
Dynamic GPGPU Power Management Using Adaptive Model Predictive Control

Abhinandan Majumdar∗ Leonardo Piga† Indrani Paul† Joseph L. Greathouse† Wei Huang† David H. Albonesi∗
∗Computer System Laboratory, Cornell University, Ithaca, NY, USA
†AMD Research, Advanced Micro Devices, Inc., Austin, TX, USA

∗{am2352, dha7}@cornell.edu, †{Leonardo.Piga, Indrani.Paul, Joseph.Greathouse, WeiN.Huang}@amd.com

Abstract—Modern processors can greatly increase energy effi-
ciency through techniques such as dynamic voltage and frequency
scaling. Traditional predictive schemes are limited in their effec-
tiveness by their inability to plan for the performance and energy
characteristics of upcoming phases. To date, there has been little
research exploring more proactive techniques that account for
expected future behavior when making decisions.

This paper proposes using Model Predictive Control (MPC) to
attempt to maximize the energy efficiency of GPU kernels without
compromising performance. We develop performance and power
prediction models for a recent CPU-GPU heterogeneous proces-
sor. Our system then dynamically adjusts hardware states based
on recent execution history, the pattern of upcoming kernels, and
the predicted behavior of those kernels. We also dynamically
trade off the performance overhead and the effectiveness of
MPC in finding the best configuration by adapting the horizon
length at runtime. Our MPC technique limits performance loss by
proactively spending energy on the kernel iterations that will gain
the most performance from that energy. This energy can then be
recovered in future iterations that are less performance sensitive.
Our scheme also avoids wasting energy on low-throughput phases
when it foresees future high-throughput kernels that could better
use that energy.

Compared to state-of-the-practice schemes, our approach
achieves 24.8% energy savings with a performance loss (including
MPC overheads) of 1.8%. Compared to state-of-the-art history-
based schemes, our approach achieves 6.6% chip-wide energy
savings while simultaneously improving performance by 9.6%.

I. INTRODUCTION

Dynamic voltage and frequency scaling (DVFS) is a power-
saving mechanism that places devices such as CPUs, GPUs,
and DRAM channels into lower performance states in order
to save power. By using low-power states when they will not
greatly affect performance, significant energy can be saved
without slowing down the application. Good DVFS policies
are vital, since poor decisions can cause both performance
and energy losses.

Existing DVFS-based power management techniques, such
as AMD’s Turbo Core [1], [2] and Intel’s Turbo Boost [3], [4],
[5], select performance states based on the chip activity seen in
the recent past. This may lead to performance and efficiency
losses, since this fails to anticipate future performance de-
mands. For instance, lowering the frequency for the next time
step may reduce power at the cost of lost performance, while
the same action at a future time step may save the same power
with no performance loss. Both techniques may equally reduce
power, but the latter will yield better energy and performance.
This work attempts to alleviate this problem in general-purpose
GPU (GPGPU) compute-offload applications.

Previous work that statically optimized individual GPGPU
kernels [6], [7], or dynamically optimized over multiple it-

erations of each kernel [8], [9], [10], ignoring future kernel
behavior; they utilize information from the last timestep to pre-
dict hardware configurations for the next. This falls short for
applications with multiple interleaved kernels with different
characteristics and for irregular applications with kernels that
vary across iterations [11]. Moreover, these approaches treat
each kernel equally in terms of power management decisions,
even though kernels may widely vary in their impact on overall
application performance. As a result, they may not be able to
“catch up” for lost performance or energy savings in later
phases with unanticipated behavior. CPU schemes such as
phase tracking/prediction only consider the performance of
the immediate phase. Similarly, Chen et al. [12] predict the
performance of the immediate phase but ignore past behavior.

This paper presents a GPGPU power management approach
that performs inter-kernel optimization while accounting for
future kernel behavior. The approach anticipates the expected
pattern of future kernels, and their performance and power
characteristics, in order to optimize overall application perfor-
mance and energy. A key component of our approach is model
predictive control (MPC). MPC optimizes for a future pre-
diction horizon in a receding manner but applies the optimal
configuration at the current timestep. However, the implemen-
tation overheads of a full MPC algorithm make it unsuitable
for the timescales of chip-level dynamic power management,
as the problem of maximizing kernel-level energy efficiency
under a given performance target is NP-hard. We propose new
greedy and heuristic approximations of MPC that are effective
at saving energy with modest performance loss yet applicable
to runtime power management. Furthermore, we dynamically
adjust the prediction horizon in order to limit the performance
overhead caused by MPC.

To determine the appropriate hardware configuration for a
kernel, we develop a prediction model to estimate kernel-level
performance and power at different hardware configurations
and a pattern extractor that predicts which kernels will appear
in the future. Our overall approach permits MPC to proactively
limit performance losses by dynamically expending more en-
ergy on high-throughput kernels. MPC also avoids spending a
disproportionate amount of energy on low-throughput kernels.
Instead, it seeks opportunities from the future high-throughput
phases to compensate for the performance lost when low-
throughput kernels are run at slow DVFS states.

Our approach saves 24.8% energy with a performance loss
of 1.8% compared to AMD Turbo Core and reduces energy
by 6.6% while improving performance by 9.6% with respect
to state-of-the-art history-based power management schemes.

TABLE I: Software visible CPU, Northbridge, and GPU DVFS states on the AMD A10-7850K.

CPU P States Voltage (V) Freq (GHz)
P1 1.325 3.9
P2 1.3125 3.8
P3 1.2625 3.7
P4 1.225 3.5
P5 1.0625 3.0
P6 0.975 2.4
P7 0.8875 1.7

NB P States Freq (GHz)
Memory

Freq
(MHz)

NB0 1.8 800
NB1 1.6 800
NB2 1.4 800
NB3 1.1 333

GPU P
States Voltage (V) Freq

(MHz)
DPM0 0.95 351
DPM1 1.05 450
DPM2 1.125 553
DPM3 1.1875 654
DPM4 1.225 720

…CPU

D
A

TA
TR

A
N

SF
ER

GPU Kernel

CPU
D

A
TA

TR
A

N
SF

ER
CPU

D
A

TA
TR

A
N

SF
ER

GPU Kernel

CPU

D
AT

A
TR

A
N

SF
ER

CPU

Time

Fig. 1: Typical GPGPU application phases.

II. BACKGROUND AND MOTIVATION

A. Heterogeneous Processor Architectures

Modern heterogeneous processors consist of CPU cores
integrated on the same die with GPU cores and components
such as a northbridge (NB) and power controllers. Power and
thermal budgets may be shared across resources, and some
devices (e.g., the GPU and NB) may share voltage rails.

Table I shows the different DVFS states for the CPU, NB,
and GPU in the AMD A10-7850K processor that we study in
this work. Changing NB DVFS impacts memory bandwidth,
since each state maps to a specific memory bus frequency. All
CPU cores share a power plane. The GPU is on a separate
power plane, which it shares with the NB; the NB and GPU
frequencies can be set independently, but they share a common
voltage.

Lower CPU DVFS states reduce the CPU power and can
slightly reduce the GPU power due to a reduction in tempera-
ture and leakage. GPU DVFS states change the core frequency
of the GPU; however, higher NB states can prevent reducing
the GPU’s voltage along with the frequency. This can limit
the amount of power saved when changing GPU DVFS states.
Similarly, if the GPU is at a high power state, reducing the
NB state may only change the NB frequency.

