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Abstract

Dynamic dataflow analyses find software errors by track-

ing meta-values associated with a program’s runtime data.

Despite their benefits, the orders-of-magnitude slowdowns

that accompany these systems limit their use to the devel-

opment stage; few users would tolerate such overheads.

This work extends dynamic dataflow analyses with a

novel sampling system which ensures that runtime slow-

downs do not exceed a user-defined threshold. While

previous sampling methods are inadequate for dataflow

analyses, our technique efficiently reduces the number and

size of analyzed dataflows. In doing so, it allows individual

users to test large, stochastically chosen sets of a process’s

dataflows. Large populations can therefore, in aggregate,

analyze a larger portion of the program than is possible by

any single user running a complete, but slow, analysis. In

our experimental evaluation, we show that 1 out of every

10 users expose a number of security exploits while only

experiencing a 10% performance slowdown, in contrast

with the 100× overhead caused by a complete analysis

that exposes the same problems.

1. Introduction

Dynamic software analysis is a powerful mechanism for

exposing software errors and inefficiencies. Tools in this

domain monitor the runtime state of a program and observe

situations that may only arise during actual execution.

Performance profilers, for instance, can pinpoint software

inefficiencies by observing running processes. Dynamic

analysis tools that detect software errors instead look for

violations of runtime properties.

Dynamic dataflow analyses associate meta-data, also

called shadow data, with memory locations and then

propagate and check these values in conjunction with

the program’s original operation. Taint analysis follows

“untrusted” data through a process to determine whether

it is used without being properly validated [26]. Similarly,

dynamic heap bounds checkers such as Valgrind’s Annelid

tool associate pointers with heap allocations and verify that

every dereferenced value points to a location within the

valid range of its region [23].

The power of these dynamic analysis tools comes with

costs: only the portions of an application observed during a

particular execution can be analyzed, and the performance

overheads introduced by these approaches make it diffi-

cult to observe many different executions. Some Valgrind

analyses slow execution by over 1,000 times [16]. No end-

user would be willing to run such analyses, and developers

performing these tests often use simplified inputs to reduce

runtimes. This leads to myopic analyses and reduces the

effectiveness of the testing.

This paper presents a novel software-based technique

that limits the per-execution cost of dataflow analyses by

distributing them across multiple program runs and/or over

many users. In this system, a software overhead manager

observes the runtime impact of the analysis procedures

and can constrain the analysis to a set of stochastically

chosen shadow dataflows once system performance de-

grades below a user-specified threshold. This allows users

to cap the slowdown they experience, removing one of the

main limitations of dataflow analysis. Moreover, developers

can run larger, more insightful tests, and large end-user

populations can run analyses that were formerly restricted

to a development setting. Beta testers, production servers,

and even mainstream users can then analyze programs in

the background, enabling unprecedented levels of high-

quality software analysis.

We built a prototype of this distributed dataflow analysis

system by modifying the Xen hypervisor [4] to work with

an augmented version of the emulator QEMU [5]. We

implemented a taint analysis system within this proto-

type and performed experiments that demonstrate that the

system provides fine-grained control of overheads while

still delivering high-quality and highly scalable analyses.

Experiments with real-world security exploits show that our

solution easily exposed the security flaws in our test appli-

cations with a small population of users while significantly

reducing the performance overhead that individual users

experienced.

This work makes the following contributions:

• We show that previous code-based dynamic sam-

pling systems are inadequate for dynamic dataflow

analyses. They sample programs’ instructions and

thus do not take into account the effects of shadow
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pointer x = malloc(10); create r1
x.region ⇐ r1

x: a r1.start: a, r1.end: a+9
x.region: r1

y→r1

x→r1
malloc 

r1

Error

x→r2
malloc 

r2

pointer y = x + 15; y.region ⇐ x.region x: a
y: a+15

r1.start: a, r1.end: a+9
x.region: r1, y.region: r1

x = malloc(20); create r2
x.region ⇐ r2

x: b
y: a+15

r1.start: a, r1.end: a+9
r2.start: b, r2.end: b+19
x.region: r2, y.region: r1

dereference(x); x.region.start ≤ x ≤ x.region.end ?
Yes. No Error.

” ”

dereference(y); y.region.start ≤ y ≤ y.region.end ?
No. Boundary Error.

” ”

Figure 1: Example Dataflow Analysis. The schematic illustrates how a dynamic bounds checker associates allocated memory regions with
pointers and, by propagating the association to any derived pointers, builds a dataflow that connects pointers to heap regions. By checking
a dereferenced pointer’s address against the bounds of its region, it is possible to find heap errors such as overflows and uses-after-free.

dataflows when disabling an analysis. This leads to

both false positives and a large number of false

negatives.

• We present a new technique for performing sampling

in dynamic dataflow analysis systems. By sampling

dataflows, rather than instructions, we are able to

effectively control analysis overheads while avoiding

many of the inaccuracies of previous sampling sys-

tems.

• By allowing individual users to control the sampling

rate, we enable the distribution of dynamic analyses

to large populations. We show that our sampling

system is able to observe a large fraction of the errors

that a traditional analysis can discover but at much

lower performance overhead.

