
Adaptive GPU Cache Bypassing

Yingying Tian‡
∗

Sooraj Puthoor† Joseph L. Greathouse†
Bradford M. Beckmann§ Daniel A. Jiménez‡

‡Dept. of Computer Science and Engineering †§AMD Research
Texas A&M University Advanced Micro Devices, Inc.

College Station, TX, USA †Austin, TX, USA §Bellevue, WA, USA
{tian, djimenez}@cse.tamu.edu {Sooraj.Puthoor, Joseph.Greathouse, Brad.Beckmann}@amd.com

ABSTRACT
Modern graphics processing units (GPUs) include hardware-
controlled caches to reduce bandwidth requirements and en-
ergy consumption. However, current GPU cache hierarchies
are inefficient for general purpose GPU (GPGPU) comput-
ing. GPGPU workloads tend to include data structures
that would not fit in any reasonably sized caches, leading
to very low cache hit rates. This problem is exacerbated by
the design of current GPUs, which share small caches be-
tween many threads. Caching these streaming data struc-
tures needlessly burns power while evicting data that may
otherwise fit into the cache.

We propose a GPU cache management technique to im-
prove the efficiency of small GPU caches while further re-
ducing their power consumption. It adaptively bypasses the
GPU cache for blocks that are unlikely to be referenced again
before being evicted. This technique saves energy by avoid-
ing needless insertions and evictions while avoiding cache
pollution, resulting in better performance. We show that,
with a 16KB L1 data cache, dynamic bypassing achieves sim-
ilar performance to a double-sized L1 cache while reducing
energy consumption by 25% and power by 18%.

The technique is especially interesting for programs that
do not use programmer-managed scratchpad memories. We
give a case study to demonstrate the inefficiency of current
GPU caches compared to programmer-managed scratchpad
memories and show the extent to which cache bypassing can
make up for the potential performance loss where the effort
to program scratchpad memories is impractical.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache memories

General Terms
Microarchitecture, GPU, cache management

∗Work performed while interning at AMD Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

GPGPU’15 , February 2, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3407-5/15/02 ...$15.00.

Keywords
Bypassing, graphics processing unit cache, prediction.

1. INTRODUCTION
By densely packing many parallel arithmetic logic units

together and clocking them at a moderate rate, graphics pro-
cessing units (GPUs) have a much higher throughput than
traditional CPUs of similar size and power envelope [38,44].
The last decade has seen growth in general purpose GPU
(GPGPU) programming, where these graphics processors
are used to perform highly parallel computations on tradi-
tional computational problems. Because of the large perfor-
mance increases attainable with these processors, GPGPU
programming has evolved into a popular way to accelerate
highly parallel and computationally intensive algorithms [19].
As part of this move towards more general-purpose archi-
tectures, recent GPU designs have included deep hardware-
controlled cache hierarchies to ease the burden of writing
efficient GPGPU algorithms [1,39,40].

Replicating CPU cache management policies in GPU cach-
es leads to performance and power inefficiencies. Unlike
CPUs, GPUs run thousands of concurrent threads, greatly
reducing the per-thread cache capacity. Moreover, many
GPGPU workloads include large data structures that do
not fit into any reasonably sized caches. These streaming
accesses replace many other useful values, such that even
frequently accessed data may be evicted before being refer-
enced again. Placing this streaming data into a traditional
cache hierarchy needlessly costs energy and yields no per-
formance benefit.

A näıve solution is to add more storage to the cache hi-
erarchy, which is inefficient for GPUs, as the die area spent
on these caches could instead be dedicated to more paral-
lel computation resources, increasing peak throughput. A
good GPU cache management technique should thus strive
to make small caches highly efficient for GPGPU workloads.
They should yield a high hit rate for reused values while
avoiding the energy used to store values that are not reused.

This paper presents dynamic hardware mechanisms that
reduce the need for explicitly caching all data in GPU caches.
We propose a GPU cache management technique that en-
hances the L1 data caches in a modern GPU by improv-
ing cache efficiency and reducing energy consumption. Our
technique uses low-overhead dynamic bypass prediction to
prevent streaming one-time-use values from being needlessly
cached. If it predicts that a block will be reused, the data
are placed into the cache hierarchy as normal. If a block is

unlikely to be reused, it is sent directly to the compute units
without being placed into the cache. Bypassing saves energy
by avoiding storing values into the cache, only to later evict
them after never accessing them again. Moreover, by insert-
ing fewer useless blocks, the bypass mechanism allows useful
data to reside in the cache longer, increasing the cache hit
rate and improving performance.

We show that, over 13 GPGPU benchmarks, a 16KB L1
cache that uses our bypass predictor increases performance
by up to 13% and slightly outperforms a 32KB L1 cache
that does not bypass. Furthermore, our bypass predictor
reduces L1 cache energy consumption by 25%, while requir-
ing less than 256 bytes of extra storage in each private L1
cache and 0.5KB of extra storage in the 256KB shared L2
cache. Rather than doubling the size of the caches to im-
prove hit rate, our technique keeps the caches small, allowing
the saved area to be used for additional compute units.

This paper makes the following contributions:

• We propose a simple but effective GPU cache manage-
ment technique. It prevents streaming one-time-use
values from being needlessly inserted into the cache
with high accuracy and minimal area overhead.

• We demonstrate performance gains and energy savings
when using our bypass predictor for a GPU L1 data
cache.

• We study the limitations of current GPU cache designs
and the effects of a bypass predictor as they relate to
using scratchpad memories. In particular, we com-
pare an application that uses scratchpad memories to
a rewritten version of the same application that does
not require the complexity of manual memory layout
in the context of our optimization.

The organization of this paper is as follows: Section 2 in-
troduces the background of GPU computing and motivates
the proposed technique. Section 3 describes the bypass pre-
dictor in detail, and Section 4 discusses the experiments used
to evaluate our design. We explore experimental results in
Section 5 and discuss related work in Section 6. Finally,
Section 7 concludes and discusses future work.

2. BACKGROUND AND MOTIVATION
A GPU is a highly parallel processor consisting of hun-

dreds to thousands of concurrently operating logic units.
Though they were originally hard-coded circuits meant only
to accelerate 3D graphics computations, modern GPUs are
now fully programmable general-purpose processors. Gen-
eral purpose GPU computing (GPGPU) uses GPUs to accel-
erate applications in domains such as science, engineering,
physics, media, and statistics [19].

2.1 GPUs and GPGPU Computing
Because GPUs were originally fixed-function circuits, pro-

gramming them to yield useful general-purpose results was a
laborious process that involved mapping the computational
kernel onto the graphical equations that the GPU could
perform [5, 11, 12]. As GPUs became more programmable,
languages such as OpenCLTM [17] and CUDA [41] have
emerged to allow C-like programming of these accelerators [17,
37]. Among many microarchitectural details that program-
mers must contend with to attain high GPU performance,
this paper focuses on the GPU memory system.

GPUs hide long memory access latencies through a high
degree of thread-level parallelism. If one group of threads
is stalled on a long latency memory request, many others
can take that opportunity to execute. This is acceptable
for most graphics workloads, but some GPGPU workloads
can cause the whole pipeline to stall by causing all avail-
able thread groups to wait on memory. In addition, both
graphics and general-purpose applications can heavily tax
the memory bandwidth of a GPU. As such, GPUs tradi-
tionally used small read-only texture caches and scratch-
pad memories in order to increase available bandwidth to
their computational pipelines. However, these resources are
difficult to use for GPGPU workloads because they require
either the programmer or compiler to decide whether partic-
ular memory accesses should go through these subsystems.