B. GPGPU Program Phases

A breakdown of a typical GPGPU application is shown in
Figure 1. The host CPUs first perform some amount of work,
shown as CPU. After this, they launch computational kernels
to the GPU. A kernel consists of parallel workgroups that are
comprised of parallel threads. While the GPU is busy doing
computation, the CPUs may be waiting for the GPU to finish,
preparing data for launching the next GPU kernel, or running
parts of the computation concurrently with the GPU.

The relative amount of time spent in each phase varies
across applications and inputs. For the workloads we inves-
tigate in this paper, the CPU and GPU have little overlapping
execution. We therefore focus on the power efficiency and
performance of the GPU kernel execution phases and leave
workloads that simultaneously exercise the CPUs and GPU or
concurrent GPU kernels as future work [13].

TABLE II: Execution pattern of three irregular benchmarks.
Here, Ai indicates kernel A repeats i times. F1 to F9 are
invocations of the same kernel F , each taking different inputs.

Benchmark Kernel Execution Pattern
Spmv A10B10C10

kmeans AB20

hybridsort ABCDEF1F2F3F4F5F6F7F8F9G

C. GPGPU Kernel Characterization

GPGPU kernels show sensitivity to hardware configurations
and a range of performance and power scaling behavior.
Figure 2 shows the relative performance of example GPU
kernels as NB DVFS states and the number of active GPU
compute units (CUs) are varied. Each graph contains a mark
at the energy-optimal point.

These kernels reach their best efficiency at different con-
figurations. Compute-bound kernels perform better with more
CUs, and their energy-optimal point is at a lower NB state.
Memory-bound kernels are sensitive to higher NB states, but
the performance saturates from NB2 onwards because NB2
through NB0 have the same DRAM bandwidth. Peak kernels
maximize performance and minimize energy at a lower hard-
ware configuration due to destructive shared cache interference
[14], [15], [16]. Finally, the performance of unscalable kernels
is not affected by hardware changes; these achieve high energy
efficiency at the lowest GPU configuration. These results
demonstrate that mischaracterization can lead to sub-optimal
performance or energy.

D. Kernel Runtime Execution Diversity

Table II shows the execution pattern of the kernels of three
benchmarks represented using regular expression. Spmv, from
a modified version of SHOC [17], runs three sparse matrix
vector multiplication algorithms ten times each. The kmeans
application from Rodinia [18] runs the swap kernel once,
and then iterates the kmeans kernel 20 times. The hybridsort
application from Rodinia runs six different kernels, with the
kernel mergeSortPass iterating nine times, each with different
input arguments. Each kernel achieves energy optimality at
different hardware configurations.

Figure 3 shows how the kernel instruction throughput (nor-
malized to the overall throughput) varies during an applica-
tion’s execution. We observe that Spmv transitions from high-
to low-throughput phases, while kmeans demonstrates a low-
to high-throughput transition. Hybridsort shows multiple phase

NB3

NB2

NB1

NB0

0.5

1.5

2.5

3.5

4.5

2 4 6 8

Sp
e
e
d
u
p

(a) Compute-bound: MaxFlops

NB3

NB2

NB1

NB0

0.5

1

1.5

2

2.5

2 4 6 8

Sp
e
e
d
u
p

(b) Memory-bound:
readGlobalMemoryCoalsced

NB3

NB2

NB1

NB0

0.5

1.5

2.5

3.5

4.5

5.5

6.5

2 4 6 8

Sp
e
e
d
u
p

(c) Peak: writeCandidates

NB3

NB2

NB1

NB0

0.5

1.5

2.5

3.5

4.5

2 4 6 8

Sp
e
e
d
u
p

(d) Unscalable: astar

Fig. 2: Performance trends and energy-optimal points of GPGPU kernels at different hardware configurations.

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
o

rm
al

iz
ed

 k
e

rn
el

 t
h

ro
u

gh
p

u
t

Kernel execution order

Spmv kmeans hybridsort

Fig. 3: Kernel throughput for Spmv, kmeans and hybridsort.
The y-axis is normalized to the overall throughput.
transitions not only among kernels, but even by the same
kernel taking different input arguments. These characteristics
are typically seen in irregular applications. For example, graph
algorithms can vary across input and iteration [11].

E. Potential of “Future-Based” Schemes

Our goal is to minimize energy while meeting a perfor-
mance target, in our case, the performance of AMD Turbo
Core, which we describe in Section V-B. In this section,
we perform a limit study using two configuration decision
algorithms. Both approaches have perfect knowledge of the
effect of every hardware configuration on kernel performance
and power. The latter also knows the exact pattern of future
kernel executions, as well as their performance and power
characteristics. Thus, these results could not be obtained in
a real system with imperfect predictions.

The Predict Previous Kernel (PPK) algorithm attempts to
minimize energy while assuming the previous kernel will
repeat next. It does not look further in the future, but makes
its decision based on perfect knowledge of the performance
and power characteristics of every hardware configuration
with respect to the just completed kernel. PPK represents
a best-case scenario for current state-of-the-art history-based
algorithms [8], [9], [19], which in practice have errors in
their performance and power predictions. In contrast, the
Theoretically Optimal (TO) algorithm performs a full state
space exploration of all future kernels and finds the globally
optimal hardware configuration for each kernel iteration.

Figure 4 compares the energy and performance of these
algorithms against Turbo Core on the AMD A10-7850K.
We observe that PPK matches TO for regular benchmarks
such as mandelbulbGPU, NBody and lbm. These benchmarks
have a single kernel iterating multiple times; thus, future

(a)

(b)

-20

0

20

40

60

80

En
er

gy
 S

av
in

gs
 (

%
)

Predict Previous Kernel Theoretically Optimal

0.4
0.6
0.8

1
1.2
1.4
1.6

Sp
ee

d
u

p

Fig. 4: Comparison of Predict Previous Kernel and Theoreti-
cally Optimal algorithms. (a) indicates energy savings and (b)
speedup over AMD Turbo Core.

knowledge is not helpful. However, for the remaining irregular
benchmarks, PPK consumes more energy (up to 48%) and
degrades performance (up to 46%) compared to TO.

To understand why future knowledge can be so beneficial,
we reconsider the benchmarks hybridsort, Spmv, and kmeans,
shown in Figure 3. In hybridsort, all of the kernel invocations
differ in throughput, with some varying with inputs. As a
result, PPK always mispredicts the next kernel behavior, which
leads to far-from-optimal performance and energy results. The
applications XSBench, srad and lulesh exhibit similar behavior.

Spmv, on the other hand, exhibits two high-to-low through-
put transitions. While this behavior results in only two mis-
predictions by PPK, the performance loss compared to the
baseline is 4%. This is because PPK reduces the performance
of the initial high-throughput phase in order to save energy. On
encountering future low-throughput phases, PPK is unable to
increase the performance enough to make up for the lost per-
formance; even the highest-powered hardware configuration
does not suffice. As such, PPK suffers a performance loss with
respect to Turbo Core. The application lud shows a similar
high-to-low throughput transition. This result demonstrates the
benefits of not only anticipating future kernel patterns, but the
performance characteristics of these future kernels as well.

In contrast to Spmv, kmeans shows a single low-to-high tran-
sition. On encountering the first dominating low-throughput

kernel, PPK is temporarily unable to reach the performance
target. The performance is degraded so severely that it cannot
be made up in the remaining kernels even when they are
run in highest power configuration, thereby consuming more
energy. Unaware of the fact that future high-throughput kernels
will compensate for the initial low performance, PPK achieves
lower energy savings compared to the optimal algorithm. The
benchmark pb-bfs also exhibits similar results. The hybridsort
application has multiple high-to-low changes, and thus suffers
both reduced energy savings and performance losses.

