
Measuring and Modeling On-Chip Interconnect Power on Real Hardware

Vignesh Adhinarayanan∗, Indrani Paul†, Joseph L. Greathouse†, Wei Huang†, Ashutosh Pattnaik‡, Wu-chun Feng∗

∗Dept. of Computer Science
Virginia Tech

{avignesh, wfeng}@vt.edu

†AMD Research
Advanced Micro Devices, Inc.
{Indrani.Paul, Joseph.Greathouse,

WeiN.Huang}@amd.com

‡Dept. of Computer Science and Engineering
Penn State University
ashutosh@cse.psu.edu

Abstract—On-chip data movement is a major source of power
consumption in modern processors, and future technology nodes
will exacerbate this problem. Properly understanding the power
that applications expend moving data is vital for inventing
mitigation strategies. Previous studies combined data movement
energy, which is required to move information across the chip,
with data access energy, which is used to read or write on-
chip memories. This combination can hide the severity of the
problem, as memories and interconnects will scale differently
to future technology nodes. Thus, increasing the fidelity of our
energy measurements is of paramount concern.

We propose to use physical data movement distance as a mech-
anism for separating movement energy from access energy. We
then use this mechanism to design microbenchmarks to ascertain
data movement energy on a real modern processor. Using these
microbenchmarks, we study the following parameters that affect
interconnect power: (i) distance, (ii) interconnect bandwidth, (iii)
toggle rate, and (iv) voltage and frequency. We conduct our study
on an AMD GPU built in 28 nm technology and validate our
results against industrial estimates for energy/bit/millimeter. We
then construct an empirical model based on our characterization
and use it to evaluate the interconnect power of 22 real-world
applications. We show that up to 14% of the dynamic power
in some applications can be consumed by the interconnect and
present a range of mitigation strategies.

I. INTRODUCTION

Power and energy usage are first-class design constraints
in almost all areas of modern computing. Phones, tablets,
and laptops must run on batteries, so inefficient designs
inconvenience users by requiring more frequent charges. Desk-
top users must pay power bills and deal with loud cooling
mechanisms. Data centers and their servers are estimated to
account for up to 1.5% of global electricity usage [19]. Even
supercomputers are power constrained: the U.S. Department of
Energy (DoE) has a goal of limiting the power consumption
of exascale supercomputers to at most 20 MW [31].

Two major challenges associated with new silicon technol-
ogy nodes have exacerbated these issues:

1) Dennard scaling has faltered, meaning that transistor
density continues to increase, but the power used by
each transistor no longer decreases at the same rate.

2) The power density of wires is increasing even faster than
that of transistors due to poor wire size scaling. The cost
of communication is thus a large and growing concern.

While data movement power has been recognized as a
problem that needs to be addressed, the extent of the problem

is not yet clearly understood [8], [23]. No previous study has
accurately measured the data movement power in real, modern
processors. Some of the difficulties are highlighted in the work
of Leng et al. [21], which states: “It is almost impossible to
isolate L2 cache power from NOC power because each L2
cache access involves an NOC access.”

An implication of the above statement is that it is difficult
to separate data access and movement costs with conventional
measurement approaches. This limitation is also observed in
the work of Kestor et al. [18], who were among the first
to attempt to measure the energy cost of data movement on
real hardware. Thus, despite the perceived importance of data
movement power, no previous study has accurately measured
it separately from data access power.

In this paper, we devise a set of novel techniques that
allow us to overcome these limitations and separate the power
of data movement from that of data accesses. To do this,
we design microbenchmarks that use distance-based metrics,
instead of traditional data volume metrics, to study the on-
chip interconnects. Our microbenchmarks each have the same
data access rates and perform the same operations, but differ
in the physical distance that the data must travel within the
interconnect. This allows us to separate the interconnect’s
power from data access power.

Our microbenchmarks allow us to characterize the intercon-
nect power used by an AMD GPU built in 28 nm technology.
We observe that the interconnect’s power increases linearly
with the distance of data movement, the wire toggle rate, and
the bandwidth of data movement. Nonetheless, applications
with the same toggle rate can consume different power based
on the values sent along the wires due to the effect of
crosstalk. We then use this data to develop architecture-specific
empirical models and to study the interconnect power of 22
real applications running on our GPU. We then use our model
to analyze power-reduction techniques, including chip layouts
optimized for lower interconnect energy and cache resizing.

In summary, this paper makes the following contributions:

• We describe a novel methodology to measure the
interconnect power in real processors. We design a
series of microbenchmarks that use the same operations
to access on-chip memories in different locations at the
same rate. We demonstrate this on a modern AMD GPU,
though our methodology can be used on any architecture.

• We characterize the interconnect power of 22 applica-
tions both in 28 nm technology and in a hypothetical
7 nm node. We show that up to 14% of the dynamic
power in these applications comes from the interconnect
and that this may increase to 22% in the 7 nm node.

• We demonstrate our model’s utility by exploring two
previously proposed data-movement, power-reduction
techniques. We study layout-based optimization, or the
impact of the placement of L2 and memory controllers
within the chip, and the effect of varying L1 and L2 sizes,
which changes the interconnect bandwidth.

This paper is organized as follows. We discuss related
work in Section II. Section III describes our test setup,
and Section IV details our interconnect power measurement
methodology. We present the results of our characterization
studies in Section V and our models in Section VI. We use our
models to study real applications in Section VII and evaluate
interconnect power mitigation techniques in Section VIII. We
discuss future work and conclude with Section IX.

II. RELATED WORK

Analytical modeling and simulation: At the lowest level,
it is possible to model data movement power with circuit
simulators such as SPICE. These tools provide excellent low-
level details but require a great deal of design information
and are extremely slow. It is unlikely that hardware designers
would release SPICE-level models of large microprocessors.
Even if this data were available, however, SPICE models
precludes analyzing real applications on full SoC designs.

To partially work around these limitations, higher-level tools
such as Orion [14] provide reasonably detailed models for the
various interconnect components. Orion relies on data released
by the industry to validate and fine-tune its model. With the
limited information that is available in the public domain,
researchers were able to increase the accuracy of earlier
versions of Orion [35], [13], but the model needs constant
revision as various interconnect technology advancements are
released [34]. The sparsity of publicly available data on power
breakdown for modern processors (that is usually released
by industry) makes this revision and validation difficult. Our
methodology makes it possible to independently obtain this
reference data. In addition, our methodology also makes it
possible to run real applications on hardware and obtain the
data movement power for an entire application run rather than
rely on worst-case estimates from low-level tools.

