
Design and Analysis of an APU for Exascale Computing

Thiruvengadam Vijayaraghavan†∗, Yasuko Eckert, Gabriel H. Loh, Michael J. Schulte, Mike Ignatowski,
Bradford M. Beckmann, William C. Brantley, Joseph L. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran,

Mitesh Meswani, Indrani Paul, Matthew Poremba, Steven Raasch, Steven K. Reinhardt, Greg Sadowski, Vilas Sridharan
AMD Research, Advanced Micro Devices, Inc.

†Department of Electrical and Computer Engineering, University of Wisconsin-Madison

Abstract—The challenges to push computing to exaflop
levels are difficult given desired targets for memory capacity,
memory bandwidth, power efficiency, reliability, and cost.
This paper presents a vision for an architecture that can be
used to construct exascale systems. We describe a conceptual
Exascale Node Architecture (ENA), which is the computa-
tional building block for an exascale supercomputer. The
ENA consists of an Exascale Heterogeneous Processor (EHP)
coupled with an advanced memory system. The EHP provides
a high-performance accelerated processing unit (CPU+GPU),
in-package high-bandwidth 3D memory, and aggressive use of
die-stacking and chiplet technologies to meet the requirements
for exascale computing in a balanced manner. We present
initial experimental analysis to demonstrate the promise of our
approach, and we discuss remaining open research challenges
for the community.

I. INTRODUCTION

High-performance computing (HPC) utilizes networks of
thousands of highly capable machines to tackle some of
the world’s most complex problems. These problems drive
discoveries and innovations critical to the quality of human
life, ranging from designing more efficient fuels and engines
to modeling global climate phenomenon. With continuous
innovations in semiconductor logic and memory technolo-
gies, architectures, interconnects, system software, program-
ming models, and applications, petaflop performance (1015

floating-point operations per second) was first reached in
2008 [1].

However, the need for ever more computational power
continues to grow as science tries to answer bigger and
deeper questions. Specifically, the amount of commercial
and scientific data has exploded (accompanied with rapid
increases in the complexity of the corresponding analytics),
and the problems impacting human life have not neces-
sarily diminished. To address these needs, supercomputers
with exaflop (1018 or one billion, billion double-precision
floating-point operations per second) capabilities may soon
become necessary. Due to limitations in technology scal-
ing [2], simply scaling up the hardware and software of
the current petaflop architectures is not likely to suffice.
We need innovations across many areas of computing to
achieve exascale computing by the anticipated 2022-2023
time frame [3].

∗ This work was done while the author was with AMD Research.

The challenges associated with exascale computing, how-
ever, extend far beyond a certain floating-point throughput.
An exascale supercomputer is envisioned to comprise of on
the order of 100,000 interconnected servers or nodes in a
target power envelope of ∼20MW, with sufficient memory
bandwidth to feed the massive compute throughput, suffi-
cient memory capacity to execute meaningful problem sizes,
and with user intervention due to hardware or system faults
limited to the order of a week or more on average [3]. These
system-level requirements imply that each node delivers
greater than 10 teraflops with less than 200W. There is a
7× gap in flops per Watt between the current most energy-
efficient supercomputer [4] and the exascale target.

Although there are potentially many paths to realize
exascale computing [5]–[7], this paper presents one vision
for how to construct an exascale machine using advances in
key technologies including low-power and high-performance
CPU cores, integrated energy-efficient GPU compute units
(CUs), in-package high-bandwidth 3D memory, aggressive
use of die-stacking and chiplet technologies, and advanced
memory systems. Our coordinated research that spans from
circuits to software enables a very efficient and tightly inte-
grated processor architecture suitable for exascale systems.

We introduce an Exascale Node Architecture (ENA) as
the primary building block for exascale machines. The ENA
addresses the exascale-computing requirements through:

• A high-performance accelerated processing unit (APU)
that integrates high-throughput GPUs with excellent
energy efficiency required for exascale levels of com-
putation, tightly coupled with high-performance multi-
core CPUs for serial or irregular code sections and
legacy applications

• Aggressive use of die-stacking capabilities that enable
dense component integration to reduce data-movement
overheads and enhance power efficiency

• A chiplet-based approach [8], [9] that decou-
ples performance-critical processing components (e.g.,
CPUs and GPUs) from components that do not scale
well with technology (e.g., analog components), al-
lowing fabrication in disparate, individually optimized
process technologies for cost reduction and design
reuse in other market segments

• Multi-level memories that enhance memory bandwidth

Exascale
Heterogeneous

Processor
(EHP)

External Memory Modules External Memory Modules

Exascale Node Architecture (ENA) board

Figure 1. Exascale Node Architecture (ENA)

with in-package 3D memory, which is stacked directly
above high-bandwidth-consuming GPUs, while provi-
sioning high-capacity memory outside of the package

• Advanced circuit techniques and active power-
management techniques which yield energy reductions
with little performance impact

• Hardware and software mechanisms to achieve high
resilience and reliability with minimal impact on per-
formance and energy efficiency

• Concurrency frameworks that leverage the Heteroge-
neous System Architecture (HSA) [10] and Radeon
Open Compute platform (ROCm) [11] software ecosys-
tem to support new and existing applications with high-
performance and high programmer productivity

While ongoing hardware and software research contin-
ues to further improve specific aspects of the ENA, this
paper focuses on the overall physical node organization that
integrates these aggressive technologies. We describe the
proposed ENA concept and the rationale behind the different
design decisions. We then present an initial quantitative
evaluation of the ENA and discuss remaining challenges and
opportunities for further research.

II. EXASCALE NODE ARCHITECTURE (ENA)

One possible exascale machine consists of 100,000 high-
performance computing nodes. Supercomputers also require
other components, such as the global interconnection net-
work, I/O nodes for check-pointing and data storage, system
and job management components, power delivery and cool-
ing, and more. However, the focus of the present work is on
the compute nodes that provide the primary computational
horsepower for the overall exascale system.

The Exascale Node Architecture (ENA) is the building
block for a single compute node (shown in Fig. 1). The
ENA’s computational capabilities are provided by a high-
performance accelerated processing unit called the Exas-
cale Heterogeneous Processor (EHP), which we will later
describe in greater detail. The EHP makes use of high-
bandwidth, in-package DRAM, but it is also coupled with a
network of external-memory devices to provide large per-
node memory capacity to handle very large application
problem sizes. Given the performance goal of 1 exaflop
and a power budget of 20MW for a 100,000-node exascale

Figure 2. Exascale Heterogeneous Processor (EHP)

machine, we need to architect the ENA node to provide
10 teraflops of performance in a 200W power envelope.
Below, we first describe the EHP and its constituent tech-
nologies, and then we discuss the memory system for the
ENA.
A. The EHP Architecture

The EHP is an accelerated processing unit (APU) consisting
of a balanced mix of CPU and GPU compute resources
integrated with in-package 3D DRAM. The overall struc-
ture makes use of a modular “chiplet” design, with the
chiplets 3D-stacked on other “active interposer” chips. The
aggressive use of advanced packaging technologies enables
a large amount of computational and memory resources to
be located in a single package.