Motivated by this fundamental limitation of algorithms that
ignore the future, like Predict Previous Kernel, and by the
potential demonstrated by Theoretically Optimal by perfectly
predicting future kernels, we propose a future-aware dynamic
kernel-level power management policy. This proposed policy
anticipates future kernel performance and proactively assigns
hardware resources in order to meet its performance and en-
ergy targets. We show that a power management policy driven
by the principle of feedback and MPC limits the performance
loss while significantly improving energy efficiency.

III. PROBLEM FORMULATION

In this section, we mathematically formulate the problem.
The overall objective is to minimize the total kernel-level en-
ergy consumption of a GPGPU application without impacting
the net kernel performance compared to AMD Turbo Core. In
order to compare the performance of a given application over
different hardware configurations, we adopt kernel instruction
throughput as our performance metric. Equation 1 presents the
formulation.

min−→s

N∑
i=1

Ei(si)

such that∑N
i=1 Ii∑N

i=1 Ti(si)
≥ Itotal

Ttotal

where si ∈ S and S = −→cpu ×
−→
nb × −−→gpu × −→cu

(1)

The objective is to minimize the total kernel-level applica-
tion energy (E) across all N kernels while at least matching
the performance of the default Turbo Core algorithm. In
Equation 1, N is the total number of kernels in an application;
and vectors −→cpu,

−→
nb, and −−→gpu represent the CPU, NB, and

GPU DVFS states, while −→cu represents the different ways that
the GPU CUs can be activated. S is the Cartesian product of
−→cpu,
−→
nb, −−→gpu and −→cu. The vector −→s , which belongs to the set S,

corresponds to the hardware configurations of N kernels. Each
vector element si of −→s represents the hardware configuration
for an ith kernel. Ii and Ti are the total number of instructions
(thread-count × instruction-count per thread) and execution
time of the ith kernel; Ei is the energy consumed by kernel
i; and Itotal and Ttotal are the total number of instructions
and the execution time of all kernels in the application in the
default Turbo Core approach.

Past Future

𝑖𝑡ℎ timestep

H

…

Shift
horizon

Fig. 5: Overview of the MPC process.

The theoretically optimal (TO) approach assigns a hardware
configuration for each kernel instance such that the total kernel
energy is minimum with no performance loss. For M possible
hardware configurations and N kernels, TO requires O(MN)
searches. Discrete DVFS states and GPU CUs make this
problem NP-hard and thus impractical to use at runtime.1

Rather than exhaustive search, current runtime power man-
agement approaches optimize the next kernel in execution
order based on past knowledge. To reflect this more tractable
and runtime feasible approach, we reformulate Equation 1 as
Equation 2.

min
si∈S

Ei(si)

such that∑i
j=1 Ij∑i

j=1 Tj(sj)
≥ Itotal

Ttotal
∀1 ≤ i ≤ N and ∀sj ∈ S

(2)

Here for every ith kernel, the optimization algorithm
chooses the hardware configuration that minimizes the energy
of that kernel while ensuring that the total kernel throughput
thus far (including this kernel) at least matches that of the
default configuration. The polynomial time complexity of
O(M×N) makes the optimization tractable.

The Predict Previous Kernel (PPK) approach described
earlier assumes that the last seen kernel or phase repeats
again and uses its behavior to estimate the energy optimal
configuration of the upcoming kernel. As shown earlier, this
approach is far from optimal, which motivates our future-
aware MPC approach.

IV. MPC-BASED POWER MANAGEMENT

Model predictive control (MPC) is an advanced process
control technique popular in various application domains [21],
[22], [23], [24]. It uses a dynamic process model to proactively
optimize for the current timestep by anticipating future events.
An overview of the MPC process is shown in Figure 5. At
each timestep i, MPC optimizes for a future horizon of H
timesteps. By doing so, it captures the future events that may
affect the optimal operation of the ith timestep. After running
the optimization, MPC applies the decision to the current ith

timestep. Then, for the next (i + 1)th timestep, the horizon
shifts one timestep and the algorithm optimizes over the next
H timesteps. A larger H requires more computation overhead
but leads to a better solution. While MPC with imperfect

1Formally, this can be proven by reducing the 0-1 knapsack problem, which
is NP-hard [20], to finding a kernel-level energy optimal configuration without
any performance loss. The formal proof is beyond the scope of this paper.

Kernel

HW
settings

Performance
Power
Model

Performance
Feedback

MPC Optimizer

Optimizer

Performance

Power

Performance Counters
of Future Kernels

Performance
Counter Feedback

Performance
Target

Optimization
Headroom

HW config

Pred.
Perf/Power

Adaptive
Horizon

Generator

Performance Tracker

Horizon (H)

Kernel
Pattern

Extractor

MPC
Overhead

Fig. 6: MPC-based power management system.

prediction models does not guarantee global optimality, con-
tinuous feedback and proactive optimization can compensate
for prediction model inaccuracies.

A. MPC-Based Online Power Management

Figure 6 shows our proposed MPC-based runtime system
that attempts to minimize total energy across all kernels while
avoiding performance loss. The architecture has four key
components: (1) the optimizer, (2) the kernel pattern extractor,
(3) the power and performance predictor, and (4) the adaptive
prediction horizon generator. This framework runs as a CPU-
based software policy between successive GPU kernels.

1) Optimizer: In theory, MPC minimizes energy while at
least meeting the target performance. In our case, we target
the performance of the default power manager. The optimizer
runs the MPC algorithm to determine the per-kernel energy
optimal hardware configurations (number of GPU CUs; CPU,
GPU, and NB DVFS states) while maintaining the desired per-
formance. It also tracks the past performance and instruction
counts to determine the available execution time headroom.
This mechanism takes as input estimates from the power and
performance model, which we describe later.

a) Model Predictive Control: At each ith step (kernel
invocation, in this case), the MPC algorithm optimizes across
a window of the next Hi kernels. It determines the minimum
energy configuration across those Hi kernels that meets the
ongoing performance target and uses that configuration for
the current (ith) kernel. After the execution of that kernel,
the prediction window is shifted one kernel in time and the
process is repeated for the new window of Hi+1 kernels. The
performance tracker takes the past performance as feedback
and dynamically adjusts the execution time headroom for the
next optimization. Equation 3 shows the MPC formulation for
optimizing kernel energy across Hi future kernels under a
performance target for an ith kernel.

min−→s

i+Hi−1∑
j=i

Ej(sj)

such that∑i+Hi−1
j=1 Ij∑i+Hi−1

j=1 Tj(sj)
≥ Itotal

Ttotal
∀1 ≤ i ≤ N and ∀sj ∈ S

(3)

MPC Search Heuristic: Traditional MPC approaches use
computationally expensive backtracking [25], [26], [27] for
each timestep, which is infeasible given the timescales

of dynamic power management. While truly optimiz-
ing over multiple H kernels may require backtrack-
ing and involves O

(
N × (|−→cpu| × |

−→
nb| × |−−→gpu| × |−→cu|)H

)
searches, we employ greedy and heuristic approxima-
tions that permit a polynomial time complexity of
O
(
N × (|−→cpu|+ |

−→
nb|+ |−−→gpu|+ |−→cu|)×H

)
to approximate

the benefits of backtracking.
Our approach gathers per-kernel performance information

during the first invocation of a GPGPU program in order
to minimize the energy of future invocations. Using this
information, it determines a search order to optimize the
future kernels such that none of the optimized kernels are
revisited, thereby reducing the complexity from exponential
to polynomial.