This paper is organized as follows: we review back-

ground works in Section 2. We then present a method

of dataflow-oriented sampling in Section 3 and detail

our implementation in Section 4. Section 5 presents our

experimental evaluation, demonstrating that we can provide

strong analyses while controlling performance overheads.

Finally, we discuss other related works in Section 6 and

conclude in Section 7.

2. Background

In this section, we present background concepts that

we leverage in the presentation of our solution. Because

our technique is designed to accelerate dynamic dataflow

analyses, we first summarize how these systems operate.

We then look at demand analysis, a technique that offers,

but does not guarantee, lower performance overhead when

performing dynamic dataflow analyses. Finally, we discuss

previous works on sampling dynamic analyses and show

how they are inadequate for dataflow sampling.

2.1. Dynamic Dataflow Analysis

Figure 1 shows an example of dynamic dataflow analysis

as performed by a heap bounds checker, a system that asso-

ciates heap meta-data with pointers. The meta-data details

the heap objects to which each pointer refers, and it is

moved throughout the program along with the pointers and

their derived values. When a pointer is dereferenced, the

checker verifies that it correctly points within its associated

object.

In the figure, parallelograms represent points that allocate

memory from the heap. These calls to malloc normally only

return pointers to the allocated regions. In this heap analysis

system, they also produce meta-data that describe the

regions and associations between pointers and these regions

(represented by circles that list their region associations).

As pointers are copied, the shadow values associating

pointers with regions are also copied into the destination

variables; this flow of shadow data is represented by arrows

between two circles. Finally, diamonds represent the valid-

ity checks that take place when a pointer is dereferenced.

A checkmark means that a pointer correctly addressed its

associated region, while an error means it did not.

In the example, a 10-byte memory region, r1, is first

allocated from the heap, and its start address, a, is stored

into the pointer x. The shadow values of this memory region

list this start address and the end address of the region,

a+9. The pointer x also has a shadow value indicating that

x is associated with r1. The pointer x is next used in an

arithmetic operation that stores the value a+15 into another

pointer, y. Because x was used as the source value for the

operation, the shadow value associated with y receives the

same region association as x.

The pointer x is then changed to point to a newly

associated 20-byte memory region, r2. This region begins

at address b and has its own meta-data storing its start and

end addresses. This also means that the shadow value for

x now associates it with r2.
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Figure 2: Traditional Demand Analysis. This technique at-
tempts to execute the program normally and enables slow analysis
only when shadowed data is encountered.

When the next instruction dereferences x, the analysis

system checks that the value of x, b, is between b and

b + 19, the start and end addresses of r2. This address is

within the region, so the dereference is considered safe.

The last instruction attempts to dereferences y, leading the

analysis system to compare the value of y, a + 15, to the

limits of its associated region, r1. Because the end of r1 is

at a + 9, the dereference is not safe and an error is raised.

Heap bounds checking can, as shown, be used to verify

that accesses to memory regions are correct, a commonly

desired security and correctness feature in type-unsafe

languages [23]. A number of other powerful tools also

use dynamic dataflow analyses. Taint analysis, for instance,

marks memory locations as untrusted when their values

originate from unsafe sources (e.g. a network buffer). By

propagating this information to every value derived from

this untrusted data, it is possible to detect a number of

common security attacks [26]. Valgrind’s Memcheck tool

keeps track of whether a value has been initialized (or is

derived from an initialized location), and can find memory

accesses that could potentially cause crashes [25]. Dynamic

race detectors, such as Intel’s ThreadChecker, associate

vector clocks with each memory location and perform

“happens-before” calculations on each access to detect

potential races among multiple threads [3].

The power of dynamic dataflow analyses can be under-

mined by the overheads they introduce. Simple systems

such as Memcheck result in slowdowns on the order of 20×
[25], while more complicated tools such as taint analyses

can result in overheads beyond 100× [14]. Though the

dataflows in a race detector are simpler (the meta-data is

only propagated from synchronization points), the analysis

performed on each memory access is much more complex:

these systems can introduce worst-case overheads as high

as 1,000× [16]. These extreme overheads present a twofold

problem: they limit adoption, but more insidiously, they sig-

nificantly reduce the number of dynamic situations that can

be observed within a reasonable amount of time. Because

dynamic analysis tools benefit from observing multiple and

varied runtime situations, performance overheads have a

strong impact on their ability to find errors.

2.2. Demand-driven Dataflow Analysis

Demand analysis is a method to mitigate these per-

formance issues. In this technique, software that is not

manipulating meta-data is not analyzed and thus runs much

faster. Figure 2 illustrates this type of system. The software

begins by executing natively, with no analyses taking place.

However, when it encounters shadowed data1, the process

switches to an alternate mode of execution which also

performs the complete (but slow) dataflow analysis. If the

analysis system later finds that it is no longer operating

on shadowed data, the process is transitioned back to ex-

ecuting with no analysis. Demand analysis leads to higher

performance when a program rarely operates on shadowed

data.

Unfortunately, demand analysis cannot provide per-

formance guarantees. Processes may continually operate

within the slow analysis tool if they frequently access

shadowed data, yielding no performance improvement. This

can be the case for certain worst-case inputs, as Ho, et al.

demonstrated for their demand taint analysis system [14],

or for tools in which nearly all data is shadowed, such as

bounds-checkers.