Modern GPU architectures have adopted hardware-contro-
lled cache hierarchies between globally accessible DRAM
and the compute units to aid programs that are unable to
use the GPU’s shared memory [39]. For example, AMD’s
Graphics Core Next (GCN) architecture has a 16KB pri-
vate L1 cache for each compute unit (CU) and 64-128KB
of shared L2 cache per memory channel [1]. Nvidia’s Fermi
architecture has a 16KB/48KB configurable private L1 cache
for each streaming multiprocessor and up to 768KB of shared
L2 cache [39]. The Heterogeneous System Architecture (HSA)
Foundation has announced a roadmap that includes fully co-
herent cache memories across CPUs and GPUs [29].

Hardware-managed GPU caches are used for two main
purposes: 1) to cache data with immediate spatial and tem-
poral locality, and 2) as write-combining buffers to reduce
the memory bandwidth and energy requirements of the sys-
tem. Although caches are effective write-combining buffers
for GPGPU workloads, they are less useful at exploiting lo-
cality [24]. The underlying reason for this is the streaming
nature of GPGPU memory accesses resulting in good spatial
locality but very low temporal locality.

2.2 GPGPU Memory Characteristics
Traditional graphics workloads traverse large scenes of 3D

vertices while calculating shading values, performing math-
ematical transformations, and laying textures on surfaces.
These algorithms stream large amounts of data from mem-
ory, consuming hundreds of megabytes to render a single
frame. Because such large working sets are completely im-
practical to hold in on-chip caches, GPUs have traditionally
had copious memory bandwidth and enough parallelism to
keep these long latency accesses from stalling.

This bandwidth and latency hiding has subsequently af-
fected the kinds of general-purpose applications that are
commonly ported to run on GPUs. GPGPU applications
often look like graphics workloads: highly parallel, regu-
lar, and with large storage and bandwidth needs. Although
these workloads may exhibit good data reuse, the distance
between repeated accesses to the same value is such that
most of the reusable data are evicted from the cache before
it can be touched again.

Figure 1 demonstrates this idea across a series of bench-
marks from the Rodinia suite [6] and a selection of AMD
APP SDK programs. The zero-reuse bars represent the per-
cent of cache blocks that are evicted from a 16KB L1 cache
before they are touched again. The data show that an av-
erage of 46% (and a maximum of 84%) of cache blocks are
evicted by the pseudo-LRU replacement algorithm without

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
D
yn
am

ic
al
ly
 A
cc
es
se
d
Ca

ch
e
Bl
oc
ks

Figure 1: Zero-reuse blocks in the L1 data cache.

being touched again. Inserting the data into the cache costs
energy, but only results in pollution and the potential evic-
tion of other useful blocks.

Streaming data accesses in these programs, coupled with
large data sets, are the primary reasons for these long reuse
distances. For graphics applications, GPUs traditionally
used different memory subsystems for data that would cache
well (such as textures), allowing other data to bypass these
specialized caches. Similarly, scratchpad memories (called
Local Data Stores on AMD GPUs [1] and Shared Memory
on Nvidia GPUs [39, 40]) can be used to manually store
reusable data while skipping streaming values. Some GPUs
now include compiler hints to say that particular static loads
are streaming and so should not be cached [3,25,28].

As GPGPUs extend further into non-traditional domains,
more programmers whose expertise lies outside GPU ar-
chitectures are using these devices. Such explicitly man-
aged memory systems are known to be more difficult to
use than hardware-controlled caches [33], so requiring such
structures limits the market for GPUs to only expert pro-
grammers. Moreover, scratchpad memories are not always
portable across devices or generations of designs. Because
scratchpad sizes and layouts change over time, further in-
creasing the programmer’s burden. With these issues in
mind, this paper focuses on hardware mechanisms that can
improve existing GPU caches and be transparent to software
and programmers.

2.3 Improving GPU Caches
We previously identified two major problems with GPU

caches: 1) They are not effective at exploiting temporal lo-
cality due to noise from streaming data; and 2) insertions
and evictions of useless data consume energy without in-
creasing performance.

Figure 2 shows the average performance improvement of
different L1 data cache sizes normalized to a 16KB base-
line over a series of GPGPU benchmarks described in Sec-
tion 4.2. This demonstrates that more powerful caching sys-
tems have the capability to increase the GPU’s performance.
However, L1 caches larger than 16-64KB are impractical for
current GPU designs.

As described in Section 2.1, current AMD GPUs have
16KB of L1 data cache per CU. The Fermi generation of
Nvidia chips had a dynamically configurable 16KB or 48KB
L1D. The Kepler and Maxwell generations of Nvidia GPUs
can configure their L1 data caches to be 16, 32, or 48KB [40].
However, this L1 cache is only used to store local data, such
as register spills, and is always bypassed when accessing

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

32KB 64KB 128KB 256KB 512KB 1024KB

P
e
rf
o
rm

an
ce
 Im

p
ro
ve
m
e
n
t

N
o
rm

al
iz
e
d
 t
o
 1
6
K
B
 L
1
 C
ac
h
e

L1 Cache Size

Figure 2: Performance improvement across different
L2 cache sizes normalized to a 16KB L1 cache.

global data (i.e., there is essentially no hardware-controlled
R/W L1 data cache [42,43]).

These cache sizes are unlikely to increase significantly as
the general performance benefit from adding extra cache
space does not outweigh the extra area taken up by these
caches. That area could instead be dedicated to more com-
putational resources, which would directly increase perfor-
mance in traditional graphics and many GPGPU applica-
tions. Unfortunately, at these sizes, the large structures and
streaming data used by GPGPU applications cause unnec-
essary cache evictions, reducing reuse and wasting energy.

Only useful data would be installed if these zero-reuse
blocks were not inserted into the cache. Useful data would
also be more likely to remain in the cache and be reused
before eviction. Therefore, a bypass decision mechanism
could increase the efficiency of the cache without requiring
effort on the programmer’s part or a large amount of area.

The remainder of this paper investigates adaptive GPU
cache bypassing mechanisms that avoid inserting zero-reuse
blocks into the L1 data cache of the GPU.

3. ADAPTIVE GPU CACHE BYPASSING
We propose a dynamic GPU cache bypassing technique

that prevents zero-reuse blocks from being placed in the L1
data cache of the GPU compute units that access them. If a
block is unlikely to be accessed again before it is evicted from
the cache, the mechanism instead sends the data directly to
the compute unit, bypassing the cache. This technique saves
energy by avoiding needless insertions followed by later evic-
tions and improves performance by reducing cache pollution.

The most important question for such a technique is: how
can the hardware decide whether a block is zero-reuse when
it fetches data during a cache miss? Previous CPU cache by-
passing techniques proposed to make decisions using mecha-
nisms such as frequency of accesses [23,27], temporal locality
information [16], or reuse distance [21]. Using information
related to memory addresses is impractical in GPU caches
due to the large number of data accesses. Single Instruction
Multiple Data (SIMD) units used in GPUs simultaneously
perform the same task on different items of data, resulting
in a high degree of data parallelism and large numbers of
memory addresses. Using memory address-related informa-
tion to make bypass decisions would require a large amount
of storage, which is not amenable to GPUs. Figure 3 shows
the number of 64B memory blocks accessed in our set of
benchmarks. Hundreds of thousands of memory blocks are
accessed during the execution of these small kernels.