Fig. 2 shows a conceptual rendering of the EHP. The
EHP consists of two primary types of resources. In the
center of the EHP are two CPU clusters, each consist-
ing of four multi-core CPU chiplets stacked on an active
interposer base die. On either side of the CPU clusters
are a total of four GPU clusters, each consisting of two
GPU chiplets on a respective active interposer. Upon each
GPU chiplet is a 3D stack of DRAM (e.g., some future
generation of JEDEC high-bandwidth memory (HBM) [12]).
The DRAM is directly stacked on the GPU chiplets to
maximize bandwidth (the GPUs are expected to provide the
peak computational throughput) while minimizing memory-
related data movement energy and total package footprint.
CPU computations tend to be more latency sensitive, and so
the central placement of the CPU cores reduces NUMA-like
effects by keeping the CPU-to-DRAM distance relatively
uniform. The interposers underneath the chiplets provide
the interconnection network between the chiplets (i.e., net-
work on chip (NOC)) along with other common system
functions (e.g., external I/O interfaces, power distribution,
system management). Interposers maintain high-bandwidth
connectivity among themselves by utilizing wide, short-
distance, point-to-point paths.

1) Integrated CPU+GPU (APU): Given the combination
of parallel and serial regions in scientific applications, we
believe that an APU architecture consisting of integrated

CPUs and GPUs is well-suited for the performance and
power goals of the ENA.

The EHP uses eight GPU chiplets. Our initial configura-
tion provisions 32 CUs per chiplet. Each chiplet is projected
to provide two teraflops of double-precision computation, for
a total of 16 teraflops. Based on the projected system size
of 100,000 nodes, this would provide a total of 1.6 exaflops
(we over-provision because real applications do not achieve
100% utilization).

The EHP also employs eight CPU chiplets (four cores
each), for a total of 32 cores, with greater parallelism
through optional simultaneous multi-threading. The number
of CPU cores was carefully chosen to provision enough
single-thread performance for irregular code sections and
legacy applications without exceeding the package’s area
budget.

The CPU and GPU must be architected in a cohesive man-
ner from an energy efficiency as well as programmability
standpoint. To this end, Heterogeneous System Architecture
(HSA) compatibility is one of the major design goals of
the APU. HSA provides a system architecture where all
computing elements (CPU, GPU, and possibly other accel-
erators) share a unified coherent virtual address space. This
enables efficient programming and computation via several
mechanisms like free exchange of pointers by both CPU
and GPU code, eliminating expensive data copy operations,
transparent management of CPU and GPU caches via cache
coherence, task offloads by both CPU and GPU to each other
or other CPU/GPU units [13], and efficient synchroniza-
tion mechanisms. These features are supported by AMD’s
Radeon Open Compute platform (ROCm) to improve the
programmability of such heterogeneous systems.

While APUs with HSA compatibility have been available
for some time, the existing designs have been targeted more
for consumer platforms rather than HPC systems. To this
end, we are actively researching several mechanisms to
provide heterogeneous computing for HPC. We have created
novel mechanisms like the QuickRelease synchronization
mechanism [14] and heterogeneous race free memory mod-
els (HRF) [15]–[17] to reduce synchronization overhead
between GPU threads, and heterogeneous system coherence
(HSC) [18] to transparently manage coherence between CPU
and GPU caches. These make the APU easier to program
and reason about for the application programmers, enabling
more codes to be more easily ported to take advantage of
the EHP’s resources.

2) Modular Chiplet Design: The performance require-
ments of the exascale node require a large amount of
compute and memory to be integrated into a single package.
Rather than build a single, monolithic system on chip (SOC),
we propose to leverage advanced die-stacking technologies
to decompose the EHP into smaller components consisting
of active interposers and chiplets. Each chiplet houses either
multiple GPU compute units or CPU cores. The chiplet ap-

proach differs from conventional multi-chip module (MCM)
designs in that each individual chiplet is not a complete
SOC. For example, the CPU chiplet contains CPU cores
and caches, but lacks memory interfaces and external I/O.1

There are multiple benefits to this decompositional approach
to SOC construction:
Die Yield: Building a single monolithic SOC that provides
the equivalent capabilities of what we propose for the EHP
would result in an impractically large chip with prohibitive
costs. Smaller chiplets have higher yield rates due to their
size, and when combined with known-good-die (KGD)
testing techniques, can be assembled into larger systems at
reasonable cost. This approach has already started garnering
interest in both academia [9] and industry [8], [19].
Process Optimization: A monolithic SOC imposes a single
process technology choice on all components in the system.
With chiplets and interposers, each discrete piece of silicon
can be optimized for its own functions. For example, the
CPU chiplets can use performance-optimized devices and
metal layers, while the GPU chiplets use density-optimized
devices and metal. The interposer layers can use a more
mature (i.e., less expensive) process technology node as the
I/O components likely do not need transistors in the cutting-
edge technology node nor as many metal routing layers as
the compute chiplets.
Re-usability: A single, large HPC-optimized APU would
be great for HPC markets, but may be less appropriate for
others. The decomposition of the EHP into smaller pieces
enables silicon-level reuse. For example, one or more of
the CPU clusters could be packaged together to create a
conventional CPU-only server processor.

3) Active Interposers: There are several options for the
assembly of multiple discrete pieces of silicon within the
same package. For example, MCMs have been used for
years, and they have even been proposed in the context of
chiplets as advocated by Marvell’s MoChi (Modular Chips)
concept [8]. Passive silicon interposers are also already in
volume production, in particular for the integration of GPU
and 3D memory as demonstrated by AMD’s RadeonTM

R9 Fury GPU [20]. However, due to the sheer amount of
compute, memory, and other logic that we aim to integrate
into the EHP package, we found true 3D stacking on top
of active interposers to be desirable. Active interposers
are fundamentally no different than other 3D stacking
approaches considered by past research2, and preliminary
prototypes have even been successfully constructed and
demonstrated [21].

1Contrast this to typical MCM parts that take identical CPU chips that are each
fully functional SOCs, and then place them in the same package. With chiplets, there
is no option to take a single chiplet by itself and convert it into a complete product
without additional silicon.

2The primary point of differentiation, which is not a fundamental issue, is that
most past 3D stacking research considered vertical stacks of identical/similar-sized
chips, whereas active interposer configurations involve different-sized chips (i.e., the
interposer vs. the chiplets) and some chips may also be stacked side by side (e.g.,
neighboring chiplets) rather than in a strictly vertical arrangement.

4) Power Optimizations: For a 100,000-node system, the
ENA must provide (at least) 10 teraflops of compute with
a relatively meager power budget of 200W. This includes
not just power spent on computation, but also on the
memory system, power delivery losses, cooling, and more.
Our projections indicate that even an aggressive combination
of state-of-art microarchitectures, SOC designs, memories,
technology scaling, and traditional techniques like DVFS
will not be enough to satisfy the ENA performance targets
while staying within the power budget.

To this end, we have also investigated a wide range of
power-optimization techniques. This includes circuit tech-
niques such as near-threshold computing, asynchronous cir-
cuits, low-power interconnects [22], and data-compression
circuitry. We combine these circuit-level mechanisms with
high-level power-management techniques such as active
DVFS [23] and power-gating [24] controls. We detail a
selection of these techniques in Section V-E.

