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ABSTRACT
Modern processing systems with heterogeneous components (e.g.,
CPUs, GPUs) have numerous configuration and design options
such as the number and types of cores, frequency, and memory
bandwidth. Hardware architects must perform design space explo-
rations in order to accurately target markets of interest under tight
time-to-market constraints. This need highlights the importance of
rapid performance and power estimation mechanisms.

This work describes the use of machine learning (ML) techniques
within a methodology for the estimating performance and power
of heterogeneous systems. In particular, we measure the power and
performance of a large collection of test applications running on
real hardware across numerous hardware configurations. We use
these measurements to train a ML model; the model learns how the
applications scale with the system’s key design parameters.

Later, new applications of interest are executed on a single con-
figuration, and we gather hardware performance counter values
which describe how the application used the hardware. These val-
ues are fed into our ML model’s inference algorithm, which quickly
identify how this application will scale across various design points.
In this way, we can rapidly predict the performance and power of
the new application across a wide range of system configurations.

Once the initial run of the program is complete, our ML algo-
rithm can predict the application’s performance and power at many
hardware points faster than running it at each of those points and
with a level of accuracy comparable to cycle-level simulators.

CCS CONCEPTS
•Computer systems organization→Heterogeneous (hybrid)
systems; •Hardware→ Power estimation and optimization;
•Computingmethodologies→Machine learning; Simulation
types and techniques; Graphics processors;

KEYWORDS
Design exploration, Heterogeneous system design, Performance
counters, Performance estimation, Power estimation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3243484

ACM Reference Format:
Joseph L. Greathouse and Gabriel H. Loh. 2018. Machine Learning for Per-
formance and Power Modeling of Heterogeneous Systems: (Invited Paper).
In IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DE-
SIGN (ICCAD ’18), November 5–8, 2018, San Diego, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3240765.3243484

1 INTRODUCTION
Two of the most important aspects in hardware design are the
performance and the power usage of a product. Various market
segments trade off computational performance with cost, size, pro-
grammability, power, and energy usage. Some of these goals can
be statically calculated when defining a product. However, perfor-
mance and power (and thus energy) can be difficult to estimate
because they are a function not just of the hardware, but of the
programs and inputs that will be run on the hardware.

Hardware designers can spend a great deal of time simulating
their designs to ensure that they will meet market criteria. Unfor-
tunately, highly accurate simulations often run slowly, require an
inordinate amount of time to configure, and can only simulate short
windows of time. Such low-level simulations are important for vali-
dation, catching problems before expensive tape-outs, and testing
deep microarchitectural changes. However, they are inadequate for
exploring the higher-level system design space.

Even when the microarchitecture of blocks like CPUs, GPUs, and
memory controllers are complete, modern hardware designers must
combine these pieces into a useful heterogeneous system [4]. These
systems may require different high-level design points, depend-
ing on the target market and the applications of interest. Table 1
demonstrates multiple heterogeneous processors that are built from
similar GPU components. Each of these systems is configured to
meet particular market needs. More parallel compute units and
higher frequencies and bandwidth may increase performance, but
they can also increase area, power, and design complexity.

Table 1 Heterogeneous systems with various high-level design pa-
rameters that are all built from similar microarchitectural blocks.

Max. Max.
Name CUs Freq. DRAM BW

(MHz) (GB/s)
AMD E1-6010 APU[9] 2 350 11

AMD A10-7850K APU[1] 8 720 35
Microsoft Xbox One™ processor[3] 12 853 68
Sony PlayStation 4 processor[3] 18 800 176
AMD Radeon™ R9-280X GPU[2] 32 1000 288
AMD Radeon™ R9-290X GPU[2] 44 1000 352
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Figure 1 An example of a how applications may run on a heterogeneous system. Parallel “segments” of the application have some happens-
before relationship. A high-level simulation can estimate the performance and power of these segments and find the critical path through
the application to estimate total application performance and power.

An important step in the hardware design process is early hard-
ware design space exploration. Analyzing the viability of a het-
erogeneous system design for applications of interest helps shape
the final product and reduces the number of systems that must be
studied using more complex low-level simulations. For instance, if
a customer’s application is found to be heavily bandwidth-bound,
high-level explorations will focus design efforts on systems with
more bandwidth; computational capabilities might be safely sacri-
ficed to meet cost and power constraints in this case.