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

800000	

900000	

ba
ckp
rop
	

bfs
	

bit
on
ic	 dc

t	

his
tog
ram

	

km
ea
ns
	

lud
	

ma
tri
xm
ul	 nn

	
nw
	

so
rt	

sp
mv
	

sra
d	

ari
th.
	 M
ea
n	

Di
s$
nc
t	 C

ac
he

	 B
lo
ck
s	 A

cc
es
se
d	

Figure 3: Number of distinct blocks accessed during
the execution of each benchmark.

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	
110	
120	

ba
ckp
rop
	

bfs
	

bit
on
ic	 dc

t	

his
tog
ram

	

km
ea
ns
	

lud
	

ma
tri
xm
ul	 nn

	
nw
	

so
rt	

sp
mv
	

sra
d	

ari
th.
	 M
ea
n	

Di
s$
nc
t	 P

Cs
	 w
ith

	 L
oa

d	
In
st
ru
c$
on

s	

Figure 4: Number of distinct program counter val-
ues in each benchmark that execute loads.

The number of distinct memory instructions in a GPGPU
workload is much smaller than the large amount of data
accessed. Program behavior is dominated by a few small
kernels with a high degree of thread-level parallelism.

Figure 4 shows that there are far fewer distinct load in-
structions executed in each benchmark. Rather than hun-
dreds of thousands of data addresses, there are instead only
tens to hundreds of distinct program counters (PCs) of mem-
ory instructions. Thus, a predictor indexed using PCs of
memory instructions is more practical than one indexed with
accessed addresses. There are fewer distinct entries, which
requires far less on-chip storage, and there are fewer distinct
values concurrently generated, which reduces the port count
of the predictor. Beyond the capacity concern, a PC-based
predictor can be more accurate because it learns to gener-
alize the behavior of a single instruction to multiple data
blocks.

Previous CPU dead block prediction techniques leverage
the fact that sequences of memory instruction PCs tend to
lead to the same behavior for different memory blocks [30,
34]. Khan et al. showed that in last level caches (LLCs),
the PC of the last memory instruction to touch a particular
block is highly correlated with whether or not the block will
be used again, leading to a compact and highly accurate
predictor [26]. Wu et al. used this observation to classify
LLC blocks in terms of their likely reuse distances [48].

We extend this intuition to predict zero-reuse blocks in
GPGPU workloads. Although both our technique and the
sampling dead block prediction (SDBP) [26] use PCs to
make a prediction, the intuition behind them is different.
SDBP is designed for LLCs, where much of the temporal

0111

128−entry prediction table

4−bit saturating counter

L2 Shared Cache

1−bit bypassBit

extra structure

set i
cache block

extra metadata stored in tag entry

L1 Data Cache

7−bit hashedPC
index

Figure 5: Structure of a PC-based bypass predictor
in a GPU’s L1 cache.

locality has been filtered by higher level caches. Thus, using
the PC of the last memory instruction rather than a trace of
PCs (as in previous work [30, 34]) achieves higher accuracy
in LLCs. By contrast, our technique is designed for GPU L1
caches, where temporal information is complete. However,
we propose to use the PC of the last memory instruction,
rather than sequences of memory instructions, because of the
observation of characteristics of GPGPU memory accesses
as shown in Figure 4.

Another option for PC-based bypassing would be to use
a trace of PC values, rather than a single PC. However, be-
cause GPU kernels are small and frequently launched, the
interleaving changes frequently. This interleaving has a neg-
ative impact on warm-up time for the predictor when using
PC traces rather than the last PC.

3.1 PC-Based Bypass Predictor
Figure 5 shows the structure of our PC-based bypass pre-

dictor in a GPU L1 cache. The predictor keeps a 128-entry
prediction table aside the L1 cache, where each entry con-
tains a 4-bit saturating counter. This table is indexed by
a hashed PC and consumes 64 bytes of storage in each L1
cache. The number of entries of the prediction table is very
small, taking advantage of the characteristics of GPU pro-
grams that there are only few distinct PCs. Each access
to the prediction table yields a confidence compared with
a threshold; if the threshold is met, then the corresponding
block accessed by that PC is predicted as zero-reuse. Beyond
the prediction table, each tag entry stores one more item of
metadata: a hashed PC value (7 bits) that records the last
memory instruction that referenced the current block.

No matter how high the prediction accuracy is, a bypass
misprediction in this design is irreversible. That is, when a
bypass decision related to a PC is made, no blocks accessed
by that PC will be placed into the L1 cache. If the predic-
tion is wrong, all subsequent blocks accessed by this PC will
miss in the L1 cache, causing additional penalties for access-
ing lower cache levels. To correct potential mispredictions,
each L2 cache block keeps an extra bit, called the bypassBit,
to help verify predictions. When a block is selected to be
bypassed on a L1 cache miss, the prediction is sent to the
L2 cache with the memory request. The L2 cache stores this
information in the corresponding L2 entry (set bypassBit =
1). If the block is referenced again before being evicted from
the L2 cache, this information is sent back to the L1 cache
with the requested data, indicating that the previous bypass
prediction might be incorrect. The requested block will not
be bypassed this time. Instead, it is placed into the L1 cache
for potential verification.

3.2 Prediction Algorithm Details
Listing 1 gives the pseudocode of our PC-based bypass

predictor. We use the least-recently-used (LRU) replace-
ment policy in this example. On each L1 access, the L1
cache is searched for the tag of the requested block. If there
is a tag match, then the last PC that accessed this block led
to a reused block. A prediction table entry indexed by the
hashed PC stored in the cache entry is decremented to in-
dicate a potentially reused block. The current PC is hashed
and stored in the cache entry, with the corresponding re-
placement status updated.

If it is a cache miss, the bypass prediction of the requested
block is made and sent to lower level caches with the memory
request. If the predictor decides not to bypass this block,
the LRU block is replaced with the incoming block. The
prediction entry indexed by the hashed PC stored in the
LRU block entry is updated, indicating this PC likely leads
to zero-reuse blocks. On receiving the requested block, the
corresponding metadata is updated.

If the prediction is to bypass, the requested block will not
be placed into the cache. However, there is a chance that
the prediction is incorrect. If the bypassBit sent from the
L2 cache is set, it is possible that this block would be reused
(since it is hit in the L2 cache). In this case, instead of
being bypassed again, this block is placed into the L1 cache
for potential re-references and misprediction correction. The
misprediction correction does not distinguish if the bypass-
Bit set by a previous bypass prediction is from a different
compute unit. The intuition is that different compute units
behave similarly in GPUs. Thus, using prediction informa-
tion from other compute units will not interfere with one
another; by contrast, it helps correct potential mispredic-
tions with limited information.

Note that previous warp scheduling proposals such as Cache-
Conscious Wavefront Scheduling (CCWS) [46] were also de-
signed for increasing GPU cache efficiency. Our work is or-
thogonal to warp scheduling techniques and can be used
along with them for better performance. To fairly evaluate
our work as a GPU cache management technique, we conser-
vatively use the “Oldest-First” scheduling technique which
minimizes cache thrashing caused by warp interference.

3.3 Comparison to Counter-Based Prediction
Counter-based bypass prediction [27] is a CPU LLC by-

passing technique. That work proposed to use an event
counter in each cache block to record an event of interest
such as cache accesses. When the counter reaches a thresh-
old, the block observes no more reuse. This information is
stored in a prediction table indexed by hashed block ad-
dresses and PCs. To bypass zero-reuse blocks, the block
addresses and PCs of bypass candidates are used to index
to the prediction table for bypass prediction. Compared
to PC-based bypass prediction which tracks repetitive pro-
gram patterns, counter-based prediction tracks block access
patterns. GPU programming features a small number of
distinct PCs addressing a large amount of distinct data. To
record block-level reuse patterns, counter-based prediction
keeps extra information per block and a large prediction ta-
ble. Due to the limited capacity of the GPU L1 caches,
counter-based prediction consumes too much on-chip area
to be practical in GPU cache designs.