The optimization algorithm attempts, in polynomial time, to
address two shortcoming of previous approaches such as PPK:
1) The inability to foresee future lower-throughput kernels,

which may reduce performance due to the inability to
“catch up” performance-wise for aggressively saving en-
ergy in earlier, high-throughput, kernels; and

2) The inability to foresee future higher-throughput kernels,
which may reduce energy savings due to the inability to
compensate for overly aggressive performance settings in
earlier, low-throughput, kernels.

At the conclusion of the execution of each kernel, our ap-
proach notes whether the accumulated application throughput
is above the overall target throughput. Those kernels for which
the overall throughput is above the target are grouped into the
above-target cluster and those remaining grouped as below-
target. The former group are ordered in increasing order by
individual kernel performance, and then the latter group in
decreasing order. The union of these two groups forms the
search order for the heuristic optimization.

Figure 7 shows an example execution of a hypothetical
irregular application, with the individual kernel (squares) and
accumulated application throughput (solid line) normalized to
the overall target throughput. The first three kernels (1, 2, 3)
are placed in the above-target group because their accumulated
runtime throughput values (solid line) are above the overall
target throughput (dashed line), while the remaining (4, 5, 6)
are placed in the below-target group. We order the above-
target group in increasing throughput order (squares). Hence,
the order is (3, 2, 1). The below-target group is ordered in
decreasing order; therefore the order is (6, 5, 4). The overall
search order becomes (3, 2, 1, 6, 5, 4).

With this order determined, the next time the application is
invoked, execution proceeds as follows:
Kernel 1: The optimization is performed in the order (3, 2, 1).
The algorithm first estimates the lowest energy configuration
for kernel 3 that at least meets the overall target throughput.
Any excess performance headroom carries over to kernel
2, for which the lowest energy configuration is found that
meets the new target. Any accumulated excess performance
headroom carries over to kernel 1, for which the lowest energy
configuration is estimated again. The algorithm anticipates the

0

1

2

3

4

1 2 3 4 5 6

N
o

rm
al

iz
ed

th

ro
u

gh
p

u
t

Kernel Execution Order

Kernel Throughput Runtime Throughput

Target

Fig. 7: An example showing the kernel throughout (squares)
and overall application throughput (solid line) during the
execution of a hypothetical irregular application. The y axis is
normalized to the overall target throughput.

future drop in throughput, which guards against aggressively
reducing kernel 1 performance such that it cannot be “made
up” in future low performance kernels 2 and 3.
Kernel 2: The optimization order is (3, 2). The algorithm
first finds the lowest energy configuration for kernel 3 that at
least meets the overall target throughput, taking into account
the overall performance thus far. Any excess performance
is carried over to kernel 2, for which the lowest energy
configuration is found.
Kernel 3: The optimization order is (3); that is, the optimiza-
tion only considers the current kernel.
Kernel 4: The optimization order is (6, 5, 4). Since the first
three kernels have already executed, they are no longer con-
sidered. At this point, the algorithm attempts to foresee future
higher-throughput kernels (6 and 5) in order to trade off
performance for increased energy savings for kernel 4.

Kernels 5 and 6 are optimized in a similar manner.
Greedy Hill Climbing Optimization: To reduce the search
overhead and avoid an exhaustive exploration of all possible
hardware configurations, we employ greedy hill climbing.

Among the hardware knobs, i.e., the DVFS states (CPU,
NB or GPU) and GPU CUs, the algorithm first estimates
their energy sensitivities2 using the prediction model, and
sorts them in descending order. The knob with the highest
energy sensitivity is selected first and then its corresponding
configuration is searched in a hill-climbing fashion such
that the predicted kernel energy continues to decrease while
meeting the default performance target. The search stops once
the energy increases. The optimization then continues with
the next highest energy sensitive knob, and so on. In the
event that the algorithm fails to meet the overall performance
requirements, it defaults to an empirically determined fail-safe
configuration of [P7, NB2, DPM4, 8 CUs].

While this approach compromises optimality, the number
of energy evaluations reduces from (|−→cpu| × |

−→
nb| × |−−→gpu| ×

|−→cu|) to (|−→cpu|+ |
−→
nb|+ |−−→gpu|+ |−→cu|), or a factor of 19×. The

greedy search in conjunction with the MPC heuristic reduces
the search cost by 65× compared to an exhaustive MPC search
involving backtracking, which makes our approach suitable for
runtime optimization.

b) Performance Tracker: The performance tracker dy-
namically adjusts the execution time headroom for MPC op-

2Ratio of predicted change in energy to change in configuration.

timization based on the desired performance target, execution
history of past kernels, and performance behavior of future
kernels. The performance requirement for an ith kernel is
enforced according to Equation 4.∑i−1

j=1 Ij + E[Ii]∑i−1
j=1 Tj(sj) + E[Ti(si)]

≥ Itotal
Ttotal

(4)

The headroom for MPC optimization is dynamically ad-
justed using the net performance of the past i − 1 kernels
and performance counters from the kernel pattern extractor.
The expected kernel time E[Ti], provided by the performance
predictor, must be within this updated headroom (Equation 5).
Significant performance slack provides the optimizer with the
opportunity to aggressively save energy. With less headroom,
the optimizer operates more conservatively, choosing higher
performance, and higher energy, configurations.

E[Ti(si)] ≤

(
i−1∑
j=1

Ij + E[Ii]

)/(
Itotal
Ttotal

)
−

i−1∑
j=1

Tj(sj) (5)

2) Kernel Pattern Extractor: GPGPU applications com-
monly execute many kernels in a regular order. As shown
in Section II-D, several applications present regular execu-
tion patterns. There may also be distinct patterns within the
same kernel across multiple invocations due to input data set
changes. We use these patterns to predict the future behavior
of the kernels and to store their performance counters for
future use by the optimizer. The mechanism we develop to
extract kernel execution patterns is composed of three steps:
(1) build the kernel execution list over time; (2) identify the
kernel signature; and (3) pass the future kernel information to
the optimizer.

The kernel pattern extractor samples the performance coun-
ters at runtime and stores them in a reduced format. These
performance counters are then used by our power and perfor-
mance predictor. The execution ordering list is dynamically
extracted when our framework first encounters the benchmark.
At this initial stage, our MPC framework simply runs PPK
while it dynamically extracts the pattern.

The pattern extractor implements the dynamic pattern ex-
tractor as proposed by Totoni et al. [28]. It identifies different
kernels through their signature, extracts the execution pattern
once it observes a repetitive behavior, and stores the ordering
along with the performance counters.

To find the kernel signatures at run-time, we first reduce
the number of performance counters to reduce the runtime
compute and storage overheads. This is done by clustering
the counters that are more correlated in a similar fashion as
Zhu and Reddi [29]. Based on the clustering, we select eight
representative performance counters that reflect any input data
and kernel characteristics, as presented in Table III. Our pattern
extractor stores eight of these performance counters along with
the kernel time and power as double-precision values, which
accounts for 80 bytes, for each dissimilar kernel.

Next, we approximate kernels with similar performance
by binning their counter values according to the following

TABLE III: GPU performance counters.

Name Description
GlobalWorkSize Global work-time size of the kernel.
MemUnitStalled Percentage of GPUTime the memory unit is stalled.

CacheHit Percentage of fetch, write, atomic, and other in-
structions that hit the data cache.

VFetchInsts Average number of vector fetch instructions from
video memory executed per work-item.

ScratchRegs Number of scratch registers used.

LDSBankConflict Percentage of GPUTime LDS is stalled by bank
conflicts.

VALUInsts Average number of vector ALU instructions exe-
cuted per work-item.

FetchSize Total kB fetched from video memory.

formula: bini = blog uc,∀u ∈ S, where S is the eight perfor-
mance counters. The tuple (bin1, ...bink) is the signature.

