
Demand-Driven Software Race Detection using Hardware
Performance Counters

Joseph L. Greathouse
University of Michigan

jlgreath@umich.edu

Zhiqiang Ma
Intel Corporation

zhiqiang.ma@intel.com

Matthew I. Frank
Intel Corporation

matthew.i.frank@intel.com

Ramesh Peri
Intel Corporation

ramesh.v.peri@intel.com

Todd Austin
University of Michigan

austin@umich.edu

ABSTRACT

Dynamic data race detectors are an important mechanism
for creating robust parallel programs. Software race detec-
tors instrument the program under test, observe each mem-
ory access, and watch for inter-thread data sharing that
could lead to concurrency errors. While this method of bug
hunting can find races that are normally difficult to observe,
it also suffers from high runtime overheads. It is not un-
common for commercial race detectors to experience 300×
slowdowns, limiting their usage.

This paper presents a hardware-assisted demand-driven
race detector. We are able to observe cache events that are
indicative of data sharing between threads by taking advan-
tage of hardware available on modern commercial micropro-
cessors. We use these to build a race detector that is only
enabled when it is likely that inter-thread data sharing is oc-
curring. When little sharing takes place, this demand-driven
analysis is much faster than contemporary continuous-analy-
sis tools without a large loss of detection accuracy. We mod-
ified the race detector in IntelR© Inspector XE to utilize our
hardware-based sharing indicator and were able to achieve
performance increases of 3× and 10× in two parallel bench-
mark suites and 51× for one particular program.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, testing tools; D.1.3 [Programming Tech-

niques]: Concurrent Programming

General Terms

Design, Performance

Keywords

Performance Counters, Data Race Detection, Demand Anal-
ysis, Cache Coherency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

1. INTRODUCTION
Parallel programming has quickly entered into the main-

stream. Consumer processors are already well into the mul-
ticore domain, and it does not appear that the trend will
abate. Software performance increases currently hinge on
programmers taking advantage of more processing cores,
but parallel programming is marred with difficulties, chief
among these are concurrency bugs such as data races [20].

Significant efforts have yielded powerful tools to help in
this process, including systems for automatically finding data
races. These race detectors can help a developer locate code
that contains improperly synchronized memory accesses with-
out requiring tedious code reviews or long debugging ses-
sions. Without automated tools, these errors can be difficult
to detect (until a crash occurs!) and even harder to locate.

Race detectors are categorized into static tools, those that
analyze the software for data races without executing the
code, and dynamic tools that monitor the runtime state of
the program. While dynamic analysis tools can only find
errors in executed sections of code, static analysis tools suf-
fer from a state space explosion problem that makes large
programs difficult to analyze. These systems are often com-
plementary, and we focus on dynamic tools in this work.

Dynamic data race detectors observe when two threads ac-
cess a shared memory location and calculate if it is possible
for the threads to do this in an unordered way. Happens-
before race detectors, the style optimized in this paper, in-
dicate a race when two threads access a shared variable, at
least one is a write, and there is no intervening synchro-
nization event between them. This type of race can lead
to nondeterministic output because external factors such as
scheduling, bus contention, and processor speed will ulti-
mately determine the ordering of these accesses. This yields
ultimate control of the program to these factors, which is
rarely the programmer’s intent.

Dynamic race detectors can be powerful but are also slow.
It is not uncommon to see overheads of 300× in commercial
race detectors. Such overheads are especially troublesome
for dynamic analysis tools because they reduce the degree
to which programs can be tested within a reasonable amount
of time. Beyond that, high overheads slow debugging efforts,
as repeated runs of the program to hunt for root causes and
verify fixes also suffer these slowdowns.

There have been numerous methods proposed to accel-
erate dynamic data race detectors. Some software-based
mechanisms, for example, attempt to filter out accesses that

cannot possibly cause races in order to reduce the number
of calls to the detector [37]. These mechanisms can miti-
gate race detection slowdowns to a certain degree, but the
software filtering mechanism itself will still contribute large
overheads even if it filters most memory operations. Other
researchers have proposed embedding race detectors in hard-
ware [34, 47]. Though these increase performance, they
incur large hardware overheads for non-upgradable, single-
purpose designs. CORD, for instance, requires extra storage
equaling 19% of the last-level cache in addition to the hard-
ware used to calculate data races [34].