Counter-based bypass prediction achieves worse perfor-
mance on average and much higher storage overhead com-

On each L1 access (address , PC):
if (the access is a hit) {

/* corresponding prediction is updated to
indicate a reused block */

predictionTable[block[address]. hashedPC)]--;
/* PC information is stored in the cache

entry for future verification */
block[address]. hashedPC = hash(PC);
/* update LRU replacement status */
block[address]. LRU_stack = 0;

}
else {

/* get bypass prediction */
bool isBypassed = predictionTable[hash(PC)]

>= threshold ? true: false;
/* send memory request to L2 , along with the

prediction */
SendMemReq (address , isBypassed);

if (! isBypassed) {
/* if the prediction is to not bypass a

victim block , VictimAddr has to be
replaced. corresponding prediction
entry is updated to indicate a zero -
reuse block */

predictionTable[block[VictimAddr].
hashedPC]++;

/* bypassBit stored in L2 cache is sent
back with requested data */

bypassBit = L2Block[address]. bypassBit;
L2Block[address]. bypassBit = false;
Data = RecvMemPkt(address , L2Block[

address].data , bypassBit);
/* cache installation */
block[address].data = data;
block[address]. hashedPC = hash(PC);
block[address]. LRU_stack = 0;

}
else {

/* if the prediction is to bypass , use
the bypassBit to confirm */

bypassBit = L2Block[address]. bypassBit;
L2Block[address]. bypassBit = false;
Data = RecvMemPkt(address , L2Block[

address].data , bypassBit);
if(bypassBit) {

/* if the bypssBit indicates a
previous misprediction , do not
bypass */

isBypassed = false;
block[address].data = data;
block[address]. hashedPC = hash(PC);
block[address]. LRU_stack = 0;

}
else {

/* bypass L1 cache */
}

}
}

Listing 1: Pseudocode of our PC-based bypassing
prediction technique.

pared to PC-based bypass technique. Based on our ex-
periments, on average, in each 16KB L1 cache, counter-
based prediction takes more than 10.5KB of storage over-
head, while PC-based prediction takes less than 256 bytes of
overhead in each L1 cache, and a total 0.5KB of storage over-
head in a shared 256KB L2 cache. In addition, PC-based
bypass prediction outperforms counter-based prediction by
2.3%. We give a detailed evaluation in Section 5.

Table 1: Experimental system configuration.
GPU Clock 1GHz
Compute Units (CUs) 8
CU SIMD Width 64 scalar units within 4 SIMDs
GPU L1-I/D Cache 8-way 16KB, 64B, 1 cycle of tag

access, 4 cycles of data access
GPU Shared L2 Cache 16-way 256KB, 64B, 4 cycles of tag

access, 16 cycles of data access
L3 Memory-side Cache 16-way 4MB, 15 cycles of tag ac-

cess, 30 cycles of data access

4. EXPERIMENTAL METHODOLOGY
This section outlines our experimental methodology.

4.1 Simulation Environment
We use an in-house APU simulator that extends gem5 [4].

The simulator runs with a microarchitectural timing model
of a GPU that directly executes the HSA Intermediate Lan-
guage (HSAIL) [18] and produces detailed statistics includ-
ing execution cycles, cache miss rate, and traffic. Table 1
shows the configuration of the GPU side of the evaluated
system, which is similar to the AMD Graphics Core Next
architecture [1]. The warp scheduling policy is oldest-first,
which attempts to minimize cache thrashing caused by wave-
front interference. All caches use a default Pseudo-LRU re-
placement policy.

Compared to the baseline system, each L1 bypass predic-
tor requires a 128-entry prediction table of 4 bit counters
and additional metadata of 7-bit in each tag entry, costing
224 bytes in total of storage overhead in each L1 cache. To
help verify prediction accuracy, each L2 tag entry contains
one extra bit of bypassBit, taking 0.5KB in total.

We also evaluate counter-based bypass prediction. For a
16KB L1 cache, our counter-based bypass predictor contains
a two-dimensional prediction table with 128×128 entries,
each containing five bits of prediction information. Each
tag entry contains 20 bits of extra information for the hashed
PC, counters, and the prediction. The storage overhead of
this counter-based bypass predictor is 10.626KB.

4.2 Benchmarks
We evaluate 13 benchmarks from Rodinia [6], the AMD

APP SDK, OpenDwarfs [10], and one custom microbench-
mark implementing a four-byte radix sort with high data
reuse. These workloads represents the OpenCLTM bench-
marks we have that can be compiled and run in our sim-
ulator. Table 2 lists the characteristics of the evaluated
benchmarks. The benchmarks are sorted by memory inten-
sity (MI, calculated as the global memory accesses per 1000
instructions) [50]. Among all the benchmarks, matrixmul,
spmv, bfs are memory-intensive workloads, and dct, sort,
histogram, nw and lud are compute-intensive workloads. We
use medium to large inputs for each benchmark.

5. EVALUATION
This section shows our analysis of the bypass predictor,

regarding energy, performance, and prediction accuracy.

5.1 Energy Saving
In this section, we evaluate the energy savings of the by-

pass predictor. Insertion of zero-reuse blocks wastes en-
ergy without performance improvement and may even cause

Table 2: Benchmark workloads and their inputs.
Program Input MI Description
matrixmul 512 × 512 395.6 matrix multiplication
spmv 256 × 256 215.8 sparse matrix-vector

multiplication
bfs 1M 202.7 breath-first search
nn 342080 130.4 k-nearest neighbor
kmeans 16384 121.8 kmeans clustering
bitonic 131072 114.3 bitonic sort
srad 512 × 512 102.2 speckle reducing

anisotropic diffusion
backprop 8192 × 16 89.7 back propagation
dct 2048 × 2048 76.2 discrete cosine trans-

form
sort 65536 76.2 radix sort
histogram 1024 43.1 histogram
nw 512 × 512 30.4 needleman-wunsch
lud 1024 × 1024 14.2 LU decomposition

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

ba
ckp
rop
	

bfs
	

bit
on
ic	 dc

t	

his
tog
ram

	

km
ea
ns
	

lud
	

ma
tri
xm
ul	 nn

	
nw
	

so
rt	

sp
mv
	

sra
d	

ari
th.
	 M
ea
n	

ge
o.	
me
an
	

Pe
rc
en

ta
ge
	 o
f	 C

ac
he

	 M
is
se
s	 B

yp
as
se
d	

Figure 6: Ratio of bypasses to cache misses.

cache pollution. Cache bypassing significantly reduces the
energy consumption by preventing unnecessary filling of data
into caches. A large amount of streaming data is bypassed,
reducing the energy cost and potential cache pollution.

In a conventional L1 cache, both the tag and data arrays
are accessed in parallel on each L1 cache access in order to
reduce latency. On a cache miss, both the tag and data ar-
rays will be accessed again to fill the selected cache block
with data from lower level of the memory hierarchy. With
cache bypassing, on each L1 cache access, the tag and data
arrays are accessed in parallel together with a direct ac-
cess to a very small prediction table. On a cache miss pre-
dicted to bypass, the data are sent directly to the compute
unit without accessing the cache structure again. As shown
in Figure 6, an average of 58% of cache fills are prevented
through bypassing.