2.3. Code-based Sampling and its Deficiencies

Sampling is a popular method of reducing dynamic

analysis overheads. In general, a sampling system attempts

to limit the amount of time that an analysis is enabled

while still building an accurate picture of the program’s

characteristics despite the lack of a complete analysis.

Arnold and Ryder describe a system where a program runs

analysis code only during a portion of its execution and

show that it is an accurate method for gathering runtime

profiles of a program while suffering little slowdown [1].

These code-based sampling systems analyze a percentage

of the instructions within a program’s dynamic execution;

the probability of performing analysis on any particular

instruction is the only parameter available to control per-

formance overhead. Figure 3a illustrates one negative effect

this may have on dynamic dataflow analysis systems: this

example uses the same bounds checking analysis shown in

Figure 1, except that the final check of the variable y is

skipped when the sampling system attempts to reduce the

performance overhead. This results in false negatives, an

effect inherent to any sampling system.

While code-based sampling is effective for some dy-

namic testing techniques, it is both inefficient and incorrect

for dataflow analyses. By skipping the analysis of dynamic

instructions without concern for their shadow values, it

1. We refer to meta-data itself as shadow data. Variables that have
associated meta-data are called shadowed data.
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r1

Error

Error
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y.reg ⇐ x.reg
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creation

x OK?
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y OK?
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Figure 3: Code-based Sampling Fails for Dataflow Analysis. (a) Skipping checks may lead to false negatives. (b) Sampling instructions
within a dataflow analysis may cause false negatives later in the program due to dataflow changes. (c) Worse still, instruction sampling
may modify a dataflow in ways that cause false positives.

is possible (in fact, likely) that the shadow dataflows

will differ from the dataflows of the associated variables.

These incorrect shadow dataflows may cause the system to

catch fewer errors, such as when shadow values indicating

erroneous states are never written. This is illustrated in

Figure 3b, where skipping an earlier shadow propagation

results in the system missing the boundary error later in

the program. This problem will compound if the dataflow

leading to an error goes through multiple instructions and

the probability of analyzing any individual instruction is

not high.

An even more worrisome case occurs when an out-of-

date shadow value leads to false positives (i.e., reporting

errors that do not exist). Figure 3c demonstrates this sce-

nario. If analysis is disabled during an operation that should

change a variable’s region association, the corresponding

meta-data remains unchanged. When analysis is later re-

enabled, the bounds checker reports an error because the

actual pointer addresses a different memory region than

the meta-data. Code-based sampling techniques often

skip meta-data manipulations because they selectively

enable instrumentation on instructions. This leads to

dangerous false positive and undesirable false negatives.

A sampling system for dataflow analyses must therefore

always be aware of the shadow dataflows on which it

operates.

3. Effectively Sampling Dataflow Analyses

To remedy the deficiencies of code-based sampling

techniques, we present a method for sampling dataflows

instead of instructions. Rather than disabling analysis for

instructions that may modify shadowed data, we instead

skip the analysis of entire shadow dataflows.

As a program runs, a dynamic analysis system can create

numerous shadow dataflows. A deterministic program that

is run multiple times with the same inputs will see the

same outputs and the same shadow dataflows. Similarly, a

program run multiple times with different inputs may have

dataflows that repeat. In these cases, we do not need to

analyze all dataflows every time to find an error. If we

analyze a dataflow that leads to an error, we can report the

problem and skip the analysis of this dataflow in future

runs.

Because we cannot know ahead of time where errors

reside (knowing this would make analysis superfluous), we

cannot decide ahead of time to skip dataflows that do not

lead to errors. A scalable distributed system should not

require all nodes to communicate with one another, so we

also make the assumption that multiple users communicate

neither with one another, nor across multiple executions.

This means that our sampling system cannot coordinate be-

tween executions to determine which dataflows to analyze.

It instead randomly selects some dataflows and ignores all

others. During the next execution (or for the next user), a

different set of dataflows will be analyzed. If the dataflows

chosen for analysis are appropriately random, then enough

users will, in aggregate, find all observable errors.

The benefit of only observing a subset of the total data-

flows is that the analysis system causes less overhead as

fewer dataflows are tested. In fact, we can take advantage of

this to allow users to control the analysis overheads they ex-

perience. By setting the number of observed dataflows, the

user can indirectly control slowdowns. Similarly, the system

can directly cap performance losses by removing dataflows

after crossing a performance threshold. The instructions

that operate on these removed dataflows can subsequently

execute without requiring slow analysis.

Figure 4 illustrates the operation of our dataflow sam-

pling system. Like a demand analysis system, it disables

analysis when it is not operating on shadowed data and

activates the analysis infrastructure whenever such data are

encountered. However, if the tool’s performance overhead

crosses a user-defined threshold, it begins to probabilis-
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Figure 4: Dynamic Dataflow Sampling. Our system samples
a program’s dataflow by stochastically removing shadow values
after passing a performance threshold. When combined with
demand analysis, this enables dataflow, rather than instruction,
sampling.

tically discard the shadow dataflows that it encounters.

In a taint analysis system, for instance, it will randomly

untaint some untrusted variables, implicitly marking them

as trusted. The removed meta-data should be chosen in

some stochastic manner in order to guarantee that different

dataflows are observed during each program execution. We

model this as a Bernoulli trial.