In this work, we present a novel approach to optimizing
the performance of software-based race detectors. We im-
plement a demand-driven race detector – an analysis system
that is only enabled when it is dealing with potential races.
This demand-driven detector turns on when data is shared
between two threads and turns off when there is no sharing.
To enable this capability, we describe a hardware sharing

monitor that informs the software detector when sharing be-
gins, allowing us to watch for data sharing with no runtime
overhead. We built our sharing monitor using hardware per-
formance counters that interrupt execution on cache sharing
events, an indicator of inter-thread data sharing. While nor-
mal software race detectors must check if the race detection

algorithm should analyze each memory access, we are able to
utilize hardware to perform this in parallel with the original
application.

This can yield a large increase in performance over a
continuous-analysis software race detector when little data-
sharing occurs. We demonstrate that we can increase the
performance of the race detector in IntelR© Inspector XE
by 3× and 10× for two benchmark suites. Because the
cache events may miss some racy accesses (due to limited
cache capacity, for example), we also study the accuracy of
this demand-driven race detector. In our experiments, our
design finds most data races seen by the slow continuous-
analysis tool. We then study mitigation techniques for the
few situations where our system misses races.

We present the following contributions in this paper:

• We develop an efficient sharing indicator that detects,
at little runtime overhead, when expensive analyses
should run.

• We introduce a demand-driven approach to race detec-

tion that only invokes expensive analyses when it is
possible for races to occur.

• We build and evaluate a commercial-grade implemen-

tation of the technology and show that it was able to
find new data races in a popular parallel benchmark
suite while reducing the overheads by 3-10×.

This paper is organized as follows: we review background
works in Section 2. We present our design of a demand-
driven race detector using idealized hardware in Section 3
and discuss methods of monitoring data sharing in order
to build the detector in Section 4. Because the hardware
available to us is less than ideal, we then design a demand-
driven tool that uses performance counters in Section 5. We
detail our experimental setup in Section 6 and show our
results in Section 7. Finally, we discuss related works in
Section 8 and conclude in Section 9.

1. if (ptr == NULL) {

4. ptr = malloc(1);

5. memcpy(ptr, benign, 1);

}

2. if (ptr == NULL) {

3. ptr = malloc(256);

6. memcpy(ptr, hostile, 256);

}

THREAD 1 THREAD 2Value of ptr

ptr = NULL

ptr = large_buf

ptr = small_buf

ptr = small_buf

ptr = small_buf

Figure 1: A data race resulting in a security flaw. The
numbers represent dynamic execution order. Both threads at-
tempt to initialize the shared pointer (1, 2). Due to the lack of
synchronization, thread 1 allocates a small buffer (4), but thread
2 then copies a large amount of data into it. This particular or-
dering can cause a buffer overflow, exposing a potential security
flaw. If (4) occurred before (2), this code would run correctly; (3)
and (6) would not execute due to the conditional check at (2).

2. BACKGROUND
Concurrent execution can lead to bugs that would not

occur in sequential code. Data races, for instance, occur
when two parallel threads of execution access a single shared
memory location without a guaranteed order of operations
between them. More formally, a data race occurs when two
or more threads access a single memory location, at least one
access is a write, and there is no enforced order between the
accesses [30]. These situations can introduce unintended,
and sometimes dangerous, values into the program when
they arise, as demonstrated in Figure 1.

This example is drawn from CVE-2010-3864, a security
flaw found in some versions of the OpenSSL TLS library
[29]. This flaw allowed two threads to access a shared pointer
without synchronization. In some circumstances, each
thread may attempt to initialize it to a different heap ob-
ject, subsequently attempting to copy data into the object.
If, however, the accesses to the pointer are interleaved (as
shown in the figure), one thread may attempt to copy a large
amount of data into a small heap object, causing a poten-
tially dangerous heap overflow [33]. No overflow would occur
if the memory accesses were performed in a different order.
This data race could therefore allow a heap-smashing attack
to take place, potentially giving a remote attacker the ability
to run arbitrary and dangerous code on the machine.