The reduction of unnecessary cache fills significantly re-
duces the energy consumption compared to the baseline. Ta-
ble 3 shows the results of CACTI 6.5 simulations [36] to
determine the energy reduction by adding a PC-based by-
pass predictor compared to the 16KB baseline. The extra
structure of the prediction table is modeled as a tag array
(with four-bit tags) of a direct-mapped cache with 128 sets.
Each tag entry in the L1 cache with bypassing has eight more
bits,1 and the data array remains unchanged. Figure 7 gives
the reduction in energy with PC-based bypassing compared

1We add seven bits in each tag entry for prediction. To use
CACTI correctly, we evaluated it as eight bits.

Table 3: Power cost.
Energy (nJ) 16KB baseline bypassing
per tag access 0.00134096 0.0017867
per data access 0.106434 0.106434
per prediction table access N/A 0.000126232
Dynamic Power (mW) 44.2935 36.1491
Static Power (mW) 7.538627 7.72904

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

ba
ckp
rop
	

bfs
	

bit
on
ic	 dc

t	

his
tog
ram

	

km
ea
ns
	

lud
	

ma
tri
xm
ul	 nn

	
nw
	

so
rt	

sp
mv
	

sra
d	

ari
th.
	 M
ea
n	

ge
o.	
me
an
	

L1
D	
En

er
gy
	 U
sa
ge
	 v
s.
	 1
6K

B	
Ca

ch
e	

Figure 7: Energy Usage of a 16KB cache with by-
passing (relative to a baseline that does not bypass).

to the 16KB baseline. The energy cost of the 16KB base-
line is reduced by up to 49%, and on average by 25% with
bypassing. Table 3 also shows the quantified power cost.
On average, PC-based bypassing reduces dynamic power by
18% compared to the 16KB baseline and increases the leak-
age power by only 2.5%.

5.2 Performance
Bypassing improves the cache efficiency by preventing un-

necessary filling of data into caches to cause cache pollution.
Therefore data stored in caches are likely to be useful. In an-
other word, bypassing improves cache efficiency and overall
performance.

In this section, we evaluate cache miss reduction and per-
formance improvement over a 16KB L1 cache baseline for
both PC-based bypass prediction and counter-based bypass
prediction. We compare both to a larger 32KB L1 cache. For
brevity, we use Baseline, PC-based predictor, counter-based
predictor, and 32KB Cache as abbreviations, respectively.

Figure 8 shows L1 misses normalized to the baseline sys-
tem for each benchmark with different techniques and Fig-
ure 9 shows the speedup (i.e. the execution time of bench-
marks on the baseline system divided by the execution time
on the evaluated system). To help analyze the results, Fig-
ure 10 shows the hit rate in the L1 cache of each benchmark
in the baseline system.

PC-based bypass prediction offers a significant performance
improvement in the benchmarks matrixmul, bfs, and spmv.
These benchmarks observe intermediate or low L1 hit rate
in the baseline (as shown in Figure 10) because most of
the data that should be reused are replaced due to cache
pollution. As shown in Figure 1, these benchmarks have
a high percentage of zero-reuse blocks. With PC-based by-
pass prediction, streaming data are bypassed and previously
doomed useful blocks are kept in the L1 cache. Cache effi-
ciency is improved for these benchmarks. Among these three
benchmarks, bfs produces a speedup of 13% over the base-
line, spmv yields a speedup of 9% and matrixmul generates
a speedup of 6%. Compared to PC-based bypassing, the

75%	

80%	

85%	

90%	

95%	

100%	

105%	

ba
ckp
rop
	

bfs
	

bit
on
ic	 dc

t	

his
tog
ram

	

km
ea
ns
	

lud
	

ma
tri
xm
ul	 nn

	
nw
	

so
rt	

sp
mv
	
sra
d	

ari
th.
	 m
ea
n	

ge
o.	
me
an
	 M

PK
I	 N

or
m
al
iz
ed

	 to
	 1
6K

B	
L1
D	

32KB	 Cache	 PC-‐based	 Counter-‐based	

Figure 8: Reduction in L1 misses.

0.96	
0.97	
0.98	
0.99	

1	
1.01	
1.02	
1.03	
1.04	
1.05	
1.06	
1.07	
1.08	
1.09	
1.1	

1.11	
1.12	
1.13	
1.14	

ba
ckp
rop
	

bfs
	

bit
on
ic	 dc

t	

his
tog
ram

	

km
ea
ns
	

lud
	

ma
tri
xm
ul	 nn

	
nw
	

so
rt	

sp
mv
	

sra
d	

ge
om
ea
n	 Pe

rf
or
m
an

ce
	 N
or
m
al
iz
ed

	 to
	 	 1
6K

B	
L1
D	

32KB	 Cache	 PC-‐based	 Counter-‐based	

Figure 9: Speedup over the baseline..

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

100%	

ba
ckp
rop
	

bfs
	

bit
on
ic	 dc

t	

his
tog
ram

	

km
ea
ns
	

lud
	

ma
tri
xm
ul	 nn

	
nw
	

so
rt	

sp
mv
	

sra
d	

ari
th.
	 m
ea
n	

ge
o.	
me
an
	

L1
D	
Hi
t	 R

at
e	

Figure 10: L1 cache hit rate in the 16KB cache.

counter-based bypass predictor provides much less speedup
for benchmarks bfs and spmv but yields a better perfor-
mance for benchmark matrixmul. In comparison, the 32KB
Cache provides less performance improvement for all three
benchmarks.

The benchmarks backprop and srad have intermediate-to-
low L1 hit rates as well as low reuse rates. The performance
of backprop with a PC-based predictor is improved by 4.3%
and srad reaches a speedup of 4% over the baseline.

The benchmarks sort, dct, and lud are compute-bound
benchmarks [7]. Increasing cache size does not significantly
improve performance for these benchmarks. Their over-
all performance mainly depends on the compute ability of
SIMD processors. All three evaluated techniques yield an
average speedup of about 3%.

Some benchmarks observe little performance improvement
with all evaluated techniques. The benchmarks kmeans and
histogram invoke many kernel launches and frequently share
data between the CPU and the GPU. Their performance
is thus dominated by pulling data from CPU side, result-

ing in no significant performance improvement with any of
the techniques. The benchmark bitonic contains frequent
barrier synchronizations [13], causing the program to ex-
ecute in lock-step with no observed performance improve-
ment with any techniques. Larger cache sizes degrade the
performance due to the cache walk required when kernels
complete. The benchmark nw puts all reused data into
the scratchpad memory for computation and writes data to
global memory when the computation is finished. As shown
in Figure 6, with PC-based bypassing, nw has more than
95% of cache insertions prevented. Therefore, for nw, there
is little performance improvement while around 50% of en-
ergy reduction with PC-based cache bypassing.

Storage is a key issue in GPU cache design. On average,
the PC-based bypassing prediction in a 16KB cache out-
performs both the counter-based prediction and the 32KB
cache system while using far less overhead, which means al-
most half of the chip area dedicated for private caches is
saved without performance degradation. The tension be-
tween number of compute units and the size of caches makes
it infeasible to increase the cache size näıvely. For example,
an AMD RadeonTM HD 7970 [2] GPU contains an AMD
GCN processor with 32 parallel CUs. To double the cache
size of its 16KB L1 caches without increasing the chip area,
we estimate that up to 4 CUs would need to be removed,
leading to a theoretical maximum throughput degradation
of 12.5% [8,9, 32]2.