Other analytical models for interconnect power have been
proposed in DSENT [32], GPUWattch [21] and McPAT [22].
Our work enables rigorous validation of such models by mak-
ing it possible to independently obtain real-world interconnect
power measurements on much larger designs and applications.
Microbenchmarking approaches: Previous works have also
attempted to analyze data movement power on real processors.
Like our study, they have the benefit of working on full designs
and on modern technology nodes. However, these previous
studies conflate data access and data movement energy. Be-

cause these two factors will scale differently to future process
technologies, we wish to analyze them separately.

Kestor et al. [18] present a methodology for measuring the
energy cost of moving data across the memory hierarchy for
scientific workloads. Pandiyan et al. [27] present a similar ap-
proach for mobile workloads. They develop microbenchmarks
that move data from different levels of the memory hierar-
chy to the registers. By measuring the difference in energy
consumption between these microbenchmarks, they estimate
the energy spent towards data movement. Unfortunately, this
technique does not separate the energy cost of data movement
from data access. For example, subtracting the energy cost
of their L1-$ workload from the L2-$ workload, the resultant
energy is not just the cost to move data from L2 to L1, but
also includes the energy expended within the L2 cache.

Manousakis et al. [24] also adopt a microbenchmark-based
approach where they vary the operational intensity of the
microbenchmarks and study power consumption. Their study
is also measures data accesses rather than data movement.
Component-level modeling using performance counters:
Regression-based power models constructed using perfor-
mance counters have the potential to estimate the power con-
sumption of several components within a processor. Several
works [30], [4], [9], [17], [37] have provided a breakdown for
many components within a processor. However, these power
models were only validated for overall power consumption and
cannot be relied upon for component-level estimation.

III. EXPERIMENTAL METHODOLOGY

This section details the hardware we use during our studies
and describes some pertinent microarchitectural details.

A. AMD GCN Architecture

For our tests, we used an AMD FireProTM W9100 GPU, a
workstation-class discrete GPU that uses the Graphics Core
Next (GCN) 1.1 ISA [2]. A simplified block diagram of
this GPU, which nonetheless roughly represents the location
of many important structures, is shown in Figure 1. This
GPU consists of four shader engines (SEs), each containing
a number of compute units (CUs) that are similar to 64-wide
vector processors. The AMD FirePro W9100 has 11 CUs per
SE, yielding a total of 44 CUs (only 8 are shown in the figure
for brevity).

Each CU has its own dedicated L1 data cache that is
connected to the CU by short wires (not shown in the
figure). The L2 cache is divided into several partitions (16
on our GPU), but every CU can communicate with every
L2 partition via a crossbar interconnect. Each L2 partition is
directly connected to an on-chip DRAM controller. As we will
discuss later, these controllers (and thus also the L2 cache) are
address sliced, such that each controller accesses (and each L2
partition caches) a disjoint subset of the memory space.

These L2 cache partitions are located in different parts of the
chip, meaning that the physical distance between any pair of
CU/L1 and an L2 partition can vary measurably. Each quadrant
of the L2 cache has an SE “local” to it (i.e., the physical

Fig. 1: Representative Block Diagram of the GPU, showing 8
out of 44 Compute Units (CUs)

Total Compute Units (CUs) 44
CUs per Shader Engine (SE) 11
Total SEs 4
Core Frequency 930 MHz
L1 Cache Size per CU 16 KB
Total L2 Cache Size 1024 KB
Number of L2 Partitions 16
Total DRAM Size 16 GB
Number of DRAM Channels 16
Memory Frequency 1250 MHz

TABLE I: Description of the AMD FireProTM W9100 GPU

distance separating them is smaller compared to the distance
between that SE and another L2 cache quadrant). For example,
the CUs in SE-I in Figure 1 are closer to the L2 partitions at
the top-left of the design than they are to L2 partitions at the
bottom-right. We will exploit this observation to characterize
the interconnect’s power later in this paper.

The goal of this study is to estimate the power consumption
of the on-chip interconnects and assess where data movement
power is spent. As such, we focus on three major intercon-
nects: (i) the wires between the CUs and L1 (ii) the crossbar
connecting L1 and L2 and (iii) the wires between the L2
partitions and memory controllers. Characterizing the off-chip
interconnects is beyond the scope of this study.

B. Experimental Setup

As previously mentioned, we performed our experiments on
AMD FireProTM W9100 discrete GPU. The key parameters of
this GPU are listed in Table I.
Software Setup: We ran our experiments on a host with Ubuntu
14.04, v15.20.7 of the AMD FirePro drivers, and the AMD
APP SDK v2.9.1. Our microbenchmarks use OpenCLTM 1.2.
Power Monitoring: To monitor the power consumption of our
GPU, we use a high-precision power meter that measures

(a) Short Path (b) Long Path

Fig. 2: Design of our interconnect power microbenchmarks

current and voltage from the voltage regulators going into the
chip. This instrument can provide power measurements at 1
kHz. The instrumentation setup is capable of measuring the
power consumption of only the chip as a whole, and hence the
study is limited to focusing just the on-chip data movement
and not the off-chip movement (e.g., to main memory).
Performance Counters: To guide the design of the microbench-
marks and to validate them, we use AMD CodeXL v1.6. We
later describe how AMD CodeXL performance counters can
be used to estimate interconnect power in larger applications
in Section VI and VII.

IV. MEASURING INTERCONNECT POWER

This section describes our microbenchmarking strategy for
measuring the interconnect power of the processor described
in Section III. While the details are specific to our GPU, the
methodology itself is generalizable.

A. A Power Measurement Technique

Our microbenchmarking methodology is based on the ob-
servation that longer wires consume more energy than shorter
wires while carrying the same current. Therefore data that
travels a longer physical distance within the chip consumes
more energy than the same amount of data moving a shorter
distance.

Our conjecture based on the above observation is that
when we continuously move data from a partition of the
L2 cache to the various L1 caches that are located in the
different parts of the chip, we should observe a difference
in power consumption. To test this conjecture, we design two
microbenchmarks, illustrated in Figure 2. The first (referred
to as short-path) continuously moves data between compute
units (CUs) in shader engine I and the L2 quadrant closest
to it. The second (referred to as long-path) moves the data
between shader engine II and the same L2 quadrant, thereby
moving the data through a longer physical distance.