There are three types of data races that can affect the
output of a program:

• W→W (a.k.a. WAW): one thread writes a variable
and another thread then writes to the same location

• R→W (a.k.a. WAR): one thread reads a variable and
another thread then writes to the same location

• W→R (a.k.a. RAW): one thread writes a variable and
another thread then reads from the same location

R→W and W→R races are related; the difference between
the two is the observed order of the accesses. For example,
if the reading thread in an R→W race happened later, the
race could become a W→R race.

Data races can be mitigated by ensuring that there is some
enforced order on the accesses to a variable. For instance,
putting mutual exclusion boundaries around each thread’s
accesses to a variable will ensure that no other thread will
operate on that variable at the same time, forcing a partial
order on the program.

It is difficult to manually find data races because they
can cause the program to behave contrary to the intuitive
sequential ordering implied by the programming language.
Their side effects may also occur infrequently, making them
difficult to trace. To combat this, dynamic race detectors

observe the execution of the program and automatically de-
tect when the program is performing a racy access.

The happens-before race detector utilized in this paper
uses Lamport clocks to divide programs into segments based
on thread synchronization operations [19]. On memory ac-
cesses and synchronization operations, it updates and ana-
lyzes the values of these clocks to determine if two segments
that access the same variable could execute in parallel, in-
dicating that a data race could occur [2, 3].

While dynamic race detectors are useful when searching
for concurrency bugs, they come at a high runtime cost.
They must check each access to memory in some manner,
yielding high overheads. It is not uncommon to see over-
heads ranging from 20× [39], to 200× [42], to upwards of
1000× [21] in commonly used race detectors. Besides mak-
ing these tools more difficult to use, these slowdowns nega-
tively affect their capabilities. Dynamic analysis tools can
only observe errors in portions of programs reached during
a particular execution, and slow tools limit the number of
runtime states that can be observed.

3. DEMAND-DRIVEN RACE DETECTION
Software dynamic race detectors have extremely high over-

heads because they conservatively perform sharing analysis
on every memory access. As Sack et al. pointed out, many
memory operations need not go through the entire race de-
tection algorithm because they could not possibly cause data
races [37]. However, the very act of checking whether a mem-
ory access should be sent to the race detector will cause
slowdowns in a software-based analysis tool. In this section,
we describe a demand-driven race detector that is only ac-
tive when the software-under-test is executing instructions
that should be sent through the race detection algorithm.
We then show a hardware model that allows us to design
a race detector that causes no runtime slowdowns when no
races could occur.

3.1 Unsynchronized Sharing Causes Races
In the most general sense, race detection is only impor-

tant when data sharing is occurring between threads or pro-
cesses. As Netzer and Miller described, apparent data races
are “failures in programs that access and update shared
data in critical sections” [30]. For a dynamic race detector,
this means that accesses to unshared data need not be sent
through the race detection algorithm. For instance, if two
threads are writing to and reading from thread-local data,
a happens-before race detector could not possibly observe
a data race – each variable is accessed by a single thread
whose Lamport clock is monotonically increasing.

Additionally, shared variables need not be sent through
the race detector on every access. A happens-before race
detector will not return a different result if a variable it
is checking has not been shared since the last time it was
checked. Figure 2 shows two examples of this. For these or-
derings, the subsequent accesses to the variable x by thread
2 cannot result in a different answer in either case.

Sack et al. take advantage of these insights by using soft-
ware filters to reduce race detection overheads [37]. Their
FSM filter utilizes the first insight to filter all accesses to
a variable until multiple threads touch it. Their duplicate
filter removes checks on variables that have previously been
analyzed since the last time they were shared. While this
software-based filtering improves the total race detection

4: Lock(m1);

5: x++;

6: x *= local_var1;

7: x += 256;

8: UnLock(m1);

THREAD 2

1: Lock(m1);

2: x = 256;

3: UnLock(m1);

THREAD 1

No Races

(a)

2: x++;

3: x *= local_var1;

4: x += 256;

THREAD 2

1: x = 256;

THREAD 1

R->W and

W->W Races

(b)

Figure 2: Multiple race checks yielding the same answers.
The numbers represent dynamic execution order. (a) The race
checking on instructions 6 and 7 will always yield the same ”no
races” answer as instruction 5, because they are all protected by
the same lock. (b) Each check in thread 2 will show the same
data races on x as no other threads are interleaved.

performance, it is still quite slow. Even if the program-
under-test has little data sharing, and thus most operations
are not analyzed, each memory access must still be analyzed
by the sharing filter.