The kernel signature and the execution ordering together
maintain an indexed list of kernels. In successive iterations, the
pattern extractor identifies which kernel signature to expect in
the future and passes the corresponding performance counters
to the prediction model, and the expected instruction count to
the optimizer. It also dynamically updates the stored kernel
performance counter values based on the performance counter
feedback of the last executed kernel.

3) Performance and Power Predictor: The performance
and power predictor uses an offline trained model that predicts
the power and performance of a kernel. It takes as inputs the
performance counters of future kernels from the kernel pattern
extractor and the corresponding hardware configuration, and
provides the power and performance estimates of a kernel for
any desired hardware configuration.

Our performance and power model uses machine learning to
model the behavior of the integrated GPU. We use a Random
Forest regression algorithm [30] to capture the GPU power and
performance behavior. Random Forest is an ensemble learning
method that creates multiple regression trees for each random
subset of the training data. The predicted class is the mean
prediction from these individual regression trees. We selected
Random Forest because it gave the highest accuracy among
other learning algorithms.

For the kernel performance and power prediction, Random
Forest uses the kernel-level GPU performance counters, kernel
execution time, and GPU (including NB) power numbers for
several benchmark suites executed under different GPU/NB
configurations. Since the GPU and NB share the same voltage
plane, the GPU power numbers also capture the NB power
and the effect of changing NB configurations. The model is
trained offline and the system-level software implements the
predictor. The accuracy of this model is described in Section
VI-D. For CPU power prediction, we use a normalized V 2f
model because the CPU usually busy waits while the kernel
is executing.

4) Adaptive Horizon Generator: The choice of a horizon
length H is a tradeoff between the quality of the solution
and the computation overhead of the algorithm. The overhead
may be particularly problematic for applications with short
GPU kernels separated by short CPU times. Even with our
polynomial time MPC algorithm, the value of H must be

carefully chosen to avoid significant runtime overheads for
these applications.

To address this issue, we propose to dynamically adapt the
value of H on a per-kernel basis at runtime. The adaptive
horizon generator determines the horizon length Hi for each
upcoming ith kernel such that the total performance loss
(the MPC overhead plus the performance loss due to MPC
approximations and imperfect predictions) remains bounded.

To determine the horizon Hi for each ith kernel, we make
use of the information gathered on the first invocation of the
application, namely: (1) the number of kernels N , (2) the
average per-kernel horizon length N calculated from the search
order, and (3) the total time to run PPK during the initial
invocation TPPK .

The adaptive horizon generator determines a horizon length
Hi of the present ith kernel based on the estimated MPC
overhead (Hi × N

N × TPPK), the total execution times of
the previous i − 1 kernels (

∑i−1
j=1 Tj), the total MPC opti-

mization overhead incurred for the previous i − 1 kernels
(
∑i−1

j=1 TMPC,j), and the estimated execution time of the
present ith kernel (Ttotal/N). We attempt to bound the perfor-
mance penalty relative to the baseline Turbo Core execution
time so far, including the current kernel (i × Ttotal

/
N), to a

factor α, as shown below.

Hi × N
N × TPPK +

∑i−1
j=1(Tj + TMPC,j) + Ttotal

/
N

i× Ttotal
/
N

≤ 1+α

Solving for Hi, we get:

Hi ≤
N

N
(1 + α− 1

i)
i×Ttotal

N −
∑i−1

j=1(Tj + TMPC,j)

TPPK

We take the floor of Hi to create an integer value, and
further bound Hi to be between 0 and N .

V. EXPERIMENTAL METHODOLOGY

In this paper, we use an AMD A10-7850K APU as our
experimental platform. We use this APU in our studies be-
cause, due to its more stringent thermal constraints, it more
aggressively manages power compared to discrete GPUs. The
core concepts, observations, and insights from this work are
also applicable to other heterogeneous processors.

We implemented the MPC framework on the host CPU of
the AMD A10-7850K APU running at the hardware config-
uration of [P5, NB0, DPM0 and 2 CUs]. The CPU runs the
MPC algorithm between GPU kernel invocations. While in a
real implementation, there may be an idle CPU available to run
the algorithm during CPU phases between the GPU kernels,
we assume a worst-case scenario in which the GPU kernel
invocations occur back-to-back, or a CPU is not available
to run the algorithm during the CPU phase. In our studies,
the horizon length generator attempts to limit the maximum
performance loss to an α of 0.05 (5%).

In order to simulate our approach as well as competing
schemes, we captured performance and power data on the

TABLE IV: Benchmarks with their execution pattern.

Category Benchmarks Benchmark Suite Reg. Exp.

Regular

mandelbulbGPU Phoronix [31] A20

NBody AMD APP SDK [32] A10

lbm Parboil [33] A10

Irregular w/
repeating
pattern

EigenValue AMD APP SDK [32] (AB)5

XSBench Exascale (ABC)2

Irregular w/
non-repeating
pattern

Spmv [17] SHOC [34] A10B10C10

kmeans Rodinia [18] AB20

Irregular w/
kernels varying
with input

swat OpenDwarfs [35]

No pattern.
Multiple
iterations of
a same
kernel
varying with
input
arguments.

color Pannotia [36]

pb-bfs Parboil [33]

mis Pannotia [36]

srad Rodinia [18]

lulesh Exascale

lud Rodinia [18]

hybridsort Rodinia [18]

AMD hardware for 336 APU hardware configurations by
varying the CPU, NB and three out of five GPU DVFS states
as shown in Table I, and changing the number of active GPU
CUs from 2 to 8 in steps of 2. We use AMD CodeXL to
capture the runtime GPU performance counters and measure
CPU and GPU power from the APU’s power management
controller at 1ms intervals. The NB power is included in the
GPU measurement, since they share the same voltage rail.
This extensive power and performance information, which
is captured at run-time for the individual kernels for each
of the benchmark suites described in the next subsection,
permits accurate comparison of the performance and energy
use of different power management schemes with respect to
the baseline AMD Turbo Core approach.

A. GPGPU Benchmarks

We study 73 benchmarks from 9 popular benchmark suites
and sample 15 of them (Table IV) that have wide-ranging be-
havior and utilize the hardware in different ways. Within the 73
benchmarks we studied, we found that 75% are irregular and
44% of the kernels varied significantly with input. To represent
such a distribution, we categorize our benchmarks according
to their kernel execution pattern. Regular benchmarks have
a single kernel that iterates multiple times; we include these
to show that MPC does not degrade performance or energy
efficiency for regular applications. Irregular applications are
categorized into the ones with repeating and non-repeating
kernel patterns, and those that vary with inputs.

B. Baseline Schemes

We report the energy and performance improvements with
respect to the default Turbo Core scheme in the AMD A10-
7850K [37]. Turbo Core is a state-of-the-practice technique
that balances power and performance under thermal con-
straints. It controls the DVFS states based on the recent re-
source utilization, and shifts power between the GPU and CPU
based on their recent load. For these GPGPU applications,

the CPU busy waits while the GPU is executing the kernel.
Therefore, Turbo Core does not drop the CPU DVFS states as
long as the system stays within its TDP.

We also compare our MPC method to the PPK and TO
schemes described in Section III. PPK represents the state-of-
the-art predictive techniques for GPGPU benchmarks that do
not consider future kernel behavior [8], [9], [19], while TO is
an impractical scheme that demonstrates what is theoretically
possible. Furthermore, since the CPU is mostly busy-waiting,
due to the nature of the available benchmarks, we also compare
the energy savings both with and without the CPU energy to
provide a fair assessment.