In addition, due to vertical integration of the DRAM and
the GPU compute units, thermal feasibility is an important
design consideration. In Section V-D, we study the thermal
feasibility of our envisioned approach.

5) RAS Support: A small per-node probability of fail-
ure multiplied over a 100,000-node system substantially
limits the overall system’s mean-time-to-failure (MTTF).
Shrinking process technology, increased transistor counts,
and increased memory capacity all contribute to increases
in transient faults. Given the aggressive technology node
target and the scale of the exascale machine, resiliency,
availability, and serviceability (RAS) are first-class design
constraints. There are two main goals of a good RAS
solution: minimize the rate of silent errors, and minimize
the impact on performance, power, area, and cost.

The current state of the art for handling transient faults is
error-correcting codes (ECC). ECC can be relatively easily
deployed for regular structures like DRAM and SRAM
arrays, but it still comes with area costs that are more
challenging in our space-constrained EHP design. Also,
some components may not normally have HPC-class RAS
support by default. For example, current GPUs are still over-
whelmingly used for graphics and visualization applications
where a few errors result in unnoticed aberrations of a couple
pixels, and so heavy-duty RAS support is unwarranted. To
avoid burdening the GPU with excessive RAS features,
which would reduce the re-usability of GPU chiplets in
other markets, we have explored software-based solutions
such as redundant multi-threading (RMT) [25]. RMT takes
advantage of the fact that the GPU is not fully utilized for
some workloads, and uses the otherwise idle GPU resources
to redundantly perform computations and detect errors (note
that this paper does not include quantitative evaluation of
RMT).

G G G G CCC
C

CCC
C

G G G G

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

M M M M M M M M

M M M M M M M M

Chiplet/Interposer Interconnect (NOC)

… … … … … … ……

GPU Chiplets

CPU Chiplets

In-package DRAM

Ex
te

rn
al

 M
em

o
ry

Figure 3. Block diagram of the ENA memory system

B. The ENA Memory System

The exascale memory requirements are very aggressive
in terms of total memory capacity, the desired memory
bandwidth, and the energy-related costs. Ideally, the entire
system would make use of in-package 3D-integrated DRAM,
as that provides the highest performance and capacity at
the lowest energy cost. Unfortunately, our projections for
the maximum amount of DRAM that we can integrate into
a package fall short of the per-node memory targets. We
instead make use of a heterogeneous memory architecture
consisting of multiple levels of memory [26], [27]. Fig. 3
shows a conceptual view of the EHP’s memory hierarchy.

1) Integrated 3D Memory: Many of the scientific work-
loads that we have analyzed demand more bandwidth than
what can be provided by conventional DRAM outside of
the processor package. The stated exascale targets [28] for
memory bandwidth and energy efficiency are incredibly
challenging for off-package memory solutions. Hence, we
integrate 3D-stacked DRAM into the EHP package.

To estimate the memory capabilities of 3D DRAM in
the exascale timeframe, we started with current JEDEC
High-Bandwidth Memory (HBM) [12] and project forward.
First-generation HBM provides 1GB capacity at 128 GB/s
of bandwidth per stack, and second-generation HBM is
projected to yield 8GB at 256 GB/s per stack. By the 2022-
2023 time-frame, we estimate that HBM (or a similar equiv-
alent) should have advanced at least two more generations.
Assuming a doubling of capacity for each generation, we
project that 3D DRAM in the exascale time-frame would
provide 32GB per stack. As the interface speed for HBM2
is already 2 Gbps, we do not expect the same per-generation
doubling of bandwidth; we instead assume only a single
doubling (through wider interfaces or faster speeds). The
EHP makes use of a total of eight 3D DRAM stacks (one
per GPU chiplet), so the total 3D DRAM capacity is 256GB
with a total aggregate bandwidth of 4 TB/s, meeting the
exascale memory bandwidth target.

2) External-memory Network: The exascale target for
per-node memory capacity is at least 1TB, which exceeds
our in-package projections by a factor of four. As such, the
ENA must augment the in-package memory with additional
external memory. The ENA makes use of Memory Networks
that consist of multiple memory modules interconnected
with point-to-point links (as opposed to bus-based topologies
for DDR) [29], [30]. A current example of this kind of
memory approach is the Hybrid Memory Cube, which uses
3D-stacked DRAM inside each module, and the modules
communicate with high-speed serial interfaces [31].

The envisioned EHP package provides eight external-
memory interfaces, each of which connects to multiple
memory packages. Fig. 3 shows each interface supporting
a disjoint set of memory devices. A simple chain topology
is shown, although support for other topologies is also
expected. We assume that the memory interfaces are address-
interleaved in some fashion such that there is never a
need for one memory interface to send a request to a
memory package connected to a different interface (similar
to how multiple DDR memory channels are managed today).
Optional links (not shown) could be used to cross-connect
chains for redundancy purposes, which allow access to
memory devices in the event of link failures.

Depending on the exact needs of the supercomputer
customer, the external-memory network could consist of
a mix of both DRAM and non-volatile memory (NVM)
devices. NVM provides higher densities and therefore could
be useful in scenarios where very large problem sizes are
important, or they could be used to reduce the total ENA
board-level component count by meeting a given capacity
target with fewer higher-capacity packages. The trade-off is
that the NVMs are typically slower, consume more dynamic
power (especially for writes), and may suffer from write-
endurance issues that could impact the system’s MTTF.

3) Memory-system Management: The ENA’s memory ar-
chitecture provides (at least) two different levels of memory.
There is the in-package 3D DRAM, and there is also the
external-memory network (which could provide more than
one additional level of memory if both DRAM and NVM
modules are used). Such a heterogeneous memory system
raises the question of how the different memory resources
should be managed. While the ENA is designed to support
a configurable memory system with multiple modes of
operation, we envision the primary mode to be software-
controlled. The ENA’s physical memory address space is
interleaved across the different memory resources (the gran-
ularity and overall mapping of which would be controlled
by the system software). The operating system (OS) would
then provide capabilities to monitor and migrate memory
between memory resources in an attempt to maximize the
fraction of memory requests that can be serviced by the
in-package DRAM [26], [27], [32]. The system would also
provide user-level APIs so that programmers could explicitly

allocate data into specific types of memory [26], [33].
There has been a significant amount of work in recent

years exploring how to make use of 3D DRAM as a large,
hardware-managed cache [34], [35]. We envision the ENA
supporting 3D-DRAM as a cache, but for HPC applications,
this will often not be desirable. For an example ENA with
256GB of in-package DRAM and 1TB of external memory,
using the in-package DRAM as a cache would sacrifice 20%
of the system’s total addressable memory capacity, which in
turn reduces the problem sizes that can be solved. However,
if a problem does not require the full memory capacity of
the ENA, enabling the hardware-cache mode could provide
a performance uplift without any application modifications.

III. METHODOLOGY

Traditional cycle-level simulators like gem5 [36] and
GPGPU-Sim [37] may not be suitable for exploring the large
and complex design space of the EHP (e.g., heterogeneous
processors, 3D die stacking, multiple memory levels). Their
execution times make it difficult to quickly gather first-order
insights across a wide range of design candidates. Instead,
we leverage an in-house high-level simulator for design-
space exploration and use cycle-level simulation to account
for the impacts of key microarchitecture choices.