3.2 Performing Race Detection When
Sharing Data

To best take advantage of the fact that races are tied
to inter-thread data sharing, we designed a software race
detector that is only enabled when a thread is operating on
shared data. This detector relies on the hardware to inform
it of data sharing events; when none are occurring, it need
not attempt to find races. The hardware utilized in this
section is idealized and performs the checks illustrated in
Figure 3 on each memory access.

On each memory operation, it checks if the accessed loca-
tion is thread-local or at least not currently participating in
a write-share. If either case is true, the access need not be
sent through the race detector, as explained in Section 3.1.
We accomplish this check through a form of eager conflict
detection, like those implemented in hardware transactional
memory [25] or race recording systems [16]. This detection
mechanism compares the ID of the thread that previously
touched this location with the current thread ID; if they are
different and either is a write, the system should check if a
data race has occurred. To this end, a thread gains owner-

ship of a variable when accessing it.
This can be done with ownership records similar to those

described by Damron et al. [10] or by keeping meta-data
alongside each byte in memory. Regardless, inter-thread
data sharing is detected using the ownership of a variable.
If thread 1 owns a variable and thread 2 accesses that loca-
tion, there is data sharing. The hardware must now check
if either access was a write, and give thread 2 ownership of
the variable for this type of access, as it is now the most
recent thread to touch it. If the data is write-shared, then
the software race detector should be run on this instruction.
For example, if thread 1 write-owned a variable, and thread
2 attempted to write to it, there is W→W data sharing.
Thread 2 is granted write-ownership of the variable and the
access is sent through the software race detector.

This demand-driven analysis system begins by performing
no race detection, instead only tracking the Lamport clocks
associated with each thread and lock (as, for instance, Lit-
eRace does when its race detector is disabled [23]). When
the software attempts to execute a synchronization opera-

Thread

Executes

Instruction

Synchro

Operation?

Update Lamport Clocks

YES

Memory

Operation?

NO

NO

YES Variable

Owned by this

Thread?

Last

Owned by this

Thread?

YES

NO Write

shared?

NO

Run Race

Detection

YES

Lose All Ownership

Update

Lamport

Clocks

Gain

Variable

Ownership

YES NO

Figure 3: Ideal Hardware-assisted Demand-Driven Race Detector This algorithm details an ideal demand-driven race detector.
The dark boxes are performed within the hardware, which tells the software race detector to run only when it detects data sharing that
could cause races.

tion (or other operation that increments its Lamport clock),
it asks the hardware to revoke all of this thread’s ownerships.
This is done so that the next time a variable is accessed by
this thread, the hardware will cause the software race detec-
tor to update the location’s Lamport clock, even if no other
thread has touched it.

While the program is running, it checks the ownership
of each memory access. Unlike a transactional memory sys-
tem, this occurs at every access in a multi-threaded program
because we cannot rely on races to exist only within demar-
cated regions. If this thread owns the memory location, the
access will complete without intervention. If not, the hard-
ware must then check if some other thread currently owns
(or most recently owned, as described above) this variable.
If this is not the case, this thread gains ownership of the
variable and the hardware signals to the race detector to
updates the variable’s clock appropriately. Subsequent ac-
cesses by this thread to that variable will not cause any
hardware events, and the program can run at full speed.

If the variable is or was most recently owned by another
thread, however, this access causes data sharing between
two or more threads. The hardware will detect this and,
if one or both accesses to this variable were writes, will in-
form the race detector that it must check this access for data
races. This system ensures that the software data race de-
tector does not perform any actions unless they are required.
The race detector does not perform the slow analysis algo-
rithm when the threads access unshared variables. When
data sharing occurs, the signals from the hardware precisely
inform the race detector when it should activate, ensuring
that no time spent in analysis is wasted.