This paper describes work done in AMD to build high-level
simulation techniques that allow rapid design space exploration
of heterogeneous system. We will describe how to use machine
learning (ML) techniques to quickly estimate the power and per-
formance of applications under test while varying the high-level
design parameters of heterogeneous processors.

We train our ML model by running numerous applications on
existing hardware while varying hardware design parameters such
as core frequency, memory bandwidth, and number of active paral-
lel processors. While running these applications, we measure the
performance and power of the application as well as hardware per-
formance counters; we then use these measurements to ascertain
the performance and power scaling curves of these applications.
We automatically cluster these curves together into groups of ap-
plications that scale like one another and train a neural network to
associate performance counter measurements with each cluster.

When we find new applications of interest that we wish to ana-
lyze, we can then run it at a single hardware point and measure its
performance, power, and hardware performance counters. We can
then put these measured performance counters through the neu-
ral network to estimate what the performance and power scaling
curves of this application would look like. This allows us to rapidly
model the performance and power of this application at different
hardware configurations, increasing the speed at which we can
study designs. This, in turn, allows us to study a wider range of
applications when trying to make hardware design decisions.

2 HETEROGENEOUS SYSTEM ANALYSIS
Heterogeneous systems are built from various computational com-
ponents, such as CPUs and accelerators like GPUs. In this paper, we
focus on systems with CPUs and GPUs, but we believe the general
methodology presented here could be useful for studying systems
with other types of accelerators. In such heterogeneous systems,
parallel work is launched to these components, and various parts of
the application depend on one another at synchronization points.

At a high level, this paper describes a trace-based simulator
that gathers performance and ordering information while running
a program-under-test on commodity hardware. These traces are
saved for later use in offline power and performance models. The
tool then uses the estimated performance and power information,
ordering constraints, and a description of the simulated machine to
estimate how the program would run on the simulated hardware.

Figure 1 illustrates how an application running on various de-
vices in a heterogeneous system may run. It is possible to divide
the application into parallel segments with some happens-before
relationship between them. These segments may be divided at, for
instance, library calls or changes in program phase [13]; segments
in the same thread are ordered by their serial execution order, while
segments that can run in parallel can be ordered by API calls.

This simulator uses performance and power estimation mech-
anisms to model how the each of these segments changes with
system configuration. Changes in an individual segment may not
have proportional effects on the final application; for example,
doubling the performance of segment 4 will not affect the total
performance of the application, since it is not on the critical path.

We described this system-wide trace-based analysis in more
depth at ModSim 2013 [7]. This paper focuses on how we may esti-
mate the performance and power changes of these segments after
we have gathered application data from existing hardware. We de-
scribed in previous works how to estimate performance and power
changes caused by high-level CPU design changes [15, 16]. This
paper focuses on estimating the power and performance changes
of GPU segments as we modify GPU design parameters [19].

3 GPU KERNEL SCALING
GPUs gain much of their performance from running many parallel
compute units (CUs) at a moderate frequency in conjunction with
a high-bandwidth memory system. Work is often asynchronously
launched to the GPU, and threads on the CPU may perform other
work in parallel with these GPU kernels. GPUs can be configured
in a variety of ways to meet performance and power demands; CU
counts, operating frequency, and available bandwidth can all vary
widely (as shown in Table 1). As such, our first step is to study how
GPU kernels scale as we change these parameters; more details
about this study were presented at IISWC 2015 [11].

We performed a series of studies on AMD FirePro™W9100 GPU;
we varied the core frequency between 200 MHz and 1 GHz at 100
MHz increments and changed the number of active CUs from 4 to
44, in steps of 4. Similarly, we change the frequency of the GDDR5
connections from 150 MHz to 1250 MHz (inclusive), in 110 MHz
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(a) Compute-Bound Kernel
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(b) Memory-Bound Kernel
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(c) Balanced Kernel
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(d) Flat Kernel

Figure 2 These figures illustrate how the performance of kernels that run on a GPU may scale as computational capability (controlled by
frequency and number of parallel compute units) and memory bandwidth change.

increments, yielding a range of 38.4-320 GB/s. This allows us to
study how the performance of our test applications changed as the
hardware configuration was modified. We explored 97 OpenCL™
applications and took measurements for 267 of their kernels.

Figure 2 demonstrates some of the performance scaling curves
we observed; we saw similar scaling effects with power. For ex-
ample, Figure 2a illustrates a traditional compute-bound kernel.
As core frequency changes, the GPU can perform more computa-
tion per unit time; performance in these kernels scales with this
computational throughput, regardless of available bandwidth. In
contrast, Figure 2b illustrates a kernel that is almost entirely bound
by memory bandwidth. Only when the computational throughput
of the chip is very low does it affect this kernel’s performance.

