the frequency or number of CUs accordingly,
using any additional remaining power headroom to maxi-
mize the other metric. Note that the scale frequency() and
scale CUs() functions operate based on previously measured
power (see the experimental methodology in Section 2.3).
Therefore, this analysis (and algorithm) is intended to re-
flect the best that any power configuration algorithm can
achieve without changing power configurations at runtime,
as the algorithm already knows or can estimate how much
power an iteration will use. A runtime or firmware power
manager may use this static decision to set the CU count
and frequency, per iteration or periodically. In this case, the
control algorithm could back away from decisions that are
too aggressive.

Operationally, if it is determined that a particular input
graph is frequency-sensitive, our algorithm will attempt to
maximize frequency first (using the minimum number of
active CUs) and then increase the number of active CUs if
there is additional power headroom left. The converse is true
for CU-sensitive graphs.

5. EXPERIMENTAL RESULTS
Figure 6 compares the impact of various scaling and power

management techniques applied to the throughput base-
line for a power cap of 62% of maximum observed GPU
power. The execution times are normalized to that of the
throughput baseline. We omit results for coPapersCiteseer
and hugebubbles-00020 because they were used to train the
k-means classification. The frequency scaling technique at-
tempts to increase the frequency of the throughput baseline
when sufficient power headroom exists (keeping the number
of CUs constant). Similarly, CU scaling is applied to the
throughput baseline if power headroom exists (keeping the
frequency constant). While each baseline configuration can
execute BFS for all input graphs while staying under the
power caps, the scaling techniques fully utilize any remaining
power before reaching the cap. We also repeat this analysis
relative to the latency baseline but omit results due to space
constraints. Lastly, we compare our power management al-
gorithm with an oracle scheme that chooses the best power
configuration based on offline profiling.

Figure 6: Comparison of power management techniques

The performance of our algorithm matches that of the
oracle for all benchmark graphs except for asia.osm. While
the algorithm is able to leverage available power headroom,
it chose to maximize the number of CUs at the expense of
frequency due to asia.osm being classified as CU-sensitive.
In doing so, the throughput baseline of 304 MHz with four
active CUs is chosen. All other configurations that had four
or more CUs violate the power cap. The best configuration
for this graph and power cap is 633 MHz with three active
CUs, which could have been achieved by applying CU scaling
to the latency baseline. The initial classification overlooks
the case where scaling both frequency and CUs is preferable
over one or the other in isolation.

Considering both the latency and throughput baselines,
our algorithm on average leads to execution times that are
15.56% faster than achieved using only frequency scaling and
13.61% faster than using only CU scaling. The key lesson
here is that statically determined power configurations that
leverage both frequency and the number of CUs enable one
to be used at the expense of the other towards better overall
configurations, e.g., reducing the number of CUs and then
scaling frequency.

6. CONCLUDING REMARKS
In this paper we have addressed the power-constrained

performance optimization of an important class of irregular
applications - graph traversal - on GPUs. We found that
substantive improvements are indeed feasible - averaging
15.56% reduction in execution time for a given power cap.
In summary, the most important lessons are:

• Power management requires making tradeoffs between
accelerating critical path computations and exploit-
ing node-level parallelism. Each technique consumes
power in different ways. Thus the most effective mix
of frequency scaling and CU scaling depends on the
structural properties of the graph.

• For scale-free graphs in particular, workload imbalances
among threads are likely to occur. The performance
loss seen from this workload imbalance can be allevi-
ated by increasing the frequency of the GPU, allowing
the thread on the critical path to finish more quickly
and preventing the other threads from being stalled at
synchronization points and idling.

• When the graphs are more structured, i.e., have a larger
diameter, exploiting parallelism is more power efficient
than higher frequency operation.

• For the graphs we studied, there appears to be more di-
versity in the workload than in the number of available
power states. To effectively exploit workload variations,
we argue that irregular applications will benefit from
more power states and fine-grained power management
capabilities.

In general, the diversity of compute and memory behav-
iors seems to demand more diversity in power management
capabilities to improve power efficient operation.

7. REFERENCES
[1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner,

editors. Graph Partitioning and Graph Clustering - 10th
DIMACS Implementation Challenge, volume 588 of
Contemporary Mathematics, 2013.

[2] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC,
2009.

[3] A. Branover, D. Foley, and M. Steinman. AMD Fusion APU:
Llano. IEEE Micro, 32(2):28–37, Mar. 2012.

[4] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter. The
scalable heterogeneous computing (SHOC) benchmark suite.
In GPGPU, 2010.

[5] L. Dematté and D. Prandi. GPU computing for systems
biology. Briefings in Bioinformatics, 11(3):323–333, 2010.

[6] Y. Deng, B. Wang, and S. Mu. Taming irregular EDA
applications on gpus. In ICCAD, 2009.

[7] D. Ediger, K. Jiang, J. Riedy, D. A. Bader, C. Corley,
R. Farber, and W. N. Reynolds. Massive social network
analysis: Mining twitter for social good. In ICPP, 2010.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM,
volume 29, pages 251–262, 1999.

[9] P. Harish and P. J. Narayanan. Accelerating large graph
algorithms on the gpu using cuda. In HiPC, 2007.

[10] B. Hendrickson. Graphs and hpc: Lessons for future
architectures. Technical report, Sandia National Labs, 2008.

[11] L. Luo, M. Wong, and W.-m. Hwu. An effective gpu
implementation of breadth-first search. In DAC, 2010.

[12] M. Mendez-Lojo, M. Burtscher, and K. Pingali. A GPU
implementation of inclusion-based points-to analysis. In
PPoPP, 2012.

[13] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu
graph traversal. In PPoPP, 2012.

[14] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang.
Introducing the graph 500. 2010.

[15] S. Nussbaum. AMD “Trinity” APU. In Hot Chips, 2012.
[16] I. Paul, V. Ravi, S. Manne, M. Arora, and S. Yalamanchili.

Coordinated energy management in heterogeneous
processors. In SC, 2013.

	Introduction
	Background
	Breadth-First Search
	The GPU Hardware Platform
	Experimental Methodology

	Workload Characterization
	Sensitivity to Graph Structure
	Graph Classification

	Power Management Algorithm
	Experimental Results
	Concluding Remarks
	References