4. MONITORING DATA SHARING IN

HARDWARE
As described in the previous section, the hardware to en-

able our demand-driven race detector needs a number of
capabilities to perform the checks for inter-thread data shar-
ing. Beyond the logic previously described, the architecture
must be able to:

1. Set thread-ownership of individual memory locations.

2. Keep separate read/write ownerships.

3. Invoke fast faults or interrupts to the race detector.

Without the first two, it would be impossible for the hard-
ware to properly perform sharing detection. If it had no con-
cept of thread-ownership, the hardware would be unable to
detect inter-thread sharing. Similarly, separate read/write

ownership is needed to avoid performing race detection dur-
ing read-only sharing, a common occurrence in parallel pro-
grams.

Without the third capability – fast interrupts – it is un-
likely that this system would be any faster than performing
the race detection in software. If each fault needed to go
through the kernel in order to run race detection on a single
memory operation, sections of parallel software with large
amounts of data sharing would become unbearably slow.

No hardware with these abilities currently exists, though
some researchers have described designs that nearly fit the
bill. Witchel’s Mondriaan Memory Protection system [44]
and UFO as described by Baugh et al. [4] are examples of
fine-grained memory protection systems that could be re-
purposed to provide threads ownership of memory regions.
Even then, application-specific hardware (or a programmable
state machine such as described in MemTracker [43]) would
need to be added to perform the sharing analysis.

These systems would require significant changes to the
architecture of existing processors, so it is unlikely that they
will be built to accelerate our single application. Instead,
we look elsewhere for hardware mechanisms that, while not
perfect, may help us build a“best effort”demand-driven race
detector.

4.1 Cache Events
We can observe data sharing by watching for particular

cache events. A W→W memory sharing event occurs when
two threads write to the same location. Assuming that each
thread is in its own core, and each core has its own MESI-
style private, coherent cache, the first write transitions the
cache line that contains the variable into a modified state.
When the second thread reads the line, the data is fetched
from a remote cache that was in the modified state. Sim-
ilarly, W→R data sharing occurs whenever one cache con-
tains a line in the modified state and another cache attempts
to read the modified line with a read-for-ownership opera-
tion. R→W sharing is slightly different, as it does not begin
with a cache line in the modified state. Nonetheless, it can
be seen when a cache line reads-for-ownership from an ex-
clusive or shared line in another cache.

Because of limitations inherent to caches, it is not readily
possible for our race detector to observe every data sharing
event by using cache information because:

1. Caches have limited capacity. If, for instance, thread
1 wrote to a location, the line was evicted, and then
thread 2 read the location, no cache events would sig-
nal this sharing.

2. Cache events are performed on a processor, not process

or thread, basis. Two threads that share data may
be scheduled on the same processor at different times,
allowing data sharing through the common L1 cache.

3. It is possible to have more threads than processors.
Cache sharing events may overlook data that was
shared between active and inactive threads.

4. Simultaneously multithreaded (SMT) systems have
multiple threads share the same cache, so some data
sharing is not visible with inter-cache events.

5. The cache events must be observable by software if our
race detector is to use them.

6. False sharing can cause races to be missed. If thread 1
writes variable x, putting its cache line into the mod-
ified state, thread 2 may read variable y, moving the
same line to shared. This would make it difficult to
observe a later access to x by thread 2.

The first problem has been addressed by researchers of
hardware-based race detectors and transactional memory
systems. For instance, Prvulovic measured the differences in
races seen within the L2 cache versus a theoretical infinite-
size cache in CORD and found little difference in the total
accuracy [34]. Intuitively, racy accesses that happen closer
together in time (and are thus still contained within the
cache) may be the most important races because they are
more likely to have their orders changed by timing pertur-
bations. Zhou et al. summarize this intuition by stating in
their report on HARD,“This [cache-sized] detection window
is usually enough because most races occur within a short
window of execution” [47].

Problems 2, 3, and 4 can usually be mitigated through
software mechanisms such as pinning threads to individual
processors (2), reducing the maximum number of threads to
match the number of cores (3), and disabling SMT (4) when
performing race detection. In this paper we only perform the
latter two. It is also important to note that we have found
that caveat 2 occurs infrequently enough that, despite the
potential problem, we never observed it in practice. The
next step in building our demand-driven race detector is
therefore a method of informing the software of these events.