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int wid = get_group_id(0);

if (wid >= 0 && wid <= 10) {

// Read data from L2

}

}

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 10 02 00 81

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

s_min_u32 s0, s0, 0x0000ffff // 000000000014: 8380FF00 0000FFFF

s_mul_i32 s0, s16, s0 // 00000000001C: 93000010

s_add_i32 s0, s0, s1 // 000000000020: 81000100

v_add_i32 v0, vcc, s0, v0 // 000000000024: 4A000000

s_add_i32 s0, s16, s2 // 000000000028: 81000210

s_cmp_gt_i32 s0, -1 // 00000000002C: BF02C100

s_cbranch_scc0 label_0011 // 000000000030: BF840004

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 04 32 00 B9

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int cu_id = get_cu_id(0);

if (cu_id >= 0 && cu_id <= 10) {

// Read data from L2

}

}

(a) Initial OpenCLTM code snippet

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int wid = get_group_id(0);

if (wid >= 0 && wid <= 10) {

// Read data from L2

}

}

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 10 02 00 81

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

s_min_u32 s0, s0, 0x0000ffff // 000000000014: 8380FF00 0000FFFF

s_mul_i32 s0, s16, s0 // 00000000001C: 93000010

s_add_i32 s0, s0, s1 // 000000000020: 81000100

v_add_i32 v0, vcc, s0, v0 // 000000000024: 4A000000

s_add_i32 s0, s16, s2 // 000000000028: 81000210

s_cmp_gt_i32 s0, -1 // 00000000002C: BF02C100

s_cbranch_scc0 label_0011 // 000000000030: BF840004

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 04 32 00 B9

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int cu_id = get_cu_id(0);

if (cu_id >= 0 && cu_id <= 10) {

// Read data from L2

}

}

(b) Equivalent assembly code

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int wid = get_group_id(0);

if (wid >= 0 && wid <= 10) {

// Read data from L2

}

}

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 10 02 00 81

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

s_min_u32 s0, s0, 0x0000ffff // 000000000014: 8380FF00 0000FFFF

s_mul_i32 s0, s16, s0 // 00000000001C: 93000010

s_add_i32 s0, s0, s1 // 000000000020: 81000100

v_add_i32 v0, vcc, s0, v0 // 000000000024: 4A000000

s_add_i32 s0, s16, s2 // 000000000028: 81000210

s_cmp_gt_i32 s0, -1 // 00000000002C: BF02C100

s_cbranch_scc0 label_0011 // 000000000030: BF840004

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 04 32 00 B9

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int cu_id = get_cu_id(0);

if (cu_id >= 0 && cu_id <= 10) {

// Read data from L2

}

}

(c) Equivalent binary (in hex)

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int wid = get_group_id(0);

if (wid >= 0 && wid <= 10) {

// Read data from L2

}

}

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 10 02 00 81

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

s_min_u32 s0, s0, 0x0000ffff // 000000000014: 8380FF00 0000FFFF

s_mul_i32 s0, s16, s0 // 00000000001C: 93000010

s_add_i32 s0, s0, s1 // 000000000020: 81000100

v_add_i32 v0, vcc, s0, v0 // 000000000024: 4A000000

s_add_i32 s0, s16, s2 // 000000000028: 81000210

s_cmp_gt_i32 s0, -1 // 00000000002C: BF02C100

s_cbranch_scc0 label_0011 // 000000000030: BF840004

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 04 32 00 B9

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int cu_id = get_cu_id(0);

if (cu_id >= 0 && cu_id <= 10) {

// Read data from L2

}

}

(d) Modified binary (in hex)

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int wid = get_group_id(0);

if (wid >= 0 && wid <= 10) {

// Read data from L2

}

}

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 10 02 00 81

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

s_min_u32 s0, s0, 0x0000ffff // 000000000014: 8380FF00 0000FFFF

s_mul_i32 s0, s16, s0 // 00000000001C: 93000010

s_add_i32 s0, s0, s1 // 000000000020: 81000100

v_add_i32 v0, vcc, s0, v0 // 000000000024: 4A000000

s_add_i32 s0, s16, s2 // 000000000028: 81000210

s_cmp_gt_i32 s0, -1 // 00000000002C: BF02C100

s_cbranch_scc0 label_0011 // 000000000030: BF840004

00 FF 80 83 FF FF 00 00

10 00 00 93 00 01 00 81

00 00 00 4A 04 32 00 B9

00 C1 02 BF 04 00 84 BF

00 FF 04 BF 81 00 00 00

C1 80 01 85 01 00 82 BF

__kernel void l2_read(__global float *data,

__global float *output) {

int gid = get_global_id(0);

int cu_id = get_cu_id(0);

if (cu_id >= 0 && cu_id <= 10) {

// Read data from L2

}

}

(e) Equivalent OpenCLTM code

Fig. 3: Steps to launch wavefronts on only one shader array

Realizing this design on real hardware and accurately mea-
suring the power difference is a non-trivial task, which we will
explain and solve in the following sections.

B. Details of Microbenchmark Implementations

Realizing the basic idea presented in Section IV-A on real
hardware poses several challenges that must be mitigated:

1) We use OpenCLTM to implement our microbenchmarks,
but it lacks native support to pin threads to programmer-
specified locations on the chip.

2) Designing a microbenchmark where all of the data is
fetched from one quarter of the L2 cache is challenging,
since each L2 quadrant contains only 256 KB, whereas
the total size of an SE’s L1 caches is 176 KB.

3) The microbenchmarks must use as much bandwidth as
possible to reliably observe and measure the chip-wide
power difference between the two microbenchmarks.

4) Latency effects must be hidden from the long-path
microbenchmark. Because the second shader engine is
located on a physically different part of the chip from the
first SE, there is an increase in latency when it accesses
the top-left L2 quadrant. Sufficient L2 requests must be
generated so that the long-path microbenchmark sees the
same bandwidth as the short-path microbenchmark.

5) Temperature has a major impact on the power consump-
tion of a processor. The effects of temperature on the
two microbenchmarks should be properly isolated so that
only the effect of data-movement distance is measured.

C. Locking OpenCLTM Kernel to Specific SEs

While OpenCLTM does not directly offer support for running
threads on only one shader engine (SE), it is possible to
achieve the effect by editing the binary which is generated
by the OpenCL runtime. An example is shown in Figure 3,
where work is performed only on CUs 0 through 10 (i.e.,
SE-I). In this approach, we write an initial OpenCL snippet,
shown in Figure 3a, in which useful work is performed only

if the wavefront ID is between 0 and 10. Wavefront ID is a
placeholder that we will modify to hold the value of CU IDs.

A part of the equivalent GCN assembly code for this snippet
is shown in Figure 3b. The instruction that writes the value
of the wavefront ID to the variable used in the if conditional
is boldfaced and highlighted in red. The scalar register corre-
sponding to this variable is s0 and the hex of the instruction
that writes its value is 81000210. Figure 3c shows the hex
value of the instruction in little endian format in the binary
file, which can be obtained using clGetProgramInfo().