Unlike these two straightforward scaling curves, Figure 2c illus-
trates a slightly more complex curve; in this case, the performance
of the kernel can depend on either computational throughput or
memory bandwidth, depending on the ratio between the two. Es-
sentially, this curve is sketching out the roofline of the kernel [18].
Finally, Figure 2d shows the performance scaling of a kernel that ap-
pears to be poorly suited for running on a GPU; in this case, neither
bandwidth nor more CUs helps its performance. Such situations
often occur if there is not enough parallelism in the kernel to take
advantage of the GPU.

We illustrate these various scaling curves to show that the per-
formance and power of GPU kernels can scale in broadly similar
fashions. To quantify this similarity, we automatically categorized
the performance scaling behavior of the kernels in our tests. This
is inspired by previous benchmark studies [5, 12].

We first constructed a matrix where each row represents the ker-
nel and the columns indicate the normalized performance for each
of the hardware configurations. Because this type of matrix is very
large, it is difficult for clustering algorithms to draw meaningful
conclusions. Motivated by this, we applied principal component
analysis (PCA) to reduce the dimensionality of this matrix.

We then ran hierarchical agglomerative clustering (HAC) to
generate a dendrogram, which clusters the kernel iterations based
on their relative similarity of performance scaling. HAC starts by
putting each point in its own cluster and then recursively groups
each pair of clusters with minimum inter-cluster linkage distance.
We considered Spearman rank correlation coefficient [14] to rep-
resent similarity, and Ward’s linkage criterion [17] for linkage dis-
tance.

Figure 3 Dendrogram illustrating how many GPU kernels scale
similarly to one another. Each cluster contains an automatic classi-
fication of scaling curves (like those seen in Figure 2); kernels with
similar scaling curves are classified closer together.

Figure 3 illustrates the clusters of scaling curves that we observed
in our benchmarks. Benchmarks within each of these clusters gen-
erally scale in a similar fashion to one another; we observed similar
clustering in power curves. For example, a bandwidth-bound ker-
nel such as sparse matrix-vector multiplication [6] and another
bandwidth-bound kernel such as a bitonic sort would both likely
scale similarly as hardware parameters are changed.

The next section will describe how we take advantage of this
information to build a machine learning model that will automati-
cally identify the scaling cluster a kernel is in without requiring an
expensive exploration of the full hardware design space.

4 AUTOMATIC GPU SCALING ANALYSIS
WITH MACHINE LEARNING

Based on the studies shown in Section 3, we can see that many GPU
kernels scale in a similar fashion to one another. Our goal for the
simulator discussed in Section 1 is to automatically estimate the
performance and power of a GPU kernel after running it at a single
hardware point. Towards that end, we designed a machine learning
model that takes as input performance and power measurements
plus performance counter readings from running the kernel at a
single hardware point. This ML model will then estimate what
the performance or power of that kernel would be at a different
hardware point [19]. This model is depicted in Fig. 4.

The algorithm used to construct the ML model requires multiple
steps. First, we gather performance or power scaling curves across
a large number of test kernels. As shown in Figure 5, these training
kernels are clustered to form groups of kernels with similar scaling
behaviors across hardware configurations. This can be done using



ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Joseph L. Greathouse and Gabriel H. Loh

Training Set 

Model 
Construction 

Flow 

GPU Hardware 

Kernel 

Model 

Execution 
Time/power 

Performance 
Counters  

Target 
Hardware 

Configuration 

Target Execution 
Time/Power 

Figure 4 The flow of our model for estimating GPU performance
and power. The model is trained over many hardware configura-
tions, but afterwards, we only require one hardware measurement
to estimate power and performance for new kernels.

Cluster 1 Cluster 3 Cluster 2 

Kernel 1 Kernel 2 Kernel 3 

Kernel 4 Kernel 5 Kernel 6 

Figure 5 GPU kernels that scale similarly to one another are put
into clusters, akin to what is shown in Figure 3

techniques such as HAC, as we showed in Figure 3, or through sim-
pler techniques such as k-means clustering of Euclidean distances
between the curves. However this is done, each cluster represents
one scaling behavior found in the training set.