At this point, the demand analysis system allows na-

tive execution to resume, as it is no longer operating on

shadowed variables. Eventually, as the program encounters

fewer shadow values, it will spend less time in analysis

and will begin executing more efficiently. The observed

slowdown will eventually go below a threshold, and the

sampling system can stop removing shadow variables. This

may lead to further slowdowns, restarting the stochastic

meta-data removal process. Alternately, the system may

simply continue to operating in a demand analysis fashion.

As with other sampling approaches, these performance

improvements come at the cost of potentially missing some

dynamic events. However, when we remove shadow data-

flows (rather than instrumentation associated with instruc-

tions), we not only reduce the amount of slowdown the

user will experience in the future, but we also maintain

the integrity of the remaining dataflows, thereby prevent-

ing false positives. As the example in Figure 5 shows,

eliminating meta-data removes an entire dataflow, which

leads to reduced overheads. The remaining meta-data is

still propagated and checked as before, thereby eliminating

the false positives that were possible with the code-based

sampling of Figure 3c. Our dataflow sampling technique

analyzes samples of dynamic dataflows, rather than

dynamic instructions. In doing so, it yields performance

improvements without introducing false positives.

Besides false positives, sampling systems must deal with

false negatives (i.e. missing a real error). Although all

sampling systems result in some missed errors, an increased

population of testers can help offset this. Because individual

users experience much lower overheads, the total popula-

tion of users willing to run the tests can increase. This may

Analysis Dataflow

create r1
x.reg ⇐ r1

y→r1

x→r1
malloc 

r1

Error

Remove x

meta-data

y.reg ⇐ x.reg

Stop dataflow

No meta-data
No analysis

y OK?
No. Error.

Figure 5: Dataflow Sampling Prevents False Positives. Elimi-
nating a shadow value removes the entire dataflow that depends
on it. No false positives occur because all propagations and checks
related to that data are skipped.

offset the errors missed due to the false negatives caused

by sampling, though we do not further speculate about the

number of extra users our technique would deliver. We

instead focus on keeping our false negative rate reasonably

low.

The method of choosing which shadow values to remove

should strive to observe many different dataflows across

each execution so that numerous uncoordinated users can

analyze varied parts of the program. Ideally, each execution

should observe as many dataflows as possible, though this

may lead to overly high slowdowns that cause the sampling

system to engage. Because small dataflows are likely to be

completely observed by many of the numerous disparate

analysis systems, it may be beneficial to prioritize the

more-difficult-to-analyze large dataflows. In this paper, we

choose the discarded shadow values in a uniform random

manner, and leave more complicated methods for future

work.

4. Prototype System Implementation

We built a prototype of our dataflow sampling system

on top of a demand analysis system that uses the Xen

virtual machine monitor [4] and the emulator QEMU [5].

Entire virtual machines, called domU domains in Xen, are

monitored in this design. Data that enter the virtual machine

from network or keyboard inputs are marked as tainted, a

status that is stored in a binary shadow variable associated

with each register and every byte in physical memory. The

virtualization system allows user-level applications within

the domain to run at full speed on the unmodified hardware

when they are operating on untainted data.

The hypervisor marks pages that contain shadowed data

as unavailable, causing the system to take a page fault

whenever instructions attempt to access them. The hyper-

visor’s page fault handler then checks the page number

against a list of pages that contain shadowed values. If the



process is attempting to access one of these pages, the entire

state space of the domU domain is transferred into an in-

stance of our modified version of the QEMU x86 emulator

running within the dom0 administrative domain. The domU

domain then begins executing within the emulator, which

also performs taint analysis by propagating shadow values

through copy and arithmetic operations. The emulator also

checks the taint status of inputs to instructions such as

dereferences and control flow operations.

When the emulator is no longer operating on tainted

values, the domain’s state is transferred back to the native

hardware. Further information about this demand analysis

system, including its method for detects tainted value and

the overheads incurred by false sharing in the page table,

can be found in the demand emulation paper by Ho et al.

[14]. In this section, we describe the modifications needed

to build a dataflow sampling system on top of this demand

analysis framework.

We define performance overhead as the amount

of time spent in analysis versus the amount of

time running natively. Based on this definition,

dynamic overhead values can be estimated as

(cycles analysis)/(cycles analysis + cycles native).
Overhead can range from 0 (no analysis, full speed) to

1 (always in analysis), inclusive. Though this does not

tell us the actual slowdown experienced by the system,

we can pessimistically estimate the overhead experienced

by the user by assuming that the analysis system makes

no forward progress. In actuality, the performance can

vary greatly, with an analysis system causing an average

slowdown of 150×. Our no-forward-progress estimate,

however, allows us to quickly calculate a relatively

accurate estimate of dynamic slowdown. If the overhead is

0.95, the actual slowdown (assuming the analysis system

slows performance by 150×) is 17.8×. Our estimate yields

a pessimistic but close value of 20×, assuming that only

5 out of every 100 cycles make any forward progress.