We then manually replaced this instruction with the
S_GETREG_B32 GCN instruction, which loads the CU and
SE IDs out of the HWID register and puts them into s0
(B9003204, as shown in Figure 3d). This derivation is based
on the information provided in AMD ISA manuals [2], [1]. We
further verified that this process resulted in the desired effect
by analyzing the performance counters from AMD CodeXL.

After making these modifications, we can use
clCreateProgramWithBinary() to load our custom
binary into the application. This achieves the same effect as
writing the hypothetical OpenCL code shown in Figure 3e.

D. Accessing Data Only from L2

Our microbenchmarks attempt to access data from one
quadrant (4 out of the 16 partitions) of the L2 cache that
is located closest to SE-I. In our target architecture, there is
a one-to-one mapping between the memory channels and the
L2 partitions. That is, the data that resides in one memory
channel can be cached in only one L2 partition. The address
interleaving for the memory channels is specified in AMD’s
ISA manuals [2].

Each channel holds contiguous 256 bytes of memory (equiv-
alent of 64 floats) and, given an address, it is possible to
identify the channel number from bits 8-11. Using the above
information, it is possible to obtain the L2 cache partition
given an array index for any data type and thus write a
microbenchmark that only targets a particular partition.

E. Saturating the L1-L2 Interconnect Bandwidth

In order to obtain the best results from our microbench-
marks, we must use as much L1-L2 bandwidth as possible.
To begin with, higher bandwidth means a greater difference
in sum total of the data moved for each benchmark on a per-
second basis, which should translate to a greater difference in
power consumption between the two microbenchmarks. This
difference will help minimize error from other uncontrollable
sources, such as measurement noise. In addition, saturating
the interconnect also helps in keeping the CU pipelines busy,
helping to prevent long-path from stalling more often than
short-path due to any difference in L2 access latency.

Unfortunately, launching a small number of wavefronts to a
small number of CUs cannot saturate the L1-L2 interconnect if
they only touch one cache line before stalling. We could design
our microbenchmarks such that each thread accesses several
cache lines. This would require extra address calculations
and could potentially increase the global working set size,
however, resulting in register pressure and unwanted main
memory accesses. Alternately, we could increase the number
of wavefronts kept in flight. This could inadvertently increase
the L1 hit rate by scheduling threads in a way that keeps all of
the data accessed by one wavefront in the L1 cache. Despite
this, we chose the latter option.

To prevent an increase in the L1 cache hit rate, we modified
the firmware of our GPU to artificially shrink the size of L1
cache to 4 KB per CU. This allowed us to increase the number
of wavefronts in flight (thereby increasing the interconnect
bandwidth and hiding the L2 access latency for long-path),
avoid cache hits in L1, and keep accesses to the main memory
to an absolute minimum and focus on compulsory misses only.

F. Isolating Temperature Effects

Modern silicon technology nodes consume a great deal of
static power which is, in turn, affected by operating tempera-
ture. As explained in Section III-B, however, our power mea-
surements come from the off-chip voltage regulators. These
regulators must supply all power to the chip, both static and
dynamic. This means that our measurements cannot directly
differentiate between the two. To this end, we developed a
small set of tests to help us isolate the dynamic power in the
interconnect from static and other non-interconnect power.

We build a power model for idle power to capture the effect
of temperature on power. We gathered the data required to
build this model by fixing the frequency and voltage of the
GPU and heating the chip with a computationally intensive
application (e.g., the FurMark benchmark). After the GPU
reaches our target temperature, we stop the benchmark and
allow the chip to cool while still maintaining the frequency
and voltages. As the chip cools, we continually measure the
chip’s temperature using the on-chip thermal sensors and the
chip’s power using our power monitor. Figure 4 shows the idle
power of our target device across the range of temperatures
that we studied. We can observe from this data that there is
a non-linear relationship between idle power and temperature.
This effect of temperature should thus be separated from our

30

35

40

45

50

55

60

65

40 50 60 70 80 90 100

Id
le

 P
o

w
er

 (
W

)

Temperature (°C)

Idle power = 27.52 + 3.909e-5 * Temperature 3

Fig. 4: Relationship between idle power and temperature

voltage regulator measurements to accurately measure power
consumption of the interconnect.

To achieve this separation during our microbenchmarks,
we run the GPU’s fan at high speed to constraint the device
temperature. We then construct an idle power model for the
device using a regression of the data we present in Figure 4,
which models idle power as a cubic function of the device
temperature. The model is optimized for the typical operating
temperature range for our microbenchmarks in order to in-
crease its accuracy. Using this model, we subtract out the idle
power for the microbenchmark tests from our voltage regulator
measurements. This allows us to separate out the effects of
temperature from our tests and focus on interconnect power
caused by communication.

V. CHARACTERIZATION OF INTERCONNECT POWER

In this section, we present the results of our microbench-
mark studies that show the impact of the following parameters
on interconnect power: (i) data-movement distance, (ii) toggle
rate, (iii) voltage and frequency, and (iv) interconnect band-
width.

A. Impact of Data Movement Distance

Figure 5a shows the average dynamic power consumption
for the short-path and the long-path microbenchmarks. The
values presented in the y-axis are normalized against the
short-path microbenchmark. This figure shows that long-path
consumes 5% more chip-wide dynamic power than short-path.
These two microbenchmarks have identical computational
and data access rates as verified from hardware performance
counters. Therefore, the additional power can only be at-
tributed to the higher data movement distance for the long-
path microbenchmark. This additional distance is estimated to
be 10.5 mm from an analysis of a die photo of the GPU [36].
Validation efforts. We converted the observed difference
in power for a distance of 10.5 mm to a metric known as
energy/bit/mm, which is the energy cost to move one bit of
data through a physical distance of 1 mm. This value was com-
pared against industrial estimates available for 40 nm [16] and
32 nm [5] technology nodes using appropriate scaling factors

0.8

0.85

0.9

0.95

1

1.05

1.1

Short
Path

Long
Path

N
o

rm
al

iz
e

d
 T

o
ta

l P
o

w
e

r

(a) Benchmark power

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20N
o

rm
al

iz
e

d
 In

te
rc

o
n

n
e

ct
 P

o
w

e
r

Distance (mm)

(b) Distance vs. interconnect power

Fig. 5: Impact of data movement distance on interconnect
power.

from [5]. We found that our estimate for energy/bit/mm was
within 10% and 15% of these two industrial estimates.