Our high-level simulator [38] measures an application’s
execution on current hardware and uses a variety of scaling
models to estimate the same application’s performance and
power on future hardware designs. For instance, we designed
analytic performance [39] and power [40] scaling models
for CPUs and we use data-movement performance counters
combined with distance-based energy values for interconnect
power calculations [41]. We use in-house technology-scaling
models to estimate how power and our voltage-frequency
curves will change.

We use machine-learning models to estimate how mea-
sured GPU power and performance will scale as the hard-
ware configurations change [42]. These models are trained
on numerous applications on a wide range of existing
hardware configuration points [43].

These CPU and GPU models are effective for estimating
the impact of high-level hardware-resource changes, but they
assume that the underlying CPU and GPU microarchitec-
tures remain the same as the hardware on which the initial
measurements were taken. We use the AMD gem5 APU
simulator [44] to account for differences from our EHP
design (e.g., multi-chiplet organization) and adjust the high-
level simulation results accordingly.

IV. APPLICATION CHARACTERIZATION

Table I lists six open-source scientific and security-related
proxy applications [45] that we study, along with a highly
compute-intensive application that is designed to measure
the maximum achievable floating-point throughput [46]. We
characterize the application kernels into three categories:

Table I
APPLICATION DESCRIPTIONS

Category Application Description
Compute MaxFlops Measures maximum FP throughput
Intensive
Balanced CoMD Molecular-dynamics algorithms

CoMD-LJ (Embedded Atom, Lennard-Jones)
HPGMG Ranks HPC systems

Memory LULESH Hydrodynamic simulation
Intensive MiniAMR 3D stencil computation with adaptive

mesh refinement
XSBench Monte Carlo particle transport

simulation
SNAP Discrete ordinates neutral particle

transport application

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
er

f.
 n

o
rm

al
iz

ed
 t

o
b

es
t-

m
ea

n
 c

o
n

fi
g.

1TBps 3TBps 4TBps 5TBps 6TBps 7TBps

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
er

f.
 n

o
rm

al
iz

ed
 t

o
b

es
t-

m
ea

n
 c

o
n

fi
g.

Ops per byte

(a)

(b)

Figure 4. Performance of MaxFlops as we vary the bandwidth and (a)
CU frequency or (b) CU count

compute intensive, balanced, and memory intensive3. We
describe each category in detail below using simulated data.

In all figures in this section, the x-axis corresponds to
the hardware computation capability with respect to the
memory (ops-per-byte), which we compute as the product
of compute unit (CU) count and GPU frequency, divided by
memory bandwidth. We vary ops-per-byte by changing the
bandwidth, CU count, and frequency.
A. Compute-intensive Kernels

Compute-intensive kernels have infrequent main-memory
accesses, and the performance is bound by compute through-
put. As such, these kernels benefit from higher CU counts
and GPU frequencies, but they are relatively insensitive to
memory bandwidth. In fact, in a power-constrained system
like exascale supercomputers, provisioning higher band-
width can be detrimental to the overall performance because
that simply takes power away from the compute resources.

MaxFlops falls under this category, which is a highly
compute-intensive kernel as shown in Fig. 4. While the per-

3The applications consist of multiple kernels, but we only report data for
the most dominant kernel unless otherwise noted.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
er

f.
 n

o
rm

al
iz

ed
 t

o
b

es
t-

m
ea

n
 c

o
n

fi
g.

1TBps 3TBps 4TBps 5TBps 6TBps 7TBps

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
er

f.
 n

o
rm

al
iz

ed
 t

o
b

es
t-

m
ea

n
 c

o
n

fi
g.

Ops per byte

(a)

(b)

Figure 5. Performance of CoMD as we vary the bandwidth and (a) CU
frequency or (b) CU count

formance increases linearly with more CUs and frequency
(i.e., each bandwidth curve increases with higher ops-per-
byte), bandwidth does not help (i.e., the corresponding CU-
frequency points across different bandwidth curves have
roughly the same performance level).

B. Balanced Kernels

Balanced kernels, such as CoMD shown in Fig. 5, stress
both the compute and memory resources. The best perfor-
mance is observed when all resources are increased together.
However, the rate of performance increase plateaus beyond
a certain point. It is important to note that the plateau point
is different across kernels.

C. Memory-intensive Kernels

Memory-intensive kernels, such as LULESH shown in
Fig. 6, issue a high rate of memory accesses, hence are
sensitive to the memory bandwidth. A notable characteristic
of this class of kernels is that more CUs and higher GPU
frequency are beneficial only up to a certain point. After
that, the excessive number of concurrent memory requests
starts to thrash the caches and increases contention in the
memory and interconnect network, resulting in performance
degradation.

V. ARCHITECTURE ANALYSIS

This section quantitatively evaluates the ENA’s design
choices described in Section II. We use a range of HPC
applications that exercise various components of the archi-
tecture differently. Our analysis of over a thousand differ-
ent hardware configurations found that utilizing a total of
320 CUs at 1 GHz with 3 TB/s of memory bandwidth
achieves the best performance (when considering an average
across all applications) under the ENA-node power budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
er

f.
 n

o
rm

al
iz

ed
 t

o
b

es
t-

m
ea

n
 c

o
n

fi
g.

1TBps 3TBps 4TBps 5TBps 6TBps 7TBps

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
er

f.
 n

o
rm

al
iz

ed
 t

o
b

es
t-

m
ea

n
 c

o
n

fi
g.

Ops per byte

(a)

(b)

Figure 6. Performance of LULESH as we vary the bandwidth and (a) CU
frequency or (b) CU count

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

XSBench SNAP CoMD

Percentage of out-of-chiplet traffic

Percentage of EHP perf. relative to monolithic EHP

Figure 7. Out-of-chiplet traffic and impact on performance

of 160W4 and area constraints (more details in Section VI).
All the results presented below use this configuration unless
otherwise noted.

A. Chiplet Organization

The benefits of a chiplet-based design were covered in
Section II, but a multi-chip organization imposes additional
latency for inter-chiplet communication (whether for co-
herence or main-memory access). Messages to a remote
chiplet traverse from a source chiplet to the lower interposer
layer through through-silicon vias (TSVs), go across the
interposer, and go up to the destination chiplet through
TSVs [9]. Thus, two extra vertical-communication hops
are required compared to a hypothetical monolithic EHP.
To assess the performance impact of these overheads, we
compare a monolithic EHP design against our proposed
multi-chiplet design. The findings below show only a small
performance impact, suggesting that a chiplet-based design
is feasible.
Finding 1: The out-of-chiplet traffic dominates the total
traffic, ranging from 60-95% across kernels representing a
wide range of behavior. This traffic includes traffic between

4We set the per-node power budget to 160W to leave enough power for
cooling, inter-node network, etc. so that the total system-wide power would
not exceed 20MW.