This overhead calculation is done using a rolling win-

dow. The length of this window is user-defined, and each

element in a window tracks the number of cycles spent

within QEMU and in native execution during the last tick

of the 100Hz system clock. The cycles stored in each

element are updated both when a domain or QEMU is

scheduled and on clock ticks. Finally, on every clock

tick, the oldest unit is dropped from the window. This

allows us to efficiently calculate the overhead for the last

window length ∗ clock tick length period of time. The

primary extensions to the baseline system to support this

overhead tracking method include the addition of timer

windows into the hypervisor and dedicated timekeeping

code in the timer interrupt handler and the scheduler code

of dom0 and the hypervisor.

We constructed a program that allows an administrator

in the dom0 domain to set the overhead threshold for any

domU. Similar to the overhead manager (OHM) described

in QVM [2], our system then uses a daemon running

in dom0 to check each domain’s overhead against its

threshold. If the overhead is higher than this limit, the

OHM marks the domain as “above threshold” and sets a

probability for the emulator resume native execution. This

is the Bernoulli probability from Figure 4, and it can also

be changed by the administrative program in dom0.

QEMU periodically checks the overhead-related vari-

ables stored by the OHM, and it probabilistically decides to

stop the analysis based on the stored Bernoulli probability if

the domain is “above threshold”. If the emulator determines

that it must stop, it clears all registers of their shadow values

and returns control back to the hypervisor, where it resumes

running normally.

While leaving the emulator clears the shadow values

associated with the data in the registers, we also require

the ability to clear meta-data associated with memory

locations. Our page fault handler also checks the values

set by the OHM before moving a domain into QEMU. If

the overhead is beyond the desired threshold, the handler

probabilistically decides whether to enter the emulation or

skip the analysis. If the analysis is skipped, the shadow tags

associated with all data on the page are cleared, the page

table entry is marked as available, and execution continues

natively at full speed.

We first implemented a taint analysis system that follows

the same propagation and checking rules at Ho, et al.

described [14]. Shadow values represent tainted variables,

so removing a shadow variable implies that a memory

location contains trusted data. We also built a dynamic

heap bounds checker, similar to the system described by

Nethercote and Fitzhardinge [23]. When a shadow variable

is removed, its associated memory location is assumed to

be of unknown type, which raises no errors when it is

dereferenced.

5. Experimental Analyses

The virtual machines used in our experimental system

are Linux-based systems with modified 2.6.12.6-xen0 and

2.6.12.6-xenU kernels. Tests were executed on a 1.8GHz

AMD Operton 144 with 1GB of RAM and a Broadcom

BCM5703 gigabit Ethernet controller. For all experiments,

512MB of RAM were allocated to both dom0 and domU.

5.1. Benchmarks and Real-World Vulnerabilities

Our simplest test, shown as pseudocode in Figure 6, is a

synthetic benchmark that tests if our sampling framework

controls overheads while performing intensive dataflow



Benchmark
Name

CVE Number (Error) Error Description Detection at 1% overhead

Apache CVE-2007-0774 [21] A stack overflow in Apache Tomcat JK Connector v 1.2.20 Detected on every analysis

Eggdrop CVE-2007-2807 [22] A stack overflow in the Eggdrop IRC bot v 1.6.18 Detected on every analysis

Lynx CVE-2005-3120 [19] A stack overflow of the Lynx web browser v 2.8.6 Detected on every analysis

ProFTPD CVE-2006-6170 [20] A heap smashing attack of ProFTPD Server v 1.3.0a Detected on every analysis

Squid CVE-2002-0068 [18] A heap smashing attack of the Squid proxy v 2.4.DEVEL4 Detected on every analysis

Table 1: Security Benchmarks. This lists a series of applications with known security exploits. The last column refers to the ability of
the sampling taint analysis system to observe the exploits with an overhead threshold of 1%.

analyses. It takes in shadowed data and repeatedly per-

forms computations on it, forming a single large dynamic

dataflow. Without sampling, this program is constantly

analyzed.

We also incorporated the netcat and ssh network through-

put benchmarks from Ho, et al. to more directly compare

dataflow sampling to a demand analysis system [14]. In

their work, demand taint analysis experienced orders-of-

magnitude slowdowns for applications that operated on

large network transfers. In netcat receive we move 1GB

data from an external machine using a simple TCP con-

nection. Both ssh receive and ssh transmit are similar, but

instead move 781MB over an encrypted connection. We

skip netcat transmit because the only shadowed data it

accesses is the IP address response from a DNS query.

Our dataflow sampling system quickly clears this shadow

value and the benchmark maintains high throughput until

its completion.

We also analyze a collection of network-based bench-

marks that suffer from security exploits that allow remote

code execution. We use these programs to verify that we

can observe a sufficient fraction of the dataflows in complex

programs to find real-world errors even when sampling with

low overhead thresholds. We ran these programs within our

sampling system and transmitted exploits at random points

in time in order to obtain high confidence in our error-

finding capabilities. These programs are listed in Table

1. We focus on buffer overflows (that result in stack and

heap smashing attacks) because the dataflow analysis we

utilize in our prototype is designed to detect this class of

errors. While different dataflow analysis systems may be

better suited for other types of software errors, their specific

loop
value ⇐ shadowed data

for i = 0 to N do
value ⇐ value + 1

end for

end loop

Figure 6: Worst-case Synthetic Benchmark. This program is
designed to show the limits of our dataflow sampling system
by continually operating on shadowed data. It will remain in
emulation until the sampling system removes the shadow value.

design is orthogonal to this work on sampling mechanisms.