Next, we study the relationship between data movement
distance and the interconnect power. For this study, we de-
veloped microbenchmarks that are variants of the short-path
and the long-path microbenchmarks. The basic idea behind
the microbenchmarks remain the same, but instead of running
OpenCLTM threads on 11 CUs (i.e., an entire shader engine),
we run them only on 4 CUs. This allows us to obtain the
difference in power consumption for different distances. The
values obtained for the interconnect power from four such
microbenchmarks are presented in Figure 5b. In this figure,
the x-axis represents data-movement distance and the y-axis
represents interconnect power normalized against the highest
value observed in this set of experiments. One of the four
microbenchmarks is used to obtain reference power based on
which the other three microbenchmarks are studied. Therefore,
we have three data points in the graph. Our characterization
result shows that the interconnect’s power increases linearly
with data-movement distance.

B. Impact of Toggle Rate

Next, we studied the impact of toggle rate on interconnect
power. For this study, we moved different data patterns across
the interconnect and observed the power difference for the
short-path and the long-path. The patterns studied are shown
in Figure 6. Of these, zeros, ones, and As show no toggling.
zeros and ones are self-explanatory; for As, we send a pattern
of alternate 1s and 0s, which when represented in hexadecimal
is a string of As. For the random data, each bit can take any
value and the probability of bit toggling (i.e., a transition from
1 to 0 or 0 to 1) is 0.5. For the half random dataset, a few bits
of random data and a few bits of zeros alternate. The overall
toggle rate for this dataset is 0.25.

Figure 7a shows the normalized interconnect power for data
patterns showing 0% toggle rate. Figure 7b shows the same
for data patterns exhibiting toggle rates from 0% to 50%. The
normalization is performed against the random dataset. Note

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

0 0 x x 0 0 x x

x x x x x x x x

Zeroes

Ones

A-s

Half Random

Random

Fig. 6: Data patterns explored in this study

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
o

rm
al

iz
e

d
 In

te
rc

o
n

n
e

ct
 P

o
w

e
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 In

te
rc

o
n

n
e

ct
 P

o
w

e
r

(a) 0% toggle rate

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
o

rm
al

iz
e

d
 In

te
rc

o
n

n
e

ct
 P

o
w

e
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 In

te
rc

o
n

n
e

ct
 P

o
w

e
r

(b) 0-50% toggle rate

Fig. 7: Toggle rate and data pattern impact on interconnect
power

that the figures are drawn to different scale. We make the
following observations from this study:

1) Sending only zeros or ones consumes a small amount of
power in the interconnect (about 10% of the power seen
for random data). This is primarily because the arbiters
present within the interconnect consume a small amount
of energy regardless of the data pattern.

2) Transmitting zeros consumes more power than ones.
3) Interference from neighboring bit lines has a small, but

noticeable impact on the interconnect power. This can
be seen from the fact that A-s consume more power than
zeros despite showing 0% toggle and transmitting fewer
power-hungry 0 bits.

4) Toggle rate has a significant impact on the interconnect
power as seen from zeros (0% toggle), half-random
(25%), and random data (50%). The relationship be-
tween toggle rate and interconnect power is linear.

C. Impact of Voltage and Frequency

We repeat our experiments while setting the GPU to dif-
ferent DVFS states (i.e., voltage and frequency combina-
tions) in order to study the impact of voltage and frequency
on the interconnect power. Figure 8 shows the normalized
interconnect power for these DVFS states. In this figure,
the interconnect power is plotted against V 2f which is the
expected relationship between voltage, frequency and power.
As expected, the relationship between them is linear. Note that

the interconnect bandwidth (or the amount of data) differs at
the various points in the graph as the frequency changes.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

N
o
rm

al
iz
ed

 In
te
rc
o
n
n
e
ct
 P
o
w
er

V2f

Fig. 8: Normalized interconnect power for moving data at
different DVFS states

D. Impact of Interconnect Bandwidth

Next, we study changes in interconnect power when the
amount of data that moves through it changes. To perform
this experiment, we inserted NOPs in our code to reduce
the frequency of data access from the L2 cache which also
reduces the interconnect bandwidth. A lower bandwidth means
fewer bit transitions per second and consequently lower power.
Figure 9 shows this for two different bandwidths, where we
observe that the interconnect power is roughly half when the
interconnect bandwidth is reduced to half its original value.

0

0.2

0.4

0.6

0.8

1

1.2

210 GB/s 104 GB/s

N
o

rm
al

iz
e

d
 In

te
rc

o
n

n
e

ct
 P

o
w

e
r

Fig. 9: Impact of interconnect bandwidth on interconnect
power.

VI. MODELING INTERCONNECT POWER

The characterization results presented in Section V can
be combined into a parameterized equation which naturally
lends itself to model interconnect power of larger applications,
different chips, and different technology nodes. The general
form of the parameterized equation can be expressed as
follows:

Interconnect Power = Constant × % Peak Bandwidth ×
Toggle Rate × Distance × Scaled Frequency × Scaled
Voltage2

Constant refers to the maximum power consumed by the
interconnect for a given chip and a reference DVFS state. This

Interconnect Estimated distance
Register to L1 3.5 mm

L1 to L2 10.5 mm
L2 to memory controller 11.5 mm

TABLE II: Average distance estimates for the different parts
of the interconnect

value is calculated from the difference in power consumption
between short-path and long-path (shown in Figure 5a), which
is then scaled for peak bandwidth, 100% toggle rate, and unit
wire distance. The constant value is architecture specific and
can be derived for existing GPUs using the microbenchmarks
described in Section III and extrapolated to future technology
nodes using process scaling information [5].

Next, we will describe how to estimate interconnect power
for real applications at different interconnect segments of the
memory hierarchy, as shown in Figure 1, using hardware
performance counters (PCs). First, the obtained bandwidth
(BW) is calculated for each interconnect segment from the
PCs for L1 accesses, L2 hits, and L2 misses. This gives
a measure of the actual data volume for an application at
different segments.

Reg to L1 BW =
L1 accesses

T ime
× L1 width

L1 to L2 BW =
L2 hits+ L2 misses

T ime
× L2 width

L2 to MC BW =
L2 misses

T ime
×MC width

The bus width of L1 cache and L2 cache is 64 bytes and the
width of memory controller (MC) is 32 bytes for our target
architecture. The obtained BW is then expressed as a percent
of the peak interconnect BW. The calculation for the peak
L1-L2 BW is shown as an example below:

Peak L1 to L2 BW = # L2 banks× 64 bytes per bank

×clock rate

Next, toggle rate is the probability of bit toggling for a given
program. For completely random data, the expected probability
of toggling is 0.5. The typical average toggle rate observed for
the interconnects is 0.34 [3].

Distance is an estimate of the average distance the data
has to move through the interconnect. For existing GPUs
where application threads are not pinned to any particular CU
and accesses are evenly distributed across all L2 slices, using
average distance for calculations is a reasonable assumption.
For the AMD FireProTM W9100 GPU, we calculated the
average distance for each part of the interconnect by using
layout information from the design, though public die photos
could also be used [36]. The distances we measured are
presented in Table II.