Upon encountering the benchmark for the first time, all the
schemes run PPK, while dynamically extracting the kernel
execution pattern. At this stage, our framework starts with
no stored knowledge. The very first kernel is run at fail-
safe since no performance counters are available to predict its
power and performance. Subsequently, PPK uses the previous
kernel’s performance counters to predict the next kernel’s
energy-optimal configuration.

VI. RESULTS

In this section, we first show the benefits of MPC after
the initial run of the application has been performed, and
then explore how the initial energy and performance losses
of running PPK the first time are amortized over multiple
executions, as encountered in real-world applications. Unless
otherwise stated, all of our results include the energy and
performance overheads of the MPC and PPK optimizations.

A. Energy-Performance Gains

Figure 8 compares the energy savings and performance
impact of PPK and MPC over AMD Turbo Core. MPC fares
similarly to PPK for the three regular benchmarks with a single
repeating kernel. However, the differences are pronounced for
the irregular benchmarks whose complex patterns benefit from
additional future knowledge. Here, MPC considers the future
kernel behavior and mitigates the performance losses of look-
ing only a single kernel into the future, while simultaneously
saving energy. Overall, including the MPC overheads, MPC
achieves a 24.8% energy savings over Turbo Core with a 1.8%
performance loss. Except srad, MPC achieves a maximum
performance loss of 3.8% for hybridsort. This is because
MPC adaptively tunes the MPC horizon and restricts the total
performance loss to 5%. The 15.7% performance loss for srad
represents a worst-case scenario for our MPC approach with
imperfect prediction. Here, the prediction model mispredicts
during the last phases of srad, and MPC is unable to recover
from the performance loss.

Figure 9 shows the results of MPC with respect to PPK,
which include the optimization overheads. Unlike the PPK
approach described in Section II-E with perfect performance
and power prediction, for a fair comparison, this version
uses Random Forest for power and performance prediction
as with MPC. Among the regular benchmarks, PPK works
well for mandelbulbGPU and NBody because the same kernel

0.6
0.7
0.8
0.9

1
1.1

Sp
ee

d
u

p

0
10
20
30
40
50
60

En
er

gy
 S

av
in

gs
 (

%
)

Predict Previous Kernel MPC

(a)

(b)

Fig. 8: PPK and MPC (a) energy savings and (b) speedup over
AMD Turbo Core.

-5

0

5

10

15

20

En
er

gy
 S

av
in

gs
 (

%
)

0.8

0.9

1

1.1

1.2

1.3

Sp
ee

d
u

p

(a)

(b)

Fig. 9: MPC (a) energy savings and (b) speedup over PPK.

is iterated and the kernels are input independent. For these
benchmarks, MPC does not show an advantage.

MPC significantly outperforms PPK for the 12 irregular
benchmarks, where PPK often mispredicts the next kernel
behavior, achieving 12% greater performance than PPK while
simultaneously reducing energy by 7.5%. For these bench-
marks, PPK suffers an 8–26% performance loss compared
to AMD Turbo Core (Figure 8). This is due to next kernel
misprediction in conjunction with the inability to proactively
change decisions based on future kernel behavior. In contrast,
MPC foresees the ability to catch up on the lost performance
due to mispredictions in future kernels. For example, for srad,
MPC outperforms PPK by 15%. MPC performs particularly
well for the irregular benchmarks with kernels with varying
input, outperforming PPK by 12.3% while reducing energy
by 9.7%. For XSBench, MPC consumes more energy than
PPK by choosing higher power configurations to reduce the
performance loss. Overall, MPC outperforms PPK by 9.6%
while reducing energy by 6.6%.

The CPU’s contribution to the overall MPC energy savings
over Turbo Core is 75%, while the GPU contributes 25%.

-35

-15

5

25

45

G
P

U
 E

n
er

gy
 S

av
in

gs
 (

%
) Predicted Previous Kernel MPC

Fig. 10: GPU energy savings over AMD Turbo Core.

-5

0

5

10

15

20

En
er

gy
 S

av
in

gs
 (

%
)

1 10 100 Steady state

0.8

0.9

1

1.1

1.2

1.3

Sp
ee

d
u

p

(a)

(b)

Fig. 11: MPC (a) energy savings, and (b) speedup relative
to PPK when the benchmarks are re-executed the specified
number of times after the initial execution.

This is because MPC intelligently lowers the CPU state as it
does not improve the kernel execution time, whereas Turbo
Core keeps the CPU at a higher DVFS state as long as the
system is operating within its TDP limit. For this reason, we
also show the GPU energy savings of MPC over Turbo Core
in Figure 10. These energy savings also includes the static
energy overhead of the GPU during MPC optimization.

The highest savings (51%) is achieved for lbm because
its kernels exhibit peak behavior. For other benchmarks, the
savings is not as large, but still significant (3-20%), which
leads to an overall energy savings of 10%. For EigenValue
and XSBench, PPK shows higher GPU energy savings than its
chip-wide savings. This is because PPK lowers the CPU and
GPU power states while significantly increasing the execution
time, thereby resulting in higher CPU energy. Compared with
PPK, MPC achieves an average GPU energy savings of 5.1%
while simultaneously improving performance by 9.6%.

B. Amortization of Initial Losses

Our approach benefits from repeated application execution
to achieve gains. The initial losses of running PPK for the first
execution can be amortized over these repeated executions.
Figure 11 shows the energy savings and performance loss of
MPC compared to PPK when the benchmarks are re-executed
the specified number of times after the initial execution. The
energy savings and performance loss includes the associated
overheads. The steady state value is the ideal case with no
initial losses during the profiling. Non-negligible gains are

-10

10

30

50

70
En

er
gy

 S
av

in
gs

 (
%

)
MPC Theoretically Optimal

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Sp
ee

d
u

p

(a)

(b)

Fig. 12: Comparison with Theoretical Limit. (a) Energy sav-
ings and (b) speedup over AMD Turbo Core.

observed with just a single repeated execution, and most of the
full gains are observed after only ten re-executions, indicating
that MPC can significantly improve the energy efficiency of
real-world workloads that repeatedly re-execute.

C. Comparison with Theoretical Limit

In this section, we explore how closely our polynomial-time
heuristic MPC approach matches the theoretically achievable
savings by comparing against the exponential-time Theoret-
ically Optimal (TO) scheme. We assume perfect prediction,
no MPC overhead, exhaustive search of all hardware config-
uration for each kernel, and a horizon length of all kernels.
Figure 12 shows the results.

As expected, MPC performs similarly to TO for regular
benchmarks. In general, MPC benefits from looking into the
future behavior of all the kernels, and thus achieves near-
optimal energy savings and performance gains. In particular,
pb-bfs, mis and lud show lower energy savings than TO,
while EigenValue, mis and Spmv suffer a slight performance
loss. This is because the effectiveness of MPC is highly
sensitive to its search order, which is derived based on the
sub-optimal PPK-based profiling. Overall, MPC achieves 92%
of the maximum theoretical energy savings and 93% of the
potential performance gain.

D. Ramification of Prediction Inaccuracy

The Mean Absolute Percentage Errors of our Random
Forest prediction model over the 15 benchmarks are 25%
and 12% for performance and power respectively. The high
performance error is due to diverse performance scaling trends
and the presence of outliers with unexpected performance
behavior. In this section, we examine the potential loss in
energy savings by our RF-based MPC compared to a MPC
using a perfect prediction model. We consider a horizon length
equal to the number of kernels and exclude the MPC overhead.