5.3 Prediction Accuracy and Coverage
In this section, we evaluate prediction accuracy and cov-

erage of PC-based bypassing.
There are two groups of mispredictions: false positives and

false negatives. False positives are more harmful because
they wrongly bypass reused blocks. Further re-references
cause extra misses. The coverage of the bypass predictor
is the ratio of bypass prediction to all prediction made on
cache misses. Higher coverage means more opportunity for
the optimization. Figure 11 shows the coverage and false
positive rates of the PC-based bypass predictor. On average,
the coverage rate is 58.6%, and the false positive is 12%.

Note that the reason why the false positive rate is higher
than previous work is because we include incorrectly by-
passed or replaced blocks as false positives. Sampling-based
dead block prediction [26] calculated false positive as (num-
ber of accesses to predicted dead blocks / number of dead
predictions), so only re-referenced blocks predicted dead are
categorized as false positives. Using the same computation
as sampling-based dead block prediction gives a false posi-
tive rate of 1% for the GPU cache bypassing.

A Case Study of the Benchmark nw.
GPU L1 caches can be treated as hardware-controlled

scratchpad memories. Both of them store reused data shared
within a compute unit. Programmers use scratchpad mem-
ories to bypass streaming-like data by explicitly storing only

2Based on estimates derived from die images and expert
teardowns [8, 9], the total chip area is 352mm2 and 32 CUs
take up approximately 176mm2. The computational logic
in each CU is estimated to be approximately 3.7mm2, and
a 16KB cache structure takes up to 1.8mm2. If doubling
the size of each cache to 32KB leads to an area increase of
0.8mm2, a chip of roughly the same area (176mm2) would
require removing 4 CUs to fit the extra cache storage.

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

ba
ckp
rop
	

bfs
	

bit
on
ic	 dc

t	

his
tog
ram

	

km
ea
ns
	

lud
	

ma
tri
xm
ul	 nn

	
nw
	

so
rt	

sp
mv
	

sra
d	

ari
th.
	 m
ea
n	

ge
o.	
me
an
	

Pe
rc
en

t	 o
f	 L
1D

	 A
cc
es
se
s	

false	 posiDves	 coverage	

Figure 11: False positive and coverage rate of our
PC-based bypassing predictor.

0	
20	
40	
60	
80	

100	
120	
140	
160	
180	
200	

nw
-‐16
KB
	

nw
-‐32
KB
	

nw
-‐64
KB
	

nw
-‐16
KB
-‐By
pa
ss	

nw
-‐12
8K
B	

nw
-‐25
6K
B	

nw
_n
oS
PM
-‐16
KB
	

nw
_n
oS
PM
-‐32
KB
	

nw
_n
oS
PM
-‐64
KB
	

nw
_n
oS
PM
-‐16
KB
-‐By
pa
ss	

nw
_n
oS
PM
-‐12
8K
B	

nw
_n
oS
PM
-‐25
6K
B	

Ke
rn
el
	 E
xe
cu
+o

n	
Ti
m
e	
(m

ill
is
ec
on

ds
)	

Figure 12: Execution time of nw with different cache
configurations.

reused data into the scratchpad memories. A GPU L1 cache
with bypassing stores reused data by adaptively bypassing
streaming-like data without programmer intervention. We
quantify the extent to which dynamic L1 cache bypassing
can make up for the potential performance lost in produc-
tion environments where the effort to program scratchpad
memories is impractical.

To explore the effectiveness and limitation of adaptive L1
cache bypassing, we take a Rodinia benchmark Needleman-
Wunsch for a case study. Needleman-Wunsch (nw) uses a
global optimization algorithm for DNA sequence alignment
in bioinformatics [6]. It dynamically loads the northern and
western edges of a 2-D matrix into the scratchpad memory
and processes the data in the scratchpad memory. After
computation, results are written through to the main mem-
ory. Most of the kernel is spent doing partial computation
in the scratchpad memory. There is very little reuse ob-
served in L1 caches because the scratchpad filters reused
data. We re-wrote the source code of nw to remove the use
of the scratchpad memory (benchmark nw-noSPM). Note
that we did not simply replace the local functions into
global functions (which will cause significant degradation

of performance); rather, we re-wrote the source code by un-
derstanding the original algorithm resulting in a best-effort
program without the use of scratchpad memories.

Figure 12 shows the execution time of nw and nw-noSPM
with different configurations. As shown in the left of Fig-
ure 12, performance is slightly changed with different cache
configurations due to the highly reuse in the scratchpad
memory. Without using scratchpad memories, nw-noSPM
takes 7 times longer than the original program. With the
help of cache bypassing, the gap is reduced by 30%, which
outperforms a 64KB L1 cache. Note that cache bypassing is
running with 16KB L1 caches.

This limited study shows that, while the technique cur-
rently cannot replace scratchpad memories programmed by
expert programmers, it can improve performance in pro-
duction environments where such programming effort is im-
practical, as well as programmability. We believe mecha-
nisms such as our predictor bring GPU programming closer
to general-purpose programming in terms of programmabil-
ity while retaining the performance advantage of GPUs.

6. RELATED WORK

6.1 Scratchpad Management Techniques
Compiler-controlled scratchpad memories were proposed

to improve the efficiency of scratchpad memories [3]. Knight
et al. proposed an optimizing compiler for architectures with
software-managed memory hierarchies to explicitly manage
scratchpad memories [28]. Kandemir et al. proposed a
compiler-controlled dynamic on-chip scratchpad memory man-
agement technique for real-time embedded systems [25].

6.2 GPU Cache Related Work
Jia et al. proposed a memory request prioritization buffer

(MRPB) to improve GPU performance, which also employs
cache bypassing to mitigate intra-warp contention [22]. In-
stead of distinguishing reused blocks from significant amount
of zero-reuse blocks, MRPB blindly and aggressively by-
passes memory requests when there are resource limits, which
can cause performance degradation. Compared to MRPB,
our adaptive cache bypassing does not cause any perfor-
mance degradation. To evaluate MRPB in terms of pro-
grammability, Jia et al. created an “unshared” version of
some Rodinia benchmarks that used scratchpad memory by
simply using global memory instead. Simply replacing lo-
cal functions with global ones will cause significant degra-
dation of performance and lead to biased comparison. In our
case study, we rewrote the source code by understanding the
original algorithm, resulting in a best-effort program.

Rogers et al. proposed cache-conscious wavefront schedul-
ing (CCWS) to improve GPU cache efficiency by avoiding
the data thrashing that causes cache pollution [46]. CCWS
restricts the number of wavefronts that are able to access
the caches by changing the hardware to schedule a limited
number of wavefronts, which adversely affects the ability
of hiding high memory access latency of GPUs. Our tech-
nique bypasses the unused blocks without starving the SIMD
pipeline by artificially limiting the wavefront availability to
reduce cache thrashing.

Lee and Kim proposed a thread-level-parallelism-aware
cache management policy to improve performance of the
shared LLC in heterogeneous multi-core architecture [31].
They focus on shared LLCs that are dynamically partitioned
between CPUs and GPUs. Mekkat et al. proposed a similar
idea for heterogeneous LLC management to better partition
LLC for GPUs and CPUs in a heterogeneous system [35].

6.3 CPU Cache Bypassing
Much previous research focuses on CPU cache manage-

ment techniques [14,16,20,21,23,45,47,49]. We only discuss
papers that have explored bypassing in CPU caches.