The interconnect power for any voltage and frequency pair
can be calculated by scaling these parameters with respect
to the reference voltage and frequency pair. Alternatively, the
constant factor may be recalculated from the microbenchmarks
for the required voltage and frequency.

VII. ESTIMATION OF INTERCONNECT POWER FOR REAL
APPLICATIONS

In this section, we estimate the interconnect power of 22
OpenCLTM applications obtained from various sources shown
in Table III. These applications were chosen considering that
the maximum frequency for our power meter is 1 kHz and the
chosen applications all have OpenCL kernels that run long
enough (over 2 ms) to get meaningful power measurements.
Total GPU power for each application at run-time is measured
using the power meters measuring voltage and current from the
voltage regulators. We also measure the average temperature of
the GPU chip across all its thermal sensors while running the
applications. To extract dynamic power from these measure-
ments, the idle power is subtracted using the temperature-idle
power relationship described in Section IV-F.

In our evaluation, using our performance-counter driven
model, we estimate the interconnect power spent by the
application at the various parts of the on-chip interconnects: (i)
Register to L1 (ii) L1 to L2 and (iii) L2 to memory controller
(MC). The results are presented for the 28 nm AMD FireProTM

W9100 GPU architecture and a hypothetical 7 nm shrink of the
same die. For the hypothetical chip, we use Borkar’s scaling
factors for wires and transistors [5] to scale the total dynamic
power and interconnect power from 28nm to 7nm.

Figure 10 shows the power spent on the different parts
of the interconnect, expressed as a percentage of overall
dynamic power, for the various applications for the 28 nm and
the hypothetical 7 nm GPUs. Due to the lack of toggle rate
monitors in hardware, for these results, we assume an average
toggle rate of 0.34 for all applications which is based on
past studies [3]. Across applications, the on-chip interconnect
consumes 5.6% of the total dynamic power on our GPU on an
average. Within the interconnect, register to L1 consumes the
most power, using over 45% of the total interconnect power.
The crossbar consumes 30% of the total interconnect power
and the rest is consumed by MC to L2.

Among all applications, color shows the highest percentage
of 14.3% for interconnect power. This is due to the fact that
color is an irregular application with many branch and memory
divergence, causing large amount of data accesses at different
levels of the memory hierarchy. Comd-lj, kmeans, lulesh, and
scan also consume significant amount of interconnect power,
with over 10% of the overall dynamic power going towards
the interconnect. Of these, kmeans, lulesh, and scan are either

Source Applications
AMD APP SDK eigen, fwt, histo, montecarlo, nbody, scan
DOE proxy apps CoMD and CoMD-LJ [25], XSBench [33],

LULESH [15], and miniFE [12]
Graph500 [26] graph500
OpenDwarfs [11] crc, gemnoui, swat
Pannotia [6] color
Phoronix [20] mandelbulb, smallpt
Rodinia [7] kmeans, streamcluster, srad
SHOC [10] stencil, spmv

TABLE III: Applications used for evaluation

memory-bound or partially memory-bound, and understand-
ably consume a greater amount of interconnect power as data
has to be frequently fetched from the distant memory. Comd-
lj is largely compute-bounded with most data accesses either
going to register file or L1. Although the distance between the
SIMD units and L1 is relatively small, it still has a significant
amount of power spent in data movement because of the high
data access counts to L1.

On the other extreme, applications such as mandelbulb,
montecarlo, and nbody all consume nearly zero interconnect
power. These are all compute-bounded, but unlike comd, the
working set for these applications fits within the register files
and therefore doesn’t access L1 much. Therefore, they avoid
short distance accesses as well and see a lower data movement
power.

On the 7 nm architecture, the trends remain the same. But,
the interconnect consumes 8.9% of the total dynamic power
across applications. Individually, we see up to 21.9% for
interconnect power as in the case of color. These values
correspond to nearly 59% increase in the interconnect power
for real applications. This highlights that data movement is
going to be an even more significant problem in future GPUs.

VIII. EVALUATING OPTIMIZATION TECHNIQUES

The interconnect power model presented in this paper can be
used to evaluate and guide several optimization techniques in
a variety of scenarios ranging from design-time optimization
to runtime management of interconnect power. This section
presents some of these techniques as examples that show how
our power model can be used in evaluations of such techniques
and/or used as a part of these optimization techniques.

A. Layout-based Optimization

In this section, we present a use case for our model which
is used to quickly evaluate different layouts in order to find
the one that minimizes data movement power. Intuitively, by
reducing the physical distance for the part of the interconnect
that is being used the most, one can save data movement
power. In this section, we quantify the savings possible us-
ing two sample layouts that optimizes different parts of the
interconnect.

Figure 11 shows the two sample layouts. In the baseline
case, the average Manhattan distance between L1 and L2 is
17.0 units and the average distance between L2 and MC is
7.6 units. The layout on the right tries to reduce the L1 to
L2 distance at the cost of a significant increase in L2 to MC
distance. The distances for this layout are 3.5 units for the L1-
L2 interconnect and 12.0 units for the L2-MC interconnect.

We use our model to calculate the power consumed by
these interconnects for the layouts presented in Figure 11. We
assume that the conditions are similar to our experimental plat-
form: (i) 28 nm technology node, (ii) 1.1687 V, (iii) 930 MHz,
and (iv) the same constant factor in our equation, owing to
equivalent wire capacitance. The normalized power for the
interconnects between L1 and MC is presented in Figure 12
for our testing applications.

0%

5%

10%

15%

20%

25%

In
te

rc
o

n
n

e
ct

 D
yn

am
ic

 P
o

w
e

r

Reg-L1 (28nm)

L1-L2 (28nm)

L2-MC (28nm)

Reg-L1 (7nm)

L1-L2 (7nm)

L2-MC (7nm)

Fig. 10: Percentage of the total dynamic power spent by the interconnect on the 28 nm FireProTM W9100 GPU and a hypothetical
7 nm die shrink. The assumed toggle rate is 0.34 for all the applications.

We observe that the L1-L2 optimized layout consistently
consumed less power for all the applications. On an average,
the L1-L2 optimized layout consumed 48% lower power for
the interconnects between L1 and MC. A maximum of 79%
reduction in power was observed for eigen as there are far
fewer references to memory than to L2 for this application.
Our results thus show the importance of prioritizing L1-L2
interconnects over L2-MC interconnects.