0%

20%

40%

60%

80%

100%

P
er

f.
 n

o
rm

al
iz

ed
 t

o
p

er
f.

 w
it

h
 n

o
 m

is
se

s

20% 40% 60% 80% 100%

0

Figure 8. Performance impact of miss rates in the in-package DRAM

GPU CUs on different chiplets as well as between the CPU
cores and the GPU CUs. Given that there are eight GPU
chiplets on the EHP, the remote-traffic rate demonstrates a
fairly even distribution of accesses across chiplets.
Finding 2: The performance impact of the large out-of-
chiplet traffic is relatively small. The largest performance
degradation compared to the monolithic EHP is 13%, while
some application kernels, such as SNAP, have a negligible
impact, as shown in Fig. 7.
Takeaway: The small performance impact despite the large
out-of-chiplet traffic is due to a variety of reasons. First,
the GPU’s massive parallelism is effective at latency hiding.
Kernels with abundant parallelism tend to be able to hide
much of the latency to other chiplets. Second, some appli-
cations (especially those with cache-friendly access patterns)
do not stress the memory system and are not sensitive to a
few cycles of additional memory latency. Thus, our chiplet
organization makes a compelling trade-off between longer
network latency and improvement in die yield and cost.
B. In-package DRAM

Our design choice of integrating high-bandwidth 3D
memory directly into the EHP package is driven by the
exascale high-bandwidth requirement. Due to the limited
capacity of the in-package 3D-DRAM, some data may reside
in the external memory instead. Requests to addresses not in
the first-level in-package memory result in costlier accesses
to the external memory through a lower-bandwidth, off-
package interface that can degrade performance. To highlight
the importance of provisioning high-bandwidth memory
closer to the compute and efficient data management for
the multi-level memory, we artificially vary the fraction of
requests serviced by the in-package DRAM.
Finding: Fig. 8 plots the performance reduction due to in-
package 3D-DRAM misses5 normalized to no misses (i.e.,
all requests serviced by in-package DRAM). As expected,
the degree of reduction depends on the application character-
istics. The compute-intensive application MaxFlops retains
the same performance level regardless of the in-package

5Here, we use the term “miss” to describe a memory access to the external memory.
We are not using the in-package DRAM as a hardware-controlled cache.

memory miss rate due to very infrequent memory accesses.
In contrast, other applications observe degradations from
7% to as much as 75% as more misses in the in-package
memory cause more external-memory traffic. LULESH, a
memory-intensive kernel, has an interesting behavior as
it shows lower sensitivity to bandwidth compared to a
compute-intensive kernel like CoMD. This can be attributed
to the LULESH’s irregular access patterns that make it
more sensitive to memory latency than bandwidth. Separate
analysis of the applications indicate that 46% to 89% of
memory traffic may still need to access off-package memory,
mainly due to large data footprints. These rates are derived
from previous memory management techniques [27], and
will likely be improved as research discovers better multi-
level memory management algorithms.
Takeaway: The in-package memory is critical for many
bandwidth-intensive kernels. Efficient data management via
software and/or hardware techniques will continue to be
important to ensure that as many requests as possible can be
serviced from the in-package memory for both performance
and energy concerns.
C. External-memory Configuration

Although high-density NVM is a potential alternative for
configuring the external memory, one of the disadvantages is
high read and write access energy. In this section, we com-
pare the power of the baseline configuration with a DRAM-
only external-memory system against a hybrid configuration
that replaces half of the external DRAM with NVM while
maintaining the same total capacity6.

Fig. 9 shows a breakdown of the total ENA power for
both external-memory configurations. Note that many of
the simulated power components (e.g., interconnects and in-
package memory) have been combined into a single category
(‘Other’) for readability. ‘(S)’ refers to static power and ‘(D)’
refers to dynamic power. Serializer/Deserializer (SerDes)
links are used to connect the external-memory devices.
Finding 1: The external-memory power (sum of ‘External
memory’ and ‘SerDes’ for both static and dynamic power)
ranges from 40W to 70W across all kernels and configura-
tions. For the DRAM-only configuration, static/background
power is the major contributor to the external power: 27W
from DRAM static/refresh power and 10W from the SerDes
background power.
Finding 2: The hybrid DRAM+NVM configuration cuts
the static power of the external memory (sum of ‘External
memory (S)’ and ‘SerDes (S)’) by about one half due to
negligible static power of NVM and fewer SerDes links. This
reduces the total ENA power of the less memory-intensive
applications (CoMD, CoMD-LJ, and MaxFlops). However,
NVM’s high dynamic memory-access energy more than
offsets the low static power for applications that frequently
access the external memory (LULESH, MiniAMR, XSBench,

6The per-module capacity of NVM is assumed to be 4× that of DRAM.

0

50

100

150

200

250

300

350

P
o

w
e

r
(W

)

SerDes (S) External memory (S) SerDes (D)

External memory (D) CUs (D) Other

SerDes (S) External memory (S) SerDes (D)

External memory (D) CUs (D) Other

3D DRAM only

3D DRAM + NVM

Figure 9. Impact of external-memory configurations on ENA power

0
10
20
30
40
50
60
70
80
90

Te
m

p
er

at
u

re
 (

°C
)

Best-mean config

Best-per-application config

Figure 10. Peak in-package 3D-DRAM temperature

SNAP, and HPGMG). In these scenarios, the total power of
three of the applications increase by as much as 2×.
Takeaway: Application characteristics need to be considered
carefully when configuring the external memory. Despite
NVM’s high densities, its high dynamic energy may limit
the number of NVMs to provision in a power-constrained
system. Note, however, that the numbers and types of
external-memory modules is a design parameter that end
customer can customize to their needs, and the overall ENA
does not force any specific configuration.

D. Thermal Assessment

We simulate the EHP package alone as it has higher power
density than the external memory. We used the HotSpot [47]
model from the University of Virginia and calibrated it
against an internal product model.

We use peak DRAM temperature as a metric in this
analysis because DRAM is less tolerant to temperature
than processors. DRAMs must stay below 85◦C to avoid
increasing the refresh rate [48]. We assume a high-end air-
cooling solution [49] and 50◦C ambient temperature in a
2U-server chassis [50].
Finding 1: As shown in Fig. 10, EHP’s in-package DRAMs
stay below the 85◦C limit for all kernels with both the
baseline EHP configuration and the best per-kernel config-

Best Mean Configuration
(320 CUs, 1000 MHz, 3 TBps)

Best Workload-Specific Configuration
(384 CUs, 700 MHz, 5 TBps)

DRAM
Die

Hot spots caused by
GPU CUs on a lower layer

Warm spots caused by
GPU CUs on a lower layer

Figure 11. Heat map of the bottom-most in-package 3D-DRAM die for
SNAP

uration7. Despite the high CU power, MaxFlops does not
stress the memory temperature because of almost no memory
accesses. On the other hand, CoMD-LJ approaches the ther-
mal limit due to its modest memory accesses combined with
high compute intensity that raises the CU dynamic power
in the kernel-optimized EHP configuration. Note that these
results do not include any power optimizations discussed
later in Section V-E.
Finding 2: For most kernels, the best-per-application config-
uration leads to better performance, higher power, and higher
temperature, compared to the best-mean configuration. How-
ever, for SNAP and HPGMG, this does not hold. Though
their performance and power trends are the same as the other
workloads, the temperature with the best-per-application
configuration is lower than the mean configuration. This is
because more power is shifted from the high-power-density
CUs to the lower-power-density in-package DRAM. Fig. 11
shows the temperature difference in the bottom-most in-
package DRAM die, with the best-mean configuration versus
the best kernel-optimized configuration for SNAP.
Takeaway: Our use of aggressive die stacking should be
thermally feasible even with air cooling. However, more
advanced cooling solutions may become necessary as the hit
rate of the in-package DRAM improves, more power from
the external memory is shifted to the EHP, or if a design
point uses a greater per-node power budget.
E. Power Optimizations

Our research suggests that meeting the exascale energy-
efficiency goals would need more than what technology scal-
ing and traditional techniques like DVFS can provide. To this
end, we envision using additional aggressive power-saving
techniques, each targeting one or more power components.
Finding new avenues of power savings needs continuous
research effort.