5.2. Controlling Dataflow Analysis Overheads

Limiting Overheads in the Synthetic Benchmark. Our

first set of experiments uses the synthetic benchmark

detailed in Figure 6 to plot the instantaneous runtime

overhead of our taint analysis tool. The program executes

its conditional loop normally for 30 seconds leading to

a computational throughput of about 1,800 million in-

structions per second (MIPS). Afterwards, shadowed data

arrives from the network at a rate of one packet every five

seconds. The content of the incoming packets is used for the

computation within the loop, so our taint analysis system

invokes the analysis mode. Our sampling system for this

experiment uses a 30 second long overhead window, with

a 100% probability of leaving analysis after crossing the

overhead threshold.

As soon as packets begin to arrive, the performance of

the non-sampling system plummets to an average of 21.3

MIPS. The system never leaves emulation when sampling

is disabled because nearly every operation following the

arrival of the first packet is shadowed.

Figure 7a shows the performance of our system when

sampling is enabled with an overhead threshold of 10%.

While instantaneous performance still drops when the first

packet arrives, the overhead manager periodically forces

the taint value to be cleared, returning the performance to

its original value. This pattern repeats itself every time the

rolling overhead window drops the short interval of low

performance, resulting in an average performance loss of

11%.

Figure 7b plots both average slowdown and size of the

analyzed dataflow over a range of threshold values. This

shows that our sampling system allows users to effectively

control the amount of time spent in dynamic analysis,

although it may limit the number of dataflows that can be

completely analyzed in one execution.

Performance Impacts for Real Benchmarks. We used

network-intensive benchmarks to test the ability of our

dataflow sampling technique to improve performance over

the demand analysis system. Because network data is the

source of shadow values in our system, demand analysis
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Figure 7: Synthetic Benchmarks: Performance and Analysis Accuracy. (a) Instantaneous (solid) and average (dashed) after the first
untrusted packet arrives with a user-set overhead threshold of 10% (b) Average performance (dashed) and the maximum observable
dataflow length normalized to a 1% overhead threshold (solid) for a range of overhead thresholds. Error bars show 95% confidence
intervals.
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Figure 8: Dataflow Sampling Increases Network Throughput. The dashed red line represents performance with analysis disabled. Error
bars represent 95% confidence intervals. (a) Netcat receive throughput increases nearly linearly as the maximum overhead threshold is
lowered. The maximum performance is below that of a system with analysis disabled because of the page faults incurred to clear shadow
data. Both (b) SSH transmit and (c) SSH receive allow nearly linear control over their overheads.

still causes the throughput (i.e. performance) of these

programs to drop precipitously. For example, ssh transmit

suffers a 131× slowdown on a non-sampled system.

Figure 8 shows the throughput of these network bench-

marks with dataflow sampling. The X-axis in each chart

represents the maximum overhead threshold. The probabil-

ity of leaving the analysis after crossing the threshold is set

to 100%. The solid line plots average network throughput

at that threshold, while the dashed red line represents

the highest throughput each benchmark could reach with

analysis disabled. Note that an overhead threshold of 100%

is the same as a demand analysis system.

This data shows that dataflow sampling can greatly

improve network throughput even for extremely slow anal-

yses. Without sampling, for instance, transmitting data over

SSH has an average throughput of only 171KB/s. This is

116× slower than the no-analysis case. However, as Figure

8b shows, we can directly control throughput by removing

shadow values after the overhead threshold is reached.

5.3. Accuracy of Sampling Taint Analysis

Next, we test the dataflow sampling taint system on a

number of programs to demonstrate that it can find exploits

in real programs. We also verify that we can effectively

analyze these programs, even when the maximum overhead

is low. Finally, because programs that do not directly

contribute to an error still require analysis and limit the

time our erroneous process can be under analysis, we run

a second set of tests with significant amounts of spurious

system load.

Accuracy for a Lightly Loaded System. We ran the five

programs shown in Table 1 in our sampling system with

an overhead threshold of 1% in a 10 second window and a

100% probability of removing shadow values after reaching

the threshold. For parameters as unforgiving as these, we

were still able to find the security faults caused by the

vulnerabilities in these benchmarks on every attempt, as

indicated in Table 1.

Though we cannot guarantee this is true for all security

flaws, we have found that that vulnerabilities that appear

early in the dataflow of a program are easier to exploit.

Exploit writers must build their inputs such that every

operation upon them modifies them to be in the correct

form and place to attack systems. Intuitively, the fewer

operations between the input and the final destination, the

easier these inputs are to build. Errors that take place earlier

in the dynamic dataflows are also easier to catch using

sampling.