After this clustering is complete, we build a classifier to predict
which cluster’s scaling behavior best describes a new kernel. We
use performance counters as input to this classifier; when we run a
new kernel, we can simultaneously gather hardware performance
counters which describe how it uses the GPU. Kernels in different
clusters use the hardware differently, so a classifier can identify a
kernel’s cluster by its performance counter values.

Figure 6 illustrates such a classifier built using a neural network.
In our studies, we used a three layer, fully connected neural network
where the input layer is linear and the hidden and output layers
use sigmoid functions. We set the number of hidden layer nodes to
be equal to the number of output nodes; there is one input node per
measured hardware performance counter, and one output node for
each performance or power scaling cluster. The network outputs

…
 

…
 

…
 

Perf. 
Counter 0 

Perf. 
Counter 1 

Perf. 
Counter N 

Cluster 0 

Cluster 1 

Cluster M 

Figure 6 Classifier built using a neural network that allows us
to find which performance or power scaling cluster a new kernel
matches based on the performance counter measurements of the
kernel’s execution at one hardware point.

Figure 7 Estimating the performance of a kernel that was origi-
nallymeasured at 12CUs and 95GB/s. After finding this curve using
the neural network in Figure 6, we estimate the new performance
of this kernel at a different hardware configuration (36 CUs and 235
GB/s) by following this scaling curve.

one value, between 0 and 1, per cluster; we choose the cluster with
the highest value and estimate that this kernel will scale similarly
to the kernels within that cluster.

Once we have estimated which cluster this new kernel-under-
test belongs to, we use the resulting scaling curve to estimate the
performance or power of this kernel at the desired hardware con-
figuration. This is illustrated in Figure 7; we start at the original
hardware point (red) and walk through the scaling curve to estimate
the total performance difference that would result from moving to
the final hardware configuration.

Overall, this process only requires a small amount of computa-
tional effort after gathering the data at our initial hardware con-
figuration. We must perform a small inference calculation through
the neural network to estimate how this kernel will scale. After
this, estimating the performance (or power) at all other supported
hardware configurations only requires us to perform a series of
multiplies as we walk through the scaling curve. As such, we can
rapidly estimate the performance of even very long-running ker-
nels; this allows us to simulate a large number of hardware points at
speeds that can far surpass what we could attain even performing
analysis on real hardware.
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Figure 8 Validation set error heatmap at 1000MHz core frequency.
Each point represents the average error of estimating from that
point’s base configuration to all other configurations (including all
other frequencies).
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Figure 9 Performance prediction error summarized across all of
the base hardware configurations.

4.1 Accuracy of our ML Model
In order to validate the accuracy of our models, we executed 108
OpenCL™ kernels from 49 open source and academic benchmark
applications [19]. We ran these on an AMD Radeon™HD 7970 GPU.
We ran all of our benchmarks across a range of eight CU settings
(4, 8, . . . , 32), eight core frequencies (300, 400, . . . , 1000 MHz), and
sevenmemory frequencies (475, 625, . . . , 1375 MHz). For each kernel
across all of these configurations, we gather the kernel execution
time, performance counters, and the average power of that kernel
over its execution. The data from a random 80% of the 108 kernels
were used to train and construct our ML model, while the data from
the remaining 20% were used for validation.

The base hardware configuration (i.e., the single configuration
we use to measure our kernel-under-test) is a key parameter of the
model and can influence its accuracy. As such, we constructed a
model for each of the 448 possible base hardware configurations.
We then used all of these models to predict the execution time of
each of the 22 validation kernels on each of the model’s other 447
possible target hardware configurations; we exclude a model’s base
hardware configuration from its list of possible target hardware
configurations.

A heat-map of validation set error values from 56 models is
shown in Fig. 8. All 56 models have a base configuration frequency
of 1000 MHz. Their base CU counts and memory frequencies take
on all combinations of the eight possible CU counts (4, 8, . . . , 32)
and the seven possible memory frequencies (475, 625, . . . , 1375).
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Figure 10 Histogram of the estimation error for our power model.

We do not show engine frequency variation to make it easier to
visualize the data and gain insights into how base configuration
impacts model accuracy.

Each entry in Fig. 8 is the average error of one model across
all validation kernel and target configuration combinations. We
can see that the base configuration can have a strong effect on the
total accuracy of our model. For instance, the base configurations
with the lowest memory frequency (i.e., configurations with little
available memory bandwidth) show worse results, especially when
the configuration also has more compute units (i.e., more available
computational throughput). At these extremely low memory band-
width configurations, the number of kernels that become memory
bottlenecked increase. As the percentage of memory bottlenecked
kernels becomes greater, the performance counters values, which
are gathered on the base hardware configuration, become less di-
verse between kernels. This makes it difficult for the classifier to
differentiate between kernels that should be in different clusters.