B. Cache Resizing Optimization

Cache resizing techniques have been explored in the past
to optimize energy-delay of caches [38]. In these techniques,
parts of the cache is turned off to reduce their static power
as long as any additional delay encountered is offset by the
reduction in the static power. Disabling caches may happen
statically, before an application’s execution, or dynamically,
during an application’s execution. In this paper, we point out
the presence of another important parameter in this trade-
off. Reducing the cache size not only increases delay, but
also increases the amount of data moving in the longer wires
thereby consuming more dynamic power. In this section, we

L1-$ L2-$ Mem Controller

L1 to L2 = 17.0 units
L2 to MC = 7.6 units

L1 to L2 = 3.5 units
L2 to MC = 12.0 units

Fig. 11: Two sample layouts that are designed to reduce the
distance between L2 cache and memory controller (left), and
the distance between L1 cache and L2 cache (right).

quantify the change in data movement power as we increase
or decrease cache sizes.

Figure 13 shows the decrease in data movement power in
the L1-L2 interconnect as we increase the L1 cache size from
4 KB per CU to 16 KB per CU. On an average, we observe
a 9% reduction in the interconnect power by increasing the
L1 cache. A maximum reduction of 37% is observed for
swat. This decrease occurs because increasing the L1 cache
size increases the hit rate and therefore, can reduce the
average distance that the data has to move on an average.
A runtime system may use such data along with the estimated
increase in static power to make decisions on whether to
increase or decrease cache size. The trade-off analysis and
the implementation of such a system is beyond the scope of
this paper. Here, we show only the savings in data movement
power that is possible from cache resizing.

Similar to the above experiment, we also increased the
L2 cache size from 256 KB to 1024 KB, a factor of 4. The
interconnect power for this cache size, normalized against a
baseline of 256 KB, is presented in Figure 14. By increasing
the L2 cache size, we could save 9% of the L2-MC intercon-
nect power on an average. Savings up to 25% is observed for
L2-MC interconnect as in the case of comd. The decision to
increase L2 cache size, however, would depend up on other
additional parameters such as static energy and average access
latency. However, the design of a decision algorithm is beyond
the scope of this paper.

IX. CONCLUSION AND FUTURE WORK

In this paper, we devised a novel methodology to measure
interconnect power using carefully developed distance-based
microbenchmarks. We then developed an empirical model us-
ing hardware performance counters to obtain the interconnect
power for any large application. We evaluated 22 applications
and showed that up to 22% of the dynamic power of a
GPU can be consumed by the interconnect in the 7 nm node.
Finally, we explored two solutions to reduce interconnect
power and showed that optimizing the chip layout to reduce
data movement and developing cache-resizing policies goes a
long way in combating data-movement power issues.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

rm
al

iz
e

d
 L

1
-M

C
 P

o
w

e
r

L2-MC Optimized

L1-L2 Optimized

Fig. 12: Normalized interconnect power for L2-MC optimized layout and L1-L2 optimized layout

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 N

o
C

 P
o

w
e

r

Fig. 13: Impact of changing the L1 cache size on L1-L2
interconnect

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 L

2
-M

C
 P

o
w

e
r

Fig. 14: Impact of changing the L2-cache size on L2-MC
interconnect

Future Work. Previous works have shown methods for dy-
namically sharing power between components to optimize
for energy usage or to increase performance under power
caps [28]. Because interconnect power will become such
a large power user in future technology nodes, it may be
interesting to design of a runtime system that dynamically
moves power away from the interconnect for bandwidth-
tolerant workloads in order to provide additional power to
other parts of the chip.

Our data implies that toggle- and crosstalk-aware compres-
sion schemes for reducing interconnect power may be an
interesting future research direction. Such schemes would need
to decide when to compress data depending upon the potential
increase in latency compared to the reduction in toggle rate
and crosstalk. This is similar to the work by Pekhimenko et

al. [29], but taking into account the effects of crosstalk and
using a model derived from realistic data.

Finally, the design of a runtime cache-resizing scheme that
takes the cost of data movement into account in addition to
the cache energy and delay considered earlier could potentially
improve global energy efficiency [38].

ACKNOWLEDGEMENT

We thank peers at Advanced Micro Devices, Inc. for their
assistance with this work. Thanks also to the anonymous
reviewers for their feedback.

Vignesh Adhinarayanan and Ashutosh Pattnaik were interns
at AMD Research when this research was performed.

AMD, the AMD Arrow logo, AMD FirePro and combinations
thereof are trademarks of Advanced Micro Devices, Inc.
OpenCL is a trademark of Apple, Inc. used by permission by
Khronos. Other product names used in this publication are
for identification purposes only and may be trademarks of
their respective companies.

REFERENCES

[1] AMD, “Reference Guide: Southern Islands Series Instruction Set Ar-
chitecture,” http://developer.amd.com/wordpress/media/2012/12/AMD
Southern Islands Instruction Set Architecture.pdf, 2012.

[2] AMD, “Reference Guide: Sea Islands Series Instruction Set Ar-
chitecture,” http://developer.amd.com/wordpress/media/2013/07/AMD
Sea Islands Instruction Set Architecture.pdf, 2013.

[3] J. H. Anderson and F. N. Najm, “Switching Activity Analysis and Pre-
layout Activity Prediction for FPGAs,” in Proc. of the Int’l Workshop
on System-level Interconnect Prediction (SLIP), 2003.

[4] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and Responsive Power Models for Multicore Processors
using Performance Counters,” in Proc. of the Int’l Conf. on Supercom-
puting (ICS), 2010.

[5] S. Borkar, “Exascale Computing - A Fact or a Fiction?” in Int’l Symp.
on Parallel Distributed Processing (IPDPS), 2013, pp. 3–3.

[6] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding Irregular GPGPU Graph Applications,” in Proc. of the
IEEE Int’l Symp. on Workload Characterization (IISWC), 2013.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proc. of the IEEE Int’l Symp. on Workload Characterization
(IISWC), 2009.

[8] J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C. Johnson,
R. Mount, V. Sarkar, V. White, and D. Williams, “Synergistic Challenges
in Data-Intensive Science and Exascale Computing,” DOE ASCAC Data
Subcommittee Report, Department of Energy Office of Science, pp. 1–70,
2013.

http://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
http://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Sea_Islands_Instruction_Set_Architecture.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Sea_Islands_Instruction_Set_Architecture.pdf

[9] G. Contreras and M. Martonosi, “Power Prediction for Intel XScale R©
Processors using Performance Monitoring Unit Events,” in Proc. of the
Int’l Symp. on Low Power Electronics and Design (ISLPED), 2005.

[10] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The Scalable Heterogeneous
Computing (SHOC) Benchmark Suite,” in Proc. of the Workshop on
General-Purpose Computation on Graphics Processing Units (GPGPU),
2010.