Below, we briefly describe the techniques we have ex-
plored and their estimated power benefits.
Near-Threshold Computing (NTC): NTC enables oper-
ating near the threshold voltage as long as the underlying

7See Section VI where for each kernel we find the combination of CU count,
frequency, and memory bandwidth that maximizes performance under the 160W power
limit.

0%
5%

10%
15%
20%
25%
30%

P
o

w
e

r
sa

vi
n

gs
 r

el
at

iv
e

to
 n

o

o
p

t.

NTC Async. CUs Async. routers
Low-power links Compression All

Figure 12. Power savings from optimizations

0%

10%

20%

30%

40%

50%

P
er

fo
rm

an
ce

-p
er

-W
at

t
im

p
ro

ve
m

en
t

Figure 13. Energy-efficiency benefit from optimizations

circuits are variability tolerant and resilient against errors.
Recent advances in our NTC research allows operating the
CUs near the threshold voltage at as high as 1 GHz while
still obtaining 14% power savings on average across the
workloads examined. Given the lower stability of SRAM
cells, this paper does not apply NTC to the memory circuits,
which would be a potential future research direction.
Asynchronous Compute Units: Most computing devices
have synchronous implementations, in which data are stored
in registers at the edge of a clock. Although synchronous
designs have lower design complexity than asynchronous
designs, the former typically has higher dynamic power
because of high switching activities and clock-tree complex-
ity. We estimate average system-power savings of 4.3% by
carefully applying asynchronous-circuit techniques to only
the ALUs and crossbars of the GPU SIMD units.
Asynchronous Routers: When we extend asynchronous cir-
cuits to interconnect routers, our study indicates an average
power savings of 3.0% can be attained.
Low-Power Links: Operating interconnect links in a low-
power mode can lead to average power savings of 1.6%.
DRAM Traffic Compression: Our research shows that a
substantial portion of the EHP interconnect power is spent on
the long-distance interconnects between the last-level cache
(LLC) and the in-package memory. One way to reduce the
data-movement power is to apply data compression to the
network messages. We estimate average power savings of
1.7% from compression. LULESH benefits the most from
this optimization, given its high memory intensity.

Finding 1: Fig. 12 shows the power saved when each

0

5

10

15

20

192 224 256 288 320

P
o

w
e

r
(M

W
)

Number of CUs per ENA node

0.0

0.5

1.0

1.5

2.0

192 224 256 288 320

Ex
af

lo
p

s

Number of CUs per ENA node

Figure 14. MaxFlops performance and power

of the above techniques is deployed individually and in
combination. The power savings range from 13% to 27%
when all techniques are deployed together. Note that the
baseline power without optimizations already includes power
savings from DVFS.
Finding 2: Reduction in power can lead to performance
improvements by allowing a higher-performing hardware
operating point while staying under the power budget.
Fig. 13 shows the improvement in performance per Watt
when comparing the new best-mean configuration with op-
timizations (288 CUs, 1100 MHz, 3 TB/s) to the one before
optimizations (320 CUs, 1000 MHz, 3 TB/s). The trend in
the efficiency gains across the kernels as seen in Fig. 13 is
not the same as the power-savings trend in Fig. 12 because
the change in the best-mean configuration (lower CU count
and higher frequency) affects different kernels differently.
Takeaway: Optimizing power consumption throughout var-
ious node components can improve the node energy effi-
ciency substantially, and may also be necessary if the target
applications exercise different parts of the node differently.

F. Exascale Target

In this section, we briefly discuss how our architectural
design choices help achieve the overall exaflop performance
target within a 20MW power budget for the entire exascale
machine. We analyze the the MaxFlops application, which
represents our most compute-intensive, double-precision
floating-point kernel.

Fig. 14 depicts the performance and power scaling trend
observed when varying the number of CUs while fixing
the GPU frequency and memory bandwidth to 1 GHz and
1 TB/s, respectively. As expected, we see a linear scaling
trend with additional CUs. With 320 CUs per ENA, we
expect to reach up to 18.6 double-precision teraflops per
ENA or 1.86 double-precision exaflops with a total of
100,000 ENA nodes. This scenario consumes 11.1 MW of
power, although this number should only be considered for
a peak-compute scenario. Full-scale applications will tend to
exercise more than just the compute resources (e.g., caches,
interconnects, internal and external memory), but we expect
the design to provide a highly-capable exascale system.

VI. DISCUSSION

The previous section provided preliminary evidence that
our proposed ENA meets and possibly even exceeds the

Table II
PERFORMANCE BENEFIT OF DYNAMIC RESOURCE RECONFIGURATION

Application Best App-Specific Perf. Benefit over
Config. Best-Mean Config. (%)

(CUs / MHz / TB/s) Without With
Power Opt. Power Opt.

LULESH 256 / 1100 / 4 31.2 38.0
MiniAMR 256 / 1200 / 4 47.3 54.3
XSBench 224 / 1400 / 5 44.9 47.5
SNAP 384 / 700 / 5 18.2 30.2
CoMD 192 / 1500 / 6 40.3 49.8
CoMD-LJ 224 / 1300 / 6 29.6 39.3
HPGMG 352 / 900 / 7 34.9 37.9
MaxFlops 384 / 925 / 1 10.7 19.9

aggressive exascale performance, power, and thermal goals
for a peak-compute scenario (MaxFlops). Ideally, we would
like similar levels of compute efficiency for the other more
challenging memory-intensive and balanced applications.
Furthermore, exascale computing, though challenging, is
merely the next HPC milestone. Post-exascale supercom-
puters will be needed to continue to enhance capabilities as
HPC applications become more and more complex.

We briefly discuss some important research directions
that the computer-architecture community should pursue.
Although these directions are critical for HPC, the technolo-
gies developed will also help improve processing in many
other domains including mobile, general-purpose, gaming,
and cloud computing.
Dynamic Resource Reconfiguration: As Section IV de-
scribed, not all HPC applications behave in the same manner.
A statically fixed hardware configuration would lead to
missed opportunities. A run-time technique that adjusts the
hardware configuration based on application phases is likely
to improve the performance and power despite potential
additional management overheads. Although there is already
a large body of work in this area, continuous research
is necessary to further enhance the efficiency of dynamic
reconfiguration.

One of the challenges of dynamic reconfiguration is to
identify when a kernel reaches a phase beyond which more
compute resources and/or higher frequency either (1) do
not increase performance but instead lead to higher power
consumption (balanced kernels) or (2) cause memory con-
tention, adversely degrading performance (memory-bound
kernels). Once such phase is identified, the reconfiguration
technique needs to reduce the capability of the compute re-
sources via DVFS and/or clock or power gating to operate at
an energy-optimal point. Table II shows the potential benefit
of an oracle technique that chooses the highest-performing
hardware configuration for each kernel while staying under
the power budget and area budget of up to 384 CUs per node.
As much as 54% additional performance improvement for
the ENA can be gained compared to the statically set best-
mean configuration of 320 CUs, 1000 MHz, and 3 TB/s,
especially when additional power optimizations are enabled.