Tyson et al. proposed bypassing based on the hit rate
of the memory access instructions [47], while Johnson et al.
propose to use the access frequency of the cache blocks to
predict bypassing [45]. Kharbutli and Solihin propose using

counters of events such as number of references and access
intervals to make bypass predictions in the CPU LLC [27].
All of these techniques use memory address-related infor-
mation to make the prediction, requiring significant storage
that would be impractical for GPU caches.

PC trace-based dead block prediction leveraged the fact
that sequences of memory instruction PCs tend to lead to
the same behavior for different memory blocks [30]. This
dead block prediction scheme is useful for making bypass
predictions in CPUs. We show that GPU kernels are small
with few distinct memory instructions. Using only the PC
of the last memory instruction to access a block is sufficient
for a compact GPU bypassing predictor.

Khan et al. proposed a sampling-based predictor to make
CPU LLC dead block predictions [26]. Their technique,
which uses set-sampling to reduce storage and power over-
head, is significantly more complex than our bypassing pre-
dictor. In addition, their techniques requires storing a large
amount of metadata in the cache that is unnecessary in our
bypass predictor. That is, each block in the cache must be
associated with a prediction bit to drive the replacement pol-
icy, while our technique simply discards blocks predicted as
bypass candidates so no such prediction bit is needed. The
sampling-based predictor uses an extra data structure called
the sampler to keep less state and require fewer prediction
table updates compared to previous dead block prediction
techniques. To increase the prediction accuracy, it uses a
complex and large prediction table to reduce hash collision.
Compared to this work, our bypass predictor has far less
storage and energy overhead and similar accuracy using a
much smaller and simpler prediction table, based on the ob-
servation that GPUs have many accesses from a small num-
ber of instructions. We also provide a simple and efficient
misprediction correction mechanism, which is irreversible in
previous CPU cache bypassing work.

Li et al. proposed using a global tracking of incoming vic-
tim block pairs to make bypass prediction designed for CPU
LLC. Cache Bursts [34] is another dead block prediction
technique that exploits bursts of accesses hitting the MRU
position to improve predictor efficiency. For GPU workloads
that use scratchpad memories, the majority of re-references
have been filtered. Gaur et al. [15] proposed bypass and
insertion algorithms for exclusive LLCs to adaptively avoid
filling them with unmodified dead blocks.

7. CONCLUSION AND FUTURE WORK
Current GPU cache hierarchies are inefficient in the face

of streaming data. This paper proposes a simple but effec-
tive cache bypassing technique to improve GPU L1 cache
efficiency and reduce energy overhead without requiring ad-
ditional effort on the programmer’s part. Based on our eval-
uation, this technique yields significant cache energy reduc-
tion while outperforming a cache of twice the baseline size.

Our initial study into scratchpad replacement was limited
to a single program, as appropriately removing scratchpad
memory usage from an application is a time-consuming pro-
cess. We plan on studying more of these applications in the
future. Nonetheless, from our initial results, we show that,
while our technique gives positive and promising results, we
cannot currently reach the performance attained by an ex-
pert using scratchpad memory. We believe that there are
further hardware-assisted mechanisms that can help bridge
this gap and plan to explore such techniques in future work.

8. ACKNOWLEDGEMENTS
Daniel A. Jiménez and Yingying Tian are supported by

National Science Foundation grants CCF-1216604 and CCF-
1012127.

AMD, the AMD Arrow logo, Radeon, and combinations
thereof are trademarks of Advanced Micro Devices, Inc.
OpenCL is a trademark of Apple, Inc. used by permission
by Khronos. Other product names used in this publication
are for identification purposes only and may be trademarks
of their respective companies.

9. REFERENCES
[1] Advanced Micro Devices, Inc. AMD Graphics Cores

Next (GCN) Architecture. http://www.amd.com/
Documents/GCN_Architecture_whitepaper.pdf, Jun.
2012.

[2] Advanced Micro Devices, Inc. AMD RadeonTM HD
7900 Series Graphics Cards: 7970, 7970 GHz, 7950.
http://www.amd.com/en-us/products/graphics/

desktop/7000/7900, Jan. 2015.

[3] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and
M. Olivieri. A Post-Compiler Approach to Scratchpad
Mapping of Code. In Proc. of the Int’l Conf. on
Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), 2004.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 Simulator. SIGARCH Computer Architecture
News, 39(2):1–7, Aug. 2011.

[5] C.-A. Bohn. Kohonen Feature Mapping through
Graphics Hardware. In Proc. of the Int’l Conf. on
Computational Intelligence and Neurosciences, 1998.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron. Rodinia: A Benchmark
Suite for Heterogeneous Computing. In Proc. of the
IEEE Int’l Symp. on Workload Characterization
(IISWC), 2009.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A Performance Study of
General-Purpose Applications on Graphics Processors
Using CUDA. Journal of Parallel and Distributed
Computing, 68(10):1370–1380, 2008.

[8] Chipworks, Inc. Inside the ASUS AMD 7970 graphics
card - TSMC 28nm!
http://www.chipworks.com/en/technical-

competitive-analysis/resources/blog/inside-

the-asus-amd-7970-graphics-card-tsmc-28-nm/,
Feb. 2012.

[9] Chipworks, Inc. A Look at Sony’s Playstation 4 Core
Processor. http://www.chipworks.com/en/
technical-competitive-analysis/resources/blog/

a-look-at-sonys-playstation-4-core-processor,
Nov. 2013.

[10] W. Feng, H. Lin, T. Scogland, and J. Zhang. OpenCL
and the 13 Dwarfs: A Work in Progress. In Proc. of
the Int’l Conf. on Performance Engineering (ICPE),
2012.

[11] J. Fung and S. Mann. OpenVIDIA: Parallel GPU
Computer Vision. In Proc. of the Int’l Conf. on
Multimedia, 2005.

[12] J. Fung, F. Tang, and S. Mann. Mediated Reality
Using Computer Graphics Hardware for Computer
Vision. In Proc. of the Int’l Symp. on Wearable
Computers, 2002.

[13] W. W. L. Fung, I. Sham, G. Yuan, and T. M.
Aamodt. Dynamic Warp Formation and Scheduling
for Efficient GPU Control Flow. In Proc. of the Int’l
Symp. on Microarchitecture (MICRO), 2007.

[14] R. V. Garde, S. Subramaniam, and G. H. Loh.
Deconstructing the Inefficacy of Global Cache
Replacement Policies. In Workshop on Duplicating,
Deconstructing, and Debunking (WDDD), 2008.

[15] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass
and Insertion Algorithms for Exclusive Last-level
Caches. In Proc. of the Int’l Symp. on Computer
Architecture (ISCA), 2011.

[16] A. González, C. Aliagas, and M. Valero. A Data
Cache with Multiple Caching Strategies Tuned to
Different Types of Locality. In Proc. of the Int’l Conf.
on Supercomputing (SC), 1995.

[17] L. Howes and A. Munshi. The OpenCL Specification
Version 2.0, 2014. https://www.khronos.org/
registry/cl/specs/opencl-2.0.pdf.

[18] HSA Foundation. HSA Programmer’s Reference
Manual: HSAIL Virtual ISA and Programming Model,
Compiler Writer’s Guide, and Object Format (BRIG).
http://www.hsafoundation.com/?ddownload=4945,
Jun. 2014.

[19] W. W. Hwu, editor. GPU Computing Gems Emerald
Edition. Morgan Kaufmann, 2011.

[20] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and
J. Emer. High Performance Cache Replacement Using
Re-Reference Interval Prediction (RRIP). In Proc. of
the Int’l Symp. on Computer Architecture (ISCA),
2010.