Accuracy for a Heavily Loaded System. The previous

experiments focused on the analysis quality for benchmarks
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Figure 9: Exploit Observation with SSH Background Execu-
tion. Each bar represents the probability of detecting a particular
program exploit. The number above each set is the expected
number of attempts (or users) needed to observe the most difficult
error. Error bars are 95% confidence intervals.

that were executed in isolation; the only dataflows were

caused by exploits communicating with the vulnerable

applications. Servers in real-world situations are typically

heavily-utilized, with a resulting increase in the number

of dataflows that the analysis system must check. Most

dataflows in these high-utilization environments do not

lead to errors, but still require time within the analysis

system. Because our sampling system only allows a limited

amount of time in analysis before attempting to remove

shadow dataflows, these extra analyses raise the probability

of ignoring dataflows in erroneous programs. This will

lower the probability of finding an error. To quantify this

difference, we studied the probability of observing an

exploit while the rest of the system was heavily loaded

with benign dataflows.

We combined two benchmarks to simulate such an envi-

ronment. A network throughput benchmark (ssh receive)

runs in the background to simulate a large amount of

harmless operations that still require analysis, while one

of our vulnerable security benchmarks (from Table 1) is

exploited at some random point in time. We start each

benchmark by running the throughput program alone long

enough to fill one overhead window. This allows us to avoid

observing the exploit solely because the overhead window

is not filled with background operations. The exploit for the

second program is then sent after a random time interval; an

exploit may arrive at any point within an overhead window.

All experiments were run with a 10 second overhead

window and a 100% probability of leaving the analysis after

crossing the overhead threshold. The 100% probability of

stopping analysis means that the only dataflow randomiza-

tion is caused by nondeterminism in the system and the

random arrival time of the exploit. These are unforgiving

settings that favor the user experience over analysis quality,

as the short window and guaranteed halting of analysis

yield short periods of time where any vulnerability can be

observed and detected.

As Table 1 shows, our framework was able to consis-

tently observe the exploits with an overhead threshold as

low as 1% on the system with no benign dataflows. Figure 9

plots the probability of observing each benchmark’s exploit

on a heavily loaded system where ssh receive runs in the

background, causing a number of spurious dataflows that

do not lead to any program flaws. The error bars represent

the 95% confidence interval for finding the error, while the

number of attempts needed to observe the most challenging

exploit is listed above each overhead threshold. This can

be thought of as the expected number of users required to

run the analysis before detecting the error. Note that these

attempts need not take place on the same computer.

The extraneous dataflows caused by ssh receive make it

more difficult to observe the exploit than in the case with no

background execution. Rather than observing every exploit,

a small number of exploits are missed at high overhead

thresholds. At a 10% overhead threshold, we still observe

most of the exploits nearly 10% of the time.

The Apache exploit is more difficult to observe, how-

ever. This benchmark moves a large amount of shadowed

data numerous times before the exploit occurs, making

the dataflow leading to the exploit relatively long and

surrounded by other data that, while tainted, do not actually

take part in the exploit. Our system still finds this flaw

with a 0.1% probability at the lowest overhead threshold.

This particular test shows that our system works well

even with nearly every option set to particularly difficult

choices. If we use netcat receive instead of ssh receive,

for instance, the ability to observe the Apache exploit

rises quite precipitously, as ssh receive causes much more

background analysis.

Changing the Probability of Removing Dataflows. We

performed all our previous experiments with Pst, the prob-

ability of stopping dataflow analysis once we exceed the

overhead threshold, set to 100%. This choice can obviously

affect the performance of the system and its ability to fully

observe large dataflows. A lower Pst permits some analyses

over the overhead threshold to continue analysis before

shadow values are cleared and analysis is forcibly stopped.

While this gives us less control over the exact slowdowns a

user perceives, it also allows some users in the population

to observe more dataflows and analyze deeper into large

dataflows. This boosts our chances of finding errors.

Figure 10 shows the performance of the system running

our synthetic benchmark with a 25% overhead threshold

and a variety of static Pst values. Setting Pst to 1% leads

to a mean performance of 900 MIPS with a standard

deviation of ±170 MIPS. The mean is nearly the same

as the performance attained with Pst = 100% at a 50%

overhead threshold. However, because of the high standard

deviation, more users will see a performance above 1070

MIPS, nearly the same as a user with Pst = 100% at a

threshold of 40%. These particular users experience less

overhead than they would with a threshold of 50%, while
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the analyses they cannot perform can be made up for by

the users whose performance is more than one standard

deviation lower.

This system may not be appealing to all users, but

primarily serves as an example that modifying the sampling

probability can significantly change both the overhead of a

dataflow analysis and the probability of observing errors.

We have analyzed a number of different mechanisms for

setting this probability, from relating it to the amount of

overhead beyond the threshold to connecting it to size of

the dataflow currently under analysis. We have found that

different mechanisms related to the size and number of

dataflows work well for different benchmarks and analyses.

Due to space limitations, we will detail this in-depth

analysis in a future report.

6. Related Work

6.1. Dynamic Dataflow Analysis Systems

Nethercote and Seward built Valgrind, a popular dynamic

binary instrumentation tool that is the basis for a number

of dynamic dataflow tools because of its strong support

for shadow memory [25], [24]. Memcheck is used to find

runtime memory errors such as uses of undefined variables

and memory leaks [30], while Annelid is the preliminary

design of a dynamic bounds checker [23]. TaintCheck,

one of the first software-only taint analysis systems, is

implemented within Valgrind [26], as are both Helgrind

and ThreadSanitizer, two dynamic data race detectors [29].