[11] W. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the 13
dwarfs: A Work in Progress,” in Proc. of the Int’l Conf. on Performance
Engineering (ICPE), 2012.

[12] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-Applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, vol. 3, 2009.

[13] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A Fast
and Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration,” in Proc. of the Conf. on Design, Automation and Test in
Europe (DATE), 2009.

[14] A. B. Kahng, B. Lin, and S. Nath, “ORION3.0: A Comprehensive NoC
Router Estimation Tool,” IEEE Embedded Systems Letters, vol. 7, no. 2,
pp. 41–45, 2015.

[15] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 Updates and Changes,”
Tech. Rep. LLNL-TR-641973, August 2013.

[16] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” IEEE Micro, no. 5, pp.
7–17, 2011.

[17] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Enabling
Accurate Power Profiling of HPC Applications on Exascale Systems,”
in Proc. of the Int’l Workshop on Runtime and Operating Systems for
Supercomputers (ROSS@ICS), 2013.

[18] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
Energy Cost of Data Movement in Scientific Applications,” in Proc. of
the IEEE Int’l Symp. on Workload Characterization (IISWC), 2013.

[19] J. G. Koomey, “Growth in Data Center Electricity Use 2005
to 2010,” Analytics Press, Tech. Rep., August 2011. Available:
http://www.analyticspress.com/datacenters.html

[20] M. Larabel and M. Tippett, “Phoronix Test Suite,” http://www.
phoronix-test-suite.com/, 2011.

[21] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in Proc. of the Int’l Symp. on Computer Architecture
(ISCA), 2013.

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in Proc. of the
Int’l Symp. on Microarchitecture (MICRO), 2009.

[23] R. Lucas, Ed., “Top Ten Exascale Research Challenges,” DOE ASCAC
Subcommittee Report, pp. 1–86, 2014.

[24] I. Manousakis and D. S. Nikolopoulos, “BTL: A Framework for Mea-
suring and Modeling Energy in Memory Hierarchies,” in Proc. of the
Int’l Symp. on Computer Architecture and High Performance Computing
(SBAC-PAD), 2012.

[25] J. Mohd-Yusof, “Codesign of Molecular Dynamics (CoMD) Proxy App,”
LA-UR-12-21782, Los-Alamos National Lab, Tech. Rep., 2012.

[26] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the Graph 500,” Cray Users Group (CUG), 2010.

[27] D. Pandiyan and C.-J. Wu, “Quantifying the Energy Cost of Data
Movement for Emerging Smart Phone Workloads on Mobile Platforms,”
in Proc. of the IEEE Int’l Symp. on Workload Characterization (IISWC).
IEEE, 2014, pp. 171–180.

[28] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing
Compute and Memory Power in High-Performance GPUs,” in Proc. of
the Int’l Symp. on Computer Architecture (ISCA), 2015.

[29] G. Pekhimenko, E. Bolotin, M. O’Connor, O. Mutlu, T. C. Mowry, and
S. W. Keckler, “Toggle-Aware Compression for GPUs,” IEEE Computer
Architecture Letters, vol. 14, no. 2, pp. 164–168, July 2015.

[30] M. D. Powell, A. Biswas, J. S. Emer, S. S. Mukherjee, B. R. Sheikh,
and S. Yardi, “CAMP: A Technique to Estimate Per-Structure Power at
Run-time using a Few Simple Parameters,” in Proc. of the Int’l Symp.
on High Performance Computer Architecture (HPCA), 2009.

[31] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale Computing Technology
Challenges,” in Proc. of the Int’l Conf. on High Performance Computing
for Computational Science (VECPAR), 2011.

[32] C. Sun, C. H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S.
Peh, and V. Stojanovic, “DSENT - A Tool Connecting Emerging Photon-
ics with Electronics for Opto-Electronic Networks-on-Chip Modeling,”
in Proc. of the Int’l Symp. on Networks on Chip (NoCS), 2012.

[33] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench-
The Development and Verification of a Performance Abstraction for
Monte Carlo Reactor Analysis,” The Role of Reactor Physics toward a
Sustainable Future (PHYSOR), 2014.

[34] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Non-
Uniform Power Access in Large Caches with Low-Swing Wires,” in
Proc. of the Int’l Conf. on High Performance Computing (HiPC), 2009.

[35] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A Power-
Performance Simulator for Interconnection Networks,” in Proc. of the
Int’l Symp. on Microarchitecture (MICRO), 2002.

[36] WCCFTech, “Dieshots of Pitcairn, Tahiti, and Hawaii GPUs,” http://cdn.
wccftech.com/wp-content/uploads/2013/12/AMD-Hawaii-GPU.jpg, ac-
cessed: 2016-03-18.

[37] W. Wu, L. Jin, J. Yang, P. Liu, and S. X.-D. Tan, “A Systematic Method
for Functional Unit Power Estimation in Microprocessors,” in Proc. of
the Design Automation Conf. (DAC), 2006.

[38] S.-H. Yang, M. D. Powell, B. Falsafi, and T. N. Vijaykumar, “Exploiting
Choice in Resizable Cache Design to Optimize Deep-submicron Pro-
cessor Energy-Delay,” in Proc. of the Int’l Symp. on High-Performance
Computer Architecture (HPCA), 2002.

http://www.analyticspress.com/datacenters.html
http://www.phoronix-test-suite.com/
http://www.phoronix-test-suite.com/
http://cdn.wccftech.com/wp-content/uploads/2013/12/AMD-Hawaii-GPU.jpg
http://cdn.wccftech.com/wp-content/uploads/2013/12/AMD-Hawaii-GPU.jpg

	I Introduction
	II Related Work
	III Experimental Methodology
	III-A AMD GCN Architecture
	III-B Experimental Setup

	IV Measuring Interconnect Power
	IV-A A Power Measurement Technique
	IV-B Details of Microbenchmark Implementations
	IV-C Locking OpenCL™ Kernel to Specific SEs
	IV-D Accessing Data Only from L2
	IV-E Saturating the L1-L2 Interconnect Bandwidth
	IV-F Isolating Temperature Effects

	V Characterization of Interconnect Power
	V-A Impact of Data Movement Distance
	V-B Impact of Toggle Rate
	V-C Impact of Voltage and Frequency
	V-D Impact of Interconnect Bandwidth

	VI Modeling Interconnect Power
	VII Estimation of Interconnect Power for Real Applications
	VIII Evaluating Optimization Techniques
	VIII-A Layout-based Optimization
	VIII-B Cache Resizing Optimization

	IX Conclusion and Future Work
	References