[21] J. Jalminger and P. Stenstrom. A Novel Approach to
Cache Block Reuse Predictions. In Proc. of the Int’l
Conf. on Parallel Processing (ICPP), 2003.

[22] W. Jia, K. A. Shaw, and M. Martonosi. MRPB:
Memory Request Prioritization for Massively Parallel
Processors. In Int’l Symp. on High Performance
Computer Architecture (HPCA), 2014.

[23] T. L. Johnson, D. A. Connors, M. C. Merten, and
W. W. Hwu. Run-time Cache Bypassing. IEEE Trans.
on Computers, 48(12):1338–1354, 1999.

[24] H. Jooybar, W. W. Fung, M. O’Connor, J. Devietti,
and T. M. Aamodt. GPUDet: a Deterministic GPU
Architecture. In Proc. of the Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[25] M. Kandemir, J. Ramanujam, M. J. Irwin,
N. Vijaykrishnan, I. Kadayif, and A. Parikh. A
Compiler-Based Approach for Dynamically Managing
Scratch-Pad Memories in Embedded Systems. IEEE
Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 23(2):243–260, Feb. 2004.

[26] S. M. Khan, Y. Tian, and D. A. Jiménez. Sampling
Dead Block Prediction for Last-Level Caches. In Proc.
of the Int’l Symp. on Microarchitecture (MICRO),
2010.

[27] M. Kharbutli and Y. Solihin. Counter-Based Cache
Replacement and Bypassing Algorithms. IEEE Trans.

http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/en-us/products/graphics/desktop/7000/7900
http://www.amd.com/en-us/products/graphics/desktop/7000/7900
http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/inside-the-asus-amd-7970-graphics-card-tsmc-28-nm/
http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/inside-the-asus-amd-7970-graphics-card-tsmc-28-nm/
http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/inside-the-asus-amd-7970-graphics-card-tsmc-28-nm/
http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/a-look-at-sonys-playstation-4-core-processor
http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/a-look-at-sonys-playstation-4-core-processor
http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/a-look-at-sonys-playstation-4-core-processor
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.hsafoundation.com/?ddownload=4945

on Computers, 57(4):433–447, April 2008.

[28] T. J. Knight, J. Y. Park, M. Ren, M. Houston,
M. Erez, K. Fatahalian, A. Aiken, W. J. Dally, and
P. Hanrahan. Compilation for Explicitly Managed
Memory Hierarchies. In Proc. of the Symp. on
Principles and Practice of Parallel Programming
(PPoPP), 2007.

[29] G. Kyriazis. Heterogeneous System Architecture: A
Technical Review. Technical report, HSA Foundation,
2012.

[30] A.-C. Lai, C. Fide, and B. Falsafi. Dead-Block
Prediction & Dead-Block Correlating Prefetchers. In
Proc. of the Int’l Symp. on Computer Architecture
(ISCA), 2001.

[31] J. Lee and H. Kim. TAP: A TLP-Aware Cache
Management Policy for a CPU-GPU Heterogeneous
Architecture. In Proc. of the Int’l Symp. on High
Performance Computer Architecture (HPCA), 2012.

[32] Leonidas. AMD R1000/Tahiti Die-Shot.
http://www.3dcenter.org/abbildung/

amd-r1000tahiti-die-shot-markiert, Sep. 2012.

[33] J. Leverich, H. Arakida, A. Solomatnikov,
A. Firoozshahian, M. Horowitz, and C. Kozyrakis.
Comparing Memory Systems for Chip
Multiprocessors. In Proc. of the Int’l Symp. on
Computer Architecture (ISCA), 2007.

[34] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache
Bursts: A New Approach for Eliminating Dead Blocks
and Increasing Cache Efficiency. In Proc. of the Int’l
Symp. on Microarchitecture (MICRO), 2008.

[35] V. Mekkat, A. Holey, P.-C. Yew, and A. Zhai.
Managing Shared Last-Level Cache in a
Heterogeneous Multicore Processor. In Proc. of the
Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), 2013.

[36] N. Muralimanohar, R. Balasubramonian, and
N. Jouppi. CACTI 6.0: A Tool to Model Large
Caches. Technical Report HPL-2009-85, HP
Laboratories, Apr. 2009.

[37] J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable Parallel Programming with CUDA. ACM
Queue, 6(2):40–53, 2008.

[38] J. Nickolls and W. J. Dally. The GPU Computing
Era. IEEE Micro, 30(2):56–69, 2010.

[39] Nvidia Corp. NVIDIA’s Next Generation CUDA
Compute Architecture: Fermi, 2009.

[40] Nvidia Corp. NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110. 2012.

[41] Nvidia Corp. CUDA C Programming Guide Version
6.5. http://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf, Aug. 2014.

[42] Nvidia Corp. Tuning CUDA Applications for Kepler.
http://docs.nvidia.com/cuda/kepler-tuning-

guide/, Aug. 2014.

[43] Nvidia Corp. Tuning CUDA Applications for Maxwell.
http://docs.nvidia.com/cuda/maxwell-tuning-

guide/, Aug. 2014.

[44] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. GPU Computing. Proc. of
the IEEE, 96(5):879–899, 2008.

[45] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson,

and M. Farrens. Utilizing Reuse Information in Data
Cache Management. In Proc. of the Int’l Conf. on
Supercomputing (SC), 1998.

[46] T. G. Rogers, M. O’Connor, and T. M. Aamodt.
Cache-Conscious Wavefront Scheduling. In Proc. of
the Int’l Symp. on Microarchitecture (MICRO), 2012.

[47] G. Tyson, M. Farrens, J. Matthews, and A. R.
Pleszkun. A Modified Approach to Data Cache
Management. In Proc. of the Int’l Symp. on
Microarchitecture (MICRO), 1995.

[48] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi,
S. C. Steely Jr, and J. Emer. SHiP: Signature-based
Hit Predictor for High Performance Caching. In Proc.
of the Int’l Symp. on Microarchitecture (MICRO),
2011.

[49] M. Zahran. Cache Replacement Policy Revisited. In
Workshop on Duplicating, Deconstructing, and
Debunking (WDDD), 2007.

[50] J. Zhao, G. Sun, G. H. Loh, and Y. Xie.
Energy-efficient GPU Design with Reconfigurable
In-package Graphics Memory. In Proc. of the Int’l
Symp. on Low Power Electronics and Design
(ISPLED), 2012.

http://www.3dcenter.org/abbildung/amd-r1000tahiti-die-shot-markiert
http://www.3dcenter.org/abbildung/amd-r1000tahiti-die-shot-markiert
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/kepler-tuning-guide/
http://docs.nvidia.com/cuda/kepler-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/

	1 Introduction
	2 Background and Motivation
	2.1 GPUs and GPGPU Computing
	2.2 GPGPU Memory Characteristics
	2.3 Improving GPU Caches

	3 Adaptive GPU Cache Bypassing
	3.1 PC-Based Bypass Predictor
	3.2 Prediction Algorithm Details
	3.3 Comparison to Counter-Based Prediction

	4 Experimental Methodology
	4.1 Simulation Environment
	4.2 Benchmarks

	5 Evaluation
	5.1 Energy Saving
	5.2 Performance
	5.3 Prediction Accuracy and Coverage

	6 Related work
	6.1 Scratchpad Management Techniques
	6.2 GPU Cache Related Work
	6.3 CPU Cache Bypassing

	7 Conclusion and Future Work
	8 Acknowledgements
	9 References