As the compute-to-memory bandwidth resources in the base
hardware configuration becomesmore balanced, the diversity among
the kernel performance counter values increases. As a result, the
neural network classifier can more easily distinguish between ker-
nel scaling behaviors and the overall accuracy improves.

Figure 9 shows the summary of our performance prediction ac-
curacy across all of the base hardware configurations. Each box
and whisker set shows the distribution of the average error of mod-
els with a common base engine frequency. The lines through the
middle of the boxes represent the distribution averages. The ends
of the boxes represent the standard deviation of the distributions
and the ends of the whiskers represent the maximum and mini-
mum of the errors. We can see from these results that the average
error of our ML-based performance estimation methodology is
roughly 15%, which is in line with the accuracy of many cycle-level
simulations [8].

In addition to performance modeling, we applied ourMLmethod-
ology to create powermodels.We studied the powermodel accuracy
versus the number of clusters using the same experimental setup
used for the performance modeling experiments. A histogram of the
power model’s errors on the validation set is presented in Figure 10.
The power model error rate is lower than the performance model’s;
it is below 10% for most configurations. In addition, we found that
the variability of the error was smaller for power modeling than it
was for performance modeling.
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5 CONCLUSION
In this work, we have described a methodology for performing
high-level performance and power estimation on heterogeneous
systems. The goal of this methodology is to allow early, rapid design-
space explorations of heterogeneous systems over a large number
of design points and test applications. Towards this end, we first
described a trace-driven method for splitting apart applications
into parallel segments that run on the various heterogeneous de-
vices and that are ordered through application-level semantics. We
measure the performance and power of these segments on real
hardware. We then try to estimate how the performance and power
of these segments would change as we modify high-level hardware
configuration parameters.

Previous works showed how to make these estimates on CPUs;
this paper describes work we have done to make such estimates
viable on GPUs. In particular, we describe a methodology that takes
performance and power measurements from a kernel running on
a real GPU. We then put these measurements through a machine
learning model that will estimate how this kernel’s performance
and power will scale to different hardware points.

Our ML model is trained on many existing kernels measured
on multiple hardware configurations, and it automatically cluster
kernels with similar performance and power scaling curves. We
then show that, by using a neural network that is trained on the
hardware performance counters values associated with the kernels
in each cluster, we can automatically recognize what cluster a kernel
belongs to from a single hardware measurement.

With this model, we can rapidly estimate the performance and
power of GPU kernels across a wide range of hardware configura-
tions. Each estimation only requires a small, fixed amount of com-
putation – this can allow the estimation to occur much faster than
the kernel itself. In addition, we demonstrated that the accuracy of
these models (10-15% error rate) is roughly in line with published
values for academic cycle-level simulators. These performance and
accuracy values imply that this model is useful for high-level SoC
and heterogeneous system design space explorations.

This ML-based performance estimation model has limitations. It
is primarily useful for modeling high-level changes in configuration
parameters, such as frequency or bandwidth. It assumes that most
of the underlying microarchitecture of the devices stays the same,
so it is not a replacement for low-level simulators that can model
deep details of the hardware.

Finally, our model requires a large amount of training data. Like
mostmachine learningmodels, we require a large number of kernels
in the training set; the larger this set, the more accurately the
model can represent general applications. However, our model also
requires a large numbers of measurements per kernel, because we
must explore the entire hardware configuration space to fill in
the scaling curves. As the number of hardware design dimensions
increases, this may become prohibitively expensive. We required
hundreds of tests across the three dimensions we tested; we could
require tens of thousands of tests per kernel if we added more.

Recent works have focused on reducing the number of tests
required for such design-space explorations [10]. We feel that such
techniques may be useful in reducing the amount of training data
needed for machine learning models used in this field.

AMD, the AMD Arrow logo, FirePro, Radeon, and combinations
thereof are trademarks of AdvancedMicro Devices, Inc. OpenCL is a
trademark of Apple, Inc. used by permission by Khronos. Xbox One
is a trademark of the Microsoft Corporation. PlayStation is a trade-
mark or registered trademark of Sony Computer Entertainment, Inc.
Other names used in this publication are for identification purposes
only and may be trademarks of their respective companies.
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