High-density and Low-energy Memory: As discussed
in Section V-C, the higher read and write access energy
of NVM (compared to DRAM) leads to a significant
power overhead for memory-intensive applications. How-
ever, NVM’s very low leakage power coupled with high
memory densities is desirable to reduce the static power of
systems with large memory capacities. Further advances in
memory technologies are required to improve not only the
density but also the energy efficiency. Additionally, there
are ample research opportunities for efficient management of
heterogeneous memories and multi-level memories to ensure
that more frequently accessed data reside in a faster, lower-
access-energy memory.
Resiliency Solutions: As discussed in Section II, supporting
resiliency without significant area and performance over-
heads is critical given the aggressive exascale performance
goals, the low mean-time-to-failure requirement, and the in-
creased rate of silent errors that future technology nodes may
cause. In addition, some of the power-saving techniques this
paper evaluated substantially reduce the operating voltage,
potentially increasing error rates. Further research is needed
to explore techniques that have low performance and area
overheads while providing robust resiliency.
Power Optimizations: This paper considered only a handful
of promising power-optimization techniques. Other types of
optimizations are also necessary to target the remaining com-
ponents with high power consumption, such as memory and
SerDes links. A management technique must be developed
to orchestrate a variety of power optimizations, triggering
only those deemed appropriate for a given application phase
with negligible performance impact.

VII. CONCLUSION

In this work, we presented a vision for an exascale node
architecture along with the reasoning behind our design
choices. We also presented quantitative analysis of these
design choices, leveraging results from several research
efforts, to make a case for why this approach makes sense
given our exascale performance, power, resiliency, and cost
goals. Though we have made significant progress toward
these goals, we are still actively exploring many research
directions to solve the remaining challenges as well as
pushing forward to post-exascale systems. We hope that
the computer-architecture community will benefit from this
work and continue to contribute toward solving these im-
portant challenges.

ACKNOWLEDGMENTS

AMD, the AMD Arrow logo, Radeon, and combinations
thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for iden-
tification purposes only and may be trademarks of their
respective companies.

REFERENCES
[1] “Top500 News Release June 2008,” https://www.top500.org/

lists/2008/06/.
[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam,

and D. Burger, “Dark Silicon and the End of Multicore
Scaling,” in Proc. of the Int’l Symp. on Computer Architecture
(ISCA), 2011.

[3] “Pathforward Draft Technical Requirements,”
https://asc.llnl.gov/pathforward/docs/Attachment 4
PathForward Draft Technical Requirements.docx.

[4] “The Green500 List - June 2016,” http://www.green500.org/
lists/green201606.

[5] “NVIDIA Wins $18 Million DOE Grant for Exascale Com-
puting Research,” https://blogs.nvidia.com/blog/2014/11/14/
nvidia-wins-doe-grant-for-exascale-computing-research/.

[6] “Intel Federal LLC To Propel Supercomputing Advancement
For The U.S Government,” https://newsroom.intel.com/news-
releases/intel-federal-llc-to-propel-supercomputing-
advancements-for-the-u-s-government/.

[7] “Cray To Explore Alternative Processor Technologies For
Supercomputing,” http://investors.cray.com/phoenix.zhtml?c=
98390&p=irol-newsArticle&ID=1990117.

[8] “MoChi Architecture,” http://www.marvell.com/architecture/
mochi/.

[9] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling Interposer-
based Disintegration of Multi-core Processors,” in Proc. of the
Int’l Symp. on Microarchitecture (MICRO), 2015.

[10] “Heterogeneous System Architecture (HSA): Architecture
and Algorithms,” Tutorial at the Int’l Symp. on Computer
Architecture (ISCA), 2014.

[11] “ROCm: Open Platform For Development, Discovery and
Education around GPU Computing,” gpuopen.com/compute-
product/rocm.

[12] JEDEC, “High Bandwidth Memory (HBM) DRAM,”
http://www.jedec.org/standards-documents/docs/jesd235.

[13] S. Puthoor, A. M. Aji, S. Che, M. Daga, W. Wu, B. M.
Beckmann, and G. Rodgers, “Implementing Directed Acyclic
Graphs with the Heterogeneous System Architecture,” in
Proc. of the Workshop on General Purpose Processing Using
Graphics Processing Unit (GPGPU), 2016.

[14] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M.
Beckmann, M. D. Hill, S. K. Reinhardt, and D. A. Wood,
“QuickRelease: A throughput-oriented approach to release
consistency on GPUs,” in Proc. of the Int’l Symp. on High
Performance Computer Architecture (HPCA), 2014.

[15] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R.
Gaster, M. D. Hill, S. K. Reinhardt, and D. A. Wood,
“Heterogeneous-race-free Memory Models,” in Proc. of the
Int’l Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2014.

[16] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D.
Hill, and D. A. Wood, “Synchronization Using Remote-
Scope Promotion,” in Proc. of the Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2015.

[17] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood, “Lazy
Release Consistency for GPUs,” in Proc. of the Int’l Symp.
on Microarchitecture (MICRO), 2016.

[18] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann,
M. D. Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous
System Coherence for Integrated CPU-GPU Systems,” in
Proc. of the Int’l Symp. on Microarchitecture (MICRO), 2013.

https://www.top500.org/lists/2008/06/
https://www.top500.org/lists/2008/06/
https://asc.llnl.gov/pathforward/docs/Attachment_4_PathForward_Draft_Technical_Requirements.docx
https://asc.llnl.gov/pathforward/docs/Attachment_4_PathForward_Draft_Technical_Requirements.docx
http://www.green500.org/lists/green201606
http://www.green500.org/lists/green201606
https://blogs.nvidia.com/blog/2014/11/14/nvidia-wins-doe-grant-for-exascale-computing-research/
https://blogs.nvidia.com/blog/2014/11/14/nvidia-wins-doe-grant-for-exascale-computing-research/
https://newsroom.intel.com/news-releases/intel-federal-llc-to-propel-supercomputing-advancements-for-the-u-s-government/
https://newsroom.intel.com/news-releases/intel-federal-llc-to-propel-supercomputing-advancements-for-the-u-s-government/
https://newsroom.intel.com/news-releases/intel-federal-llc-to-propel-supercomputing-advancements-for-the-u-s-government/
http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-newsArticle&ID=1990117
http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-newsArticle&ID=1990117
http://www.marvell.com/architecture/mochi/
http://www.marvell.com/architecture/mochi/
gpuopen.com/compute-product/rocm
gpuopen.com/compute-product/rocm

[19] K. Saban, “Xilinx Stacked Silicon Interconnect Technol-
ogy Delivers Breakthrough FPGA Capacity, Bandwidth, and
Power Efficiency,” Xilinx, White Paper, 2011.

[20] “AMD Radeon R9 Series Gaming Graphics Cards with High
Bandwidth Memory,” http://www.amd.com/en-us/products/
graphics/desktop/r9#.