Figure 13 compares our Random Forest based MPC imple-
mentation (RF) with MPC implementations based on the accu-

0

20

40

60

80

En
er

gy
 S

av
in

gs
 (

%
) RF Err_15%_10% Err_5% Err_0%

0.8
0.9

1
1.1
1.2
1.3

Sp
ee

d
u

p

(a)

(b)

Fig. 13: Ramification of prediction inaccuracy on energy-
performance tradeoff.

racy of recently published prediction models. Err 15% 10%
assumes prediction inaccuracies of 15% and 10% for perfor-
mance and power respectively, as reported by Wu et al. [38].
Similarly, Err 5% considers prediction inaccuracy of 5%, as
reported for Paul et al. [8]. A prediction model with no errors is
represented by Err 0%. To implement these prediction models,
we assume a half random normal distribution [39], with its
absolute mean equal to the corresponding average error.

From Figure 13, RF behaves similar to Err 15% 10%. RF is
better for mandelbulbGPU and XSBench, while Err 15% 10%
is better for kmeans, swat and srad. On average, the energy
savings of other models range from 27-28%, while RF’s
savings is 25%. Similarly, other prediction models improve
performance by 1.7-3%, while RF decreases performance by
1.7%. The reason that the energy and performance results are
not highly sensitive to prediction accuracy is that MPC relies
on the prediction models far less (a factor of 65×) than exhaus-
tive search. It also takes the runtime performance as feedback
and thus further rectifies the impact of these mispredictions
by dynamically updating the performance headroom. The
result is comparable energy savings with minor differences
in performance.

E. MPC Overheads and Horizon Length

Figure 14 shows the MPC energy and performance over-
heads with respect to Turbo Core when adapting the horizon
length for an α of 0.05 (5%). The average energy overhead
is 0.15% (maximum of 0.53% for Spmv) with a performance
overhead of 0.3% (maximum of 1.2% for Spmv). The over-
heads consider a worst case situation when kernels appear
back-to-back with no CPU phases in between, or when there
are no available CPUs to run the algorithm during CPU phases.
In practice, GPGPU application kernels may be separated by
CPU phases with an available CPU, which can hide the MPC
overheads. As a result, the actual overheads will be lower,
permitting longer horizon lengths to improve performance.

Figure 15 shows the average MPC horizon length as a
percentage of N , the total number of kernels in an appli-
cation. Benchmarks NBody, lbm, EigenValue and XSBench

(a)

(b)

0

0.2

0.4

0.6
M

P
C

 E
n

er
gy

O

ve
rh

ea
d

 (
%

)

0

0.4

0.8

1.2

M
P

C
 P

er
fo

rm
an

ce

O
ve

rh
ea

d
 (

%
)

Fig. 14: MPC (a) energy and (b) performance overheads with
respect to Turbo Core.

0
20
40
60
80
100

%
 A

vg
.

H
o

ri
zo

n
 L

e
n

gt
h

 r
e

l.

to
 n

u
m

b
e

r
o

f
ke

rn
e

ls

Fig. 15: Average MPC horizon as a percentage of the total
number of kernels.

have long kernels, which permits MPC to explore the full
horizon. For MandelbulbGPU, kmeans and swat, the horizon
length generator initially selects a low horizon length before
determining that there is enough performance margin to use
the full horizon. The full horizon is initially selected for
srad, but lowered when encountering a performance loss due
to misprediction. For the remaining benchmarks, the horizon
length generator shrinks the horizon length significantly to
limit the overheads since they have shorter kernel lengths.

We compare our adaptive horizon MPC scheme with one
that uses full horizon. When ignoring overheads, the full-
horizon MPC approach reduces energy by only 2.6% com-
pared to our adaptive scheme, with similar performance im-
pact. When the MPC overheads are included, the full-horizon
scheme achieves a 15.4% energy savings over Turbo Core,
with a performance loss of 12.8%, compared to 24.8% energy
savings with a 1.8% performance loss for the adaptive scheme.

VII. RELATED WORK

Among the reactive power-performance optimization stud-
ies, Pegasus captures the historical latency statistics to dy-
namically control the CPU DVFS states [40], while Sethia and
Mahlke’s Equalizer [9] monitors the performance counters and
reactively tunes the GPU knobs to operate under performance
boost or energy efficiency mode.

Other prior work [41], [42], [43] propose analytical esti-
mation models, while [38], [44], [45], [46] present learning
or statistical models. Optimizing power efficiency using these
estimation models has been proposed by [19], [46], [47],
[48], [49]. All of these locally predictive studies use the past

behavior to represent the immediate phase, while Chen et
al. [12] predicts the execution time of the immediate next
phase of the embedded applications. These schemes do not
use feedback to fine-tune, and therefore are unable to recover
from the past performance losses.

Within the feedback-driven power management schemes,
Paul et al. [8] train linear regression models to predict per-
formance and power sensitivities and use two levels of tuning
to adapt based on the past performance trend at the kernel
level, without across-kernel considerations. Our PPK scheme
represents such state-of-the-art future agnostic schemes. For
applications with irregular throughput phases, we demonstrate
significant reduction in performance loss with substantial
energy savings over such schemes.

VIII. CONCLUSION

This paper presents a dynamic power management scheme
for GPGPU applications using Model Predictive Control
(MPC). MPC anticipates future kernel behavior and makes
proactive decisions to maximize energy efficiency with min-
imum impact on performance. We devise a variant of MPC
that uses greedy and heuristic approximations and adaptively
tunes the horizon length to permit a low overhead practi-
cal runtime implementation. Our scheme achieves significant
energy savings with negligible performance loss compared
to the AMD Turbo Core power manager, and both energy
savings and performance improvement over current history-
based approaches.

AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

REFERENCES

[1] S. Nussbaum, “AMD “Trinity” APU.” Presented at Hot Chips, August
2012.

[2] P. Dongara, L. Bircher, and J. Darilek, “AMD Richland Client APU.”
Presented at Hot Chips, August 2013.

[3] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-
mann, “Power-Management Architecture of the Intel Microarchitecture
Code-Named Sandy Bridge,” IEEE Micro, vol. 32, pp. 20–27, March
2012.

[4] E. Rotem, R. Ginosar, C. Weiser, and A. Mendelson, “Energy Aware
Race to Halt: A Down to EARtH Approach for Platform Energy
Management,” Computer Architecture Letters, vol. 13, pp. 25–28, Jan–
June 2012.

[5] E. Rotem, “Intel Architecture, Code Name Skylake Deep Dive: A New
Architecture to Manage Power Performance and Energy Efficiency.”
Presented at Intel Developer Forum, August 2015.

[6] H. Wang, V. Sathish, R. Singh, M. J. Schulte, and N. S. Kim, “Work-
load and Power Budget Partitioning for Single-chip Heterogeneous
Processors,” in Proc. of the Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), 2012.

[7] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in Proc. of the Int’l Symp. on Computer Architecture
(ISCA), 2013.

[8] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing
Compute and Memory Power in High Performance GPU,” in Proc. of
the Int’l Symp. on Computer Architecture (ISCA), 2015.

[9] A. Sethia and S. Mahlke, “Equalizer: Dynamic Tuning of GPU Re-
sources for Efficient Execution,” in Proc. of the Int’l Symp. on Microar-
chitecture (MICRO), 2014.

[10] J. Guerreiro, A. Ilic, N. Roma, and P. Tomas, “Multi-Kernel Auto-Tuning
on GPUs: Performance and Energy-Aware Optimization,” in Proc. of
the Int’l. Conf. on Parallel, Distributed and Network-Based Processing
(PDP), 2015.

[11] A. McLaughlin, I. Paul, J. L. Greathouse, S. Manne, and S. Yala-
manchili, “A Power Characterization and Management of GPU Graph
Traversal,” in Workshop on Architectures and Systems for Big Data
(ASBD), 2014.