Many researchers focus on reducing the extremely high

overheads associated with these dynamic dataflow anal-

yses. Minos [9] and Raksha [10] are examples of taint

analysis systems implemented in hardware, while HARD

is an example of a hardware race detector [33]. More

generally, MemTracker offers a programmable hardware

state machine that allows simple dataflow analyses to be

run at hardware speeds [31]. While these systems allow

dataflow analyses with little runtime overhead, they require

costly hardware changes and are not currently available on

modern processors.

Some researchers have focused on changing the analysis

algorithms to improve performance. Umbra attempts to

reduce the overhead of accessing shadow variables, which

should accelerate any dataflow analysis system [32]. Others

have looked at ways to filter analyses that cannot possibly

cause errors [28]. While these works yield better perfor-

mance, they do not completely solve the overhead problem

because many dataflow analyses must still perform many

calculations alongside the original program.

Other researchers have therefore suggested decoupling

the analysis from the original program. This allows them

to, for instance, parallelize the analyses using multiple

cores [27], [7], [8]. This method still causes a reduction

in total throughput of the system because multiple cores

are used to perform the analysis and are thus not available

for other uses. Chow, et al. also describe a mode where they

log specific dataflow information for later offline analysis.

This mechanism allows for low-overhead execution on

users’ systems, but would be prohibitively expensive for a

developer if every user were to send back numerous logs.

If users only sent back logs for analysis when a crash

occurred, some bugs may not be caught until after they

caused crashes or were exploited. This defeats one of the

major benefits of dataflow tests such as taint analysis or race

detection: they can catch errors that have not yet caused a

crash.

6.2. Dynamic Sampling Systems

One way to accelerate dynamic analyses is by using sam-

pling. To the best of our knowledge, ours is the first system

to enable software-based sampling of dynamic dataflow

analyses on unmodified binaries. This section describes

related sampling works and discusses how they fall short

for dataflow checking.

Liblit, et al. showed that Arnold and Ryder’s method,

described in Section 2.3, is inadequate for statistically

weighting bugs reported by users because of its determin-

istic nature. The system designed by Liblit, et al. instead

has users perform checks with some stochastic probability

and report any failed checks when a bug manifests [15].

Bursty Tracing quickly enables dynamic program tracing

for profiling purposes, then disables it after a deterministic

number of instructions [13]. Hauswirth and Chilimbi later

looked at ways to use profiling feedback to focus their dy-

namic analyses on rarely-executed portions of the program

[12]. Much like the works by Arnold and Ryder, these



code-based sampling methods are inadequate for dataflow

analysis system. They can cause both false positives and

extra false negatives because they do not appropriately

handle shadow dataflows.

Arnold, et al. developed QVM, a Java virtual machine

that uses sampling to reduce the slowdown of multiple

introspective analyses. [2]. The strength of their sampling

system relies on their ability to follow random objects from

invocation until destruction. This would be difficult to do

in a system with less access to language-level constructs

than a Java virtual machine. Our dataflow sampling system

works on unmodified binaries compiled from any language.

LiteRace describes a technique for performing sampling

in a dynamic data race detector [17]. Though this is a form

of dataflow analysis, their code-based sampling technique

utilizes an idiosyncrasy of data race detection to avoid any

false positives. Because the meta-data (vector clocks) only

flow from synchronization points to individual variables

where they are checked, LiteRace simply chooses not to

skip any synchronization points in their sampling system.

This means that their system only skips tests and thus will

thus only incur false negatives. PACER utilizes a similar

insight to decrease the rate of false negatives in a sampling

race detector [6]. These methods will not work for other,

more generalized dataflows analyses.

In contrast to the software-based works previously men-

tioned, our recent work, Testudo, is a hardware-based

dataflow sampling system [11]. Its primary goal is to reduce

the hardware storage required for shadow data, but it can

also be used to sample other analyses at reduced overheads.

Besides requiring non-trivial hardware additions, it is not

designed to contain runtime overheads; this is a side-effect

of its architecture, and it is not directly controllable at

runtime.

7. Conclusion and Future Work

In this paper we presented the first software-based scal-

able distributed dataflow analysis system. We are also the

first to use dataflow sampling to allow users to control

the overheads they observe when running heavyweight

dataflow analyses. This allows developers to distribute their

software with dataflow analyses to large populations, allow-

ing numerous users to test software for security, correctness

and performance bugs. We also showed that it is possible to

observe many real-world errors, even when users set their

maximum overhead very low and strictly stop the analysis

when they cross this threshold.

We are currently exploring a number of future research

directions to this work. We believe that finding the best

mechanisms for setting the Bernoulli probability of re-

moving shadow variables could be a very fruitful research

direction. Our preliminary results imply that this may be

analysis-specific, due to the types of errors and possible

dataflows shapes that must be observed to catch them.

Our current system requires that shadowed data be

marked in the page table to indicate when it is accessed.

There may be simple hardware modifications that allow our

system to find this data at finer granularities.

Finally, we would like to extend our work by sampling

in different ways. For example, instead of constantly per-

forming analysis until the threshold is reached, which may

lead the sampling system to throw away all analysis up to

that point, it may be possible to observe ahead of time that

a particular part of the program requires an unaffordable

amount of analysis and report this fact to the developers

for further investigation or offline analysis.
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