[21] P. V. et al., “A 4x4x2 Homogeneous Scalable 3D Network-
on-Chip Circuit with 326MFlit/s 0.66pJ/b Robust and Fault-
Tolerant Asynchronous 3D Links,” in Proc. of the Int’l Solid-
State Circuits Conference (ISSCC), 2016.

[22] S. Das and G. Sadowski, “Reconfigurable links for self-timed
on-chip communication,” in Proc. of the Int’l Workshop on
Network on Chip Architectures (NoCArc), 2016.

[23] A. Majumdar, L. Piga, I. Paul, J. L. Greathouse, W. Huang,
and D. H. Albonesi, “Dynamic gpgpu power management
using adaptive model predictive control,” in Proc. of the Int’l
Symp. on High Performance Computer Architecture (HPCA),
2017.

[24] K. Dev, S. Reda, I. Paul, W. Huang, and W. Burleson,
“Workload-aware power gating design and run-time manage-
ment for massively parallel gpgpus,” in Proc. of the Symp. on
VLSI (ISVLSI), 2016.

[25] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and
K. Skadron, “Real-world Design and Evaluation of Compiler-
managed GPU Redundant Multithreading,” in Proc. of the
Int’l Symp. on Computer Architecuture (ISCA), 2014.

[26] M. Oskin and G. H. Loh, “Software-managed Approach to
Die-Stacked DRAM,” in Proc. of the Int’l Symp. on Parallel
Architectures and Compilation Techniques (PACT), 2015.

[27] M. Meswani, S. Balgodurov, D. Roberts, J. Slice, M. Ig-
natowski, and G. Loh, “Heterogeneous Memory Architec-
tures: A HW/SW Approach for Mixing Die-stacked and Off-
package Memories,” in Proc. of the Int’l Symp. on High-
Performance Computer Architecture (HPCA), 2015.

[28] “Fast Forward 2 R&D Draft Statement of Work,” https://asc.
llnl.gov/fastforward/rfp/04 DraftSOW 04-03-2014.pdf.

[29] G. Kim, J. Kim, J. H. Ahn, and Y. Kwon, “Memory Network:
Enabling Technology for Scalable Near-Data Computing,” in
Proc. of the Workshop on Near-Data Processing, 2014.

[30] G. Kim, J. Kim, J.-H. Ahn, and J. Kim, “Memory-centric sys-
tem interconnect design with hybrid memory cubes,” in Proc.
of the Int’l Symp. on Parallel Architectures and Compilation
Techniques (PACT), 2013.

[31] J. T. Pawlowski, “Hybrid Memory Cube: Breakthrough
DRAM Performance with a Fundamentally Re-Architected
DRAM Subsystem,” in Hot Chips 23, 2011.

[32] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and
H. Kim, “Transparent Hardware Management of Stacked
DRAM as Part of Memory,” in Proc. of the Int’l Symp. on
Microarchitecture (MICRO), 2014.

[33] M. Meswani, G. H. Loh, S. Blagodurov, D. Roberts, J. Slice,
and M. Ignatowski, “Toward Efficient Programmer-managed
Two-level Memory Hierarchies in Exascale Computers,” in
Proc. of the Int’l Workshop on Hardware-Software Co-Design
for High Performance Computing, 2015.

[34] G. H. Loh and M. D. Hill, “Efficiently Enabling Conventional
Block Sizes for Very Large Die-Stacked DRAM Caches,” in
Proc. of the Int’l Symp. on Microarchitecture (MICRO), 2011.

[35] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-
offs in Architecting DRAM Caches,” in Proc. of the Int’l
Symp. on Microarchitecture (MICRO), 2012.

[36] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, 2011.

[37] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt, “Analyzing CUDA workloads using a detailed
GPU simulator,” in Proc. of the Int’l Symp. on Performance
Analysis of Systems and Software (ISPASS), 2009.

[38] J. L. Greathouse, A. Lyashevsky, M. Meswani, N. Jayasena,
and M. Ignatowski, “Simulation of Exascale Nodes through
Runtime Hardware Monitoring,” in the Workshop on Mod-
eling & Simulation of Exascale Systems and Applications
(ModSim), 2013.

[39] B. Su, J. L. Greathouse, J. Gu, M. Boyer, L. Shen, and
Z. Wang, “Implementing a Leading Loads Performance Pre-
dictor on Commodity Processors,” in Proc. of the USENIX
Annual Technical Conf. (USENIX ATC), 2014.

[40] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and
Z. Wang, “PPEP: Online Performance, Power, and Energy
Prediction Framework and DVFS Space Exploration,” in
Proc. of the Int’l Symp. on Microarchitecture (MICRO), 2014.

[41] V. Adhinarayanan, I. Paul, J. L. Greathouse, W. Huang,
A. Pattnaik, and W. chun Feng, “Measuring and modeling
on-chip interconnect power on real hardware,” in Proc. of the
Int’l Symp. on Workload Characterization (IISWC), 2016.

[42] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and
D. Chiou, “Gpgpu performance and power estimation using
machine learning,” in Proc. of the Int’l Symp. on High
Performance Computer Architecture (HPCA), 2015.

[43] A. Majumdar, G. Wu, K. Dev, J. L. Greathouse, I. Paul,
W. Huang, A. K. Venugopal, L. Piga, C. Freitag, and
S. Puthoor, “A taxonomy of gpgpu performance scaling,”
in Proc. of the Int’l Symp. on Workload Characterization
(IISWC), 2015.

[44] B. M. Beckmann and A. Gutierrez, “The AMD gem5 APU
Simulator: Modeling Heterogeneous Systems in gem5,” Tuto-
rial at the Int’l Symp. on Microarchitecture (MICRO), 2015.

[45] “Proxy Applications for Co-Design,” proxyapps.lanl.gov/.

[46] “MaxFlops: Workload Description,” http://ft.ornl.gov/doku/
shoc/pflops.

[47] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan,
K. Skadron, and M. R. Stan, “HotSpot: a compact thermal
modeling methodology for early-stage VLSI design,” IEEE
Trans. VLSI Syst., vol. 14, no. 5, 2006.

[48] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-
Aware Intelligent DRAM Refresh,” in Proc. of the Int’l Symp.
on Computer Architecture (ISCA), 2012.

[49] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal Feasibility
of Die-Stacked Processing in Memory,” in Proc. of the
Workshop on Near-Data Processing, 2014.

[50] M. Skach, M. Arora, C.-H. Hsu, Q. Li, D. Tullsen, L. Tang,
and J. Mars, “Thermal Time Shifting: Leveraging Phase
Change Materials to Reduce Cooling Costs in Warehouse-
scale Computers,” in Proc. of the Int’l Symp. on Computer
Architecture (ISCA), 2015.

http://www.amd.com/en-us/products/graphics/desktop/r9#
http://www.amd.com/en-us/products/graphics/desktop/r9#
https://asc.llnl.gov/fastforward/rfp/04_DraftSOW_04-03-2014.pdf
https://asc.llnl.gov/fastforward/rfp/04_DraftSOW_04-03-2014.pdf
proxyapps.lanl.gov/
http://ft.ornl.gov/doku/shoc/pflops
http://ft.ornl.gov/doku/shoc/pflops