[12] T. Chen, A. Rucker, and G. E. Suh, “Execution Time Prediction for
Energy-efficient Hardware Accelerators,” in Proc. of the Int’l Symp. on
Microarchitecture (MICRO), 2015.

[13] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. McCard-
well, A. Villegas, and D. Kaeli, “Hetero-Mark, A Benchmark Suite for
CPU-GPU Collaborative Computing,” in Proc. of the IEEE Int’l Symp.
on Workload Characterization (IISWC), 2016.

[14] O. Kayiran, A. Jog, M. Kandemir, and C. Das, “Neither More Nor Less:
Optimizing Thread-level Parallelism for GPGPUs,” in Proc. of the Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
2013.

[15] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU Resource Utilization Through Alternative Thread
Block Scheduling,” in Proc. of the Int’l Symp. on High Performance
Computer Architecture (HPCA), 2014.

[16] J. Lee, P. P. Ajgaonkar, and N. S. Kim, “Analyzing Throughput of
GPGPUs Exploiting Within-Die Core-to-Core Frequency Variation,”
in Proc. of the Int’l Symp. on Performance Analysis of Systems and
Software (ISPASS), 2011.

[17] J. L. Greathouse and M. Daga, “Efficient Sparse Matrix-Vector Mul-
tiplication on GPUs Using the CSR Storage Format,” in Proc. of the
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2014.

[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proc. of the IEEE Int’l Symp. on Workload Characterization
(IISWC), 2009.

[19] I. Paul, V. Ravi, S. Manne, M. Arora, and S. Yalamanchili, “Coordinated
Energy Management in Heterogeneous Processors,” in Proc. of the Conf.
on High Performance Computing, Networking, Storage and Analysis
(SC), 2013.

[20] M. R. Garey and D. S. Johnson, ““ Strong ” NP-Completeness Results:
Motivation, Examples, and Implications,” Journal of ACM, vol. 25,
pp. 499–508, July 1978.

[21] A. Majumdar, J. L. Setter, J. R. Dobbs, B. M. Hencey, and D. H.
Albonesi, “Energy-Comfort Optimization using Discomfort History and
Probabilistic Occupancy Prediction,” in Proc. of the Int’l. Green Com-
puting Conference (IGCC), 2014.

[22] R. Van Der Linden and A. P. Leemhuis, “The Use of Model Predictive
Control for Asset Production Optimization: Application to a Thin-Rim
Oil Field Case,” in SPE Annual Technical Conference and Exhibition,
Society of Petroleum Engineers, 2010.

[23] T. Le, H. L. Vu, Y. Nazarathy, B. Vo, and S. Hoogendoorn, “Linear-
Quadratic Model Predictive Control for Urban Traffic Networks,” in
Proc. of the Int’l Symp. on Transportation and Traffic Theory, 2013.

[24] A. Marquez, C. Gomez, P. Deossa, and J. Espinosa, “Infinite Horizon
MPC and Model Reduction Applied to Large Scale Chemical Plant,”
in Proc. of the Robotics Symposium, Latin American and Colombian
Conference on Automatic Control and Industry Applications (LARC),
2011.

[25] J. Löfberg, Minimax Approaches to Robust Model Predictive Control,
vol. 812. Linköping University Electronic Press, 2003.

[26] M. H. Chauhdry and P. B. Luh, “Nested Partitions for Global Opti-
mization in Nonlinear Model Predictive Control,” Control Engineering
Practice, vol. 20, no. 9, pp. 869 – 881, 2012.

[27] Y. Wang and S. Boyd, “Fast Model Predictive Control Using Online
Optimization,” IEEE Trans. on Control Systems Technology, vol. 18,
pp. 267–278, March 2010.

[28] E. Totoni, J. Torrellas, and L. V. Kale, “Using an Adaptive HPC Runtime
System to Reconfigure the Cache Hierarchy,” in Proc. of the Conference
on High Performance Computing, Networking, Storage and Analysis
(SC), 2014.

[29] Y. Zhu and V. J. Reddi, “High-performance and Energy-Efficient Mobile
Web Browsing on Big/Little Systems,” in Proc. of the Int’l Symp. on
High Performance Computer Architecture (HPCA), 2013.

[30] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[31] “PHORONIX TEST SUITE.” http://www.phoronix-test-suite.com/.
[32] “APP SDK - A Complete Development Platform.” http:

//developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-
parallel-processing-app-sdk/.

[33] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. W. Hwu, “Parboil: A Revised Benchmark
Suite for Scientific and Commercial Throughput Computing,” Tech. Rep.
IMPACT-12-01, University of Illinois at Urbana-Champaign, March
2012.

[34] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The Scalable Heterogeneous
Computing (SHOC) Benchmark Suite,” in Proc. of the Workshop on
General-Purpose Computation on Graphics Processing Units (GPGPU),
2010.

[35] W. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the 13
Dwarfs: A Work in Progress,” in Proc. of the Int’l Conf. on Performance
Engineering (ICPE), 2012.

[36] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding Irregular GPGPU Graph Applications,” in Proc. of the
IEEE Int’l Symp. on Workload Characterization (IISWC), 2013.

[37] Advanced Micro Devices, Inc, BIOS and Kernel Developer’s Guide
(BKDG) for AMD Family 15h Models 30h-3Fh Processors, February
2015.

[38] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU Performance and Power Estimation Using Machine Learning,”
in Proc. of the Int’l Symp. on High Performance Computer Architecture
(HPCA), 2015.

[39] R. H. Byers, Half-Normal Distribution. John Wiley & Sons, Ltd, 2005.
[40] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,

“Towards Energy Proportionality for Large-scale Latency-critical Work-
loads,” in Proc. of the 41st Annual Int’l Symp. on Computer Architecture,
ISCA ’14, pp. 301–312, 2014.

[41] B. Su, J. L. Greathouse, J. Gu, M. Boyer, L. Shen, and Z. Wang,
“Implementing a Leading Loads Performance Predictor on Commodity
Processors,” in Proc. of the USENIX Annual Technical Conf. (USENIX
ATC), 2014.

[42] S. Hong and H. Kim, “An Integrated GPU Power and Performance
Model,” in Proc. of the Int’l Symp. on Computer Architecture (ISCA),
2010.

[43] C. Isci and M. Martonosi, “Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data,” in Proc. of the Int’l Symp.
on Microarchitecture (MICRO), 2003.

[44] B. C. Lee and D. M. Brooks, “Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Prediction,”
in Proc. of the Int’l Symp. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

[45] C. Zhang, A. Ravindran, K. Datta, A. Mukherjee, and B. Joshi, “A
Machine Learning Approach to Modeling Power and Performance of
Chip Multiprocessors,” in Proc. of the Int’l Conf. on Computer Design
(ICCD), 2011.

[46] G. Dhiman and T. S. Rosing, “Dynamic Power Management Using
Machine Learning,” in Proc. of the Int’l Conf. on Computer-Aided
Design (ICCAD), 2006.

[47] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
de Supinski, and M. Schulz, “Prediction Models for Multi-dimensional
Power-Performance Optimization on Many Cores,” in Proc. of the Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
2008.

[48] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopou-
los, “Online Power-performance Adaptation of Multithreaded Programs
Using Hardware Event-based Prediction,” in Proc. of the Int’l Conf. on
Supercomputing (ICS), 2006.

[49] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang,
“PPEP: Online Performance, Power, and Energy Prediction Framework
and DVFS Space Exploration,” in Proc. of the Int’l Symp. on Microar-
chitecture (MICRO), 2014.

http://www.phoronix-test-suite.com/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/