Previous research has proposed hardware structures that
solve this problem by making memory events available to
the user [15]. More recently, Nagarajan and Gupta proposed
ECMon, a hardware mechanism that can take user-level in-
terrupts when a program causes particular cache events [27].
ECMon also solves the first problem by causing an interrupt
whenever a cache line is evicted. In order to quickly take
the subsequently large number of events, ECMon requires
user-level interrupts.

While making every cache event available to the user is a
fruitful area of work, we desire a less intrusive hardware de-
sign. To this end, we abandon the requirement of signalling
the software on every cache event. Instead, as we will de-
tail in the next section, we settle for observing a subset of
cache events. If we enable the race detector for long peri-
ods of time (rather than for a single instruction), we can
disable the detector when no sharing is observed, yet enable
it when it appears that sharing is happening. This has the
added benefit of solving the last problem in the common
case.

4.2 Performance Counters
Performance counters, a class of hardware devices con-

tained in most modern microprocessors, can be programmed

to count the number of times specified dynamic events occur
within a processor. One of the most common counters, for
example, is the number of instructions committed since the
counter was enabled. When these counts are made available
to software, they can be used to find and remove software
inefficiencies [41].

While performance counters can easily track the number
of events that occur within a processor, it is more difficult to
use them to find which instruction causes a particular event.
One common method is to set the initial value of a counter
to a negative number, take an interrupt to the kernel when
the counter overflows, and observe the state of the machine
from within the interrupt handler.

Recent Intel processors have introduced a number of ad-
vanced performance counter events; the most interesting for
this work are the events that describe cache state. For ex-
ample, in processors based on the Nehalem core, the event
MEM UNCORE RETIRED.OTHER CORE L2 HITM
(which we refer to as HITM) allows a core to count the
number of times it loads a cache line that was stored in the
modified state within another core’s private L2 cache.

Intel processors since the PentiumR© 4 also include a hard-
ware facility called Precise Event Based Sampling (PEBS)
that allows the hardware to automatically save information
about instructions that cause performance events. For in-
stance, PEBS can automatically store the instruction pointer
and register values of the operation that causes a cache miss
event into a buffer. When this memory buffer becomes full,
the hardware will raise an interrupt, allowing the kernel to
read out the data and make it available to analysis tools.

In our design, we use the PEBS hardware on performance
counter overflows to obtain information about the thread
that caused the data sharing. By taking a PEBS interrupt
when the HITM event occurs, a core is able to inform the
software that a W→R data sharing event has happened. We
use this, then, as the mechanism for informing our demand-
driven race detector that data is being shared.

There are impediments to using the HITM performance
counters as the signal to begin performing race detection.

1. Current HITM counters do not count reads-for-owner-
ship that cause HITMs. This means we are unable to
directly observe W→W data sharing.

2. There is currently no performance counter event to
directly observe R→W data sharing.

3. Current performance counters only count cache events
that are caused by instructions. They cannot count
when the hardware prefetchers load a cache line that
is in the modified state in another processor’s cache.

We quantify the effect of problems 1 and 2 on the accuracy
of our demand-driven race detector in Section 7 and then
test methods for mitigating these problems. It is often pos-
sible to disable the hardware prefetcher with BIOS or UEFI
settings, eliminating the third issue. We were unable to do
this during our tests, but noticed no adverse effects in any
of our benchmarks. We therefore do not study the third
problem further in this work.

5. OUR DEMAND-DRIVEN RACE

DETECTOR DESIGN
Our goal of a demand-driven race detector requires that

we have hardware events that will inform it of data shar-
ing events. Though the cache-based performance counter

Thread

Executes

Instruction

Synchro

Operation?

Update Lamport Clocks

YES

Analysis

Enabled?

NO

YES

NO Causes

HITM?

YES Caused by

Program Under

Test?

Interrupt to

Kernel
NO

Run Race

Detection

Enable

Analysis

YES

Data Sharing

Recently?

NO

YES

Disable

Analysis

NO

Figure 4: HITM-based Demand-Driven Race Detector. This algorithm uses hardware events (dark boxes) to watch for data
sharing. If sharing is detected, the slow race detection is enabled until the software race detector finds no more data sharing. With no
sharing, the system quickly goes through the steps within outlined box.

events we described in the previous section allow this by tak-
ing faults to the kernel whenever data sharing occurs, these
interrupts are too slow to be used to signal every memory
operation that must be sent to through the race detector.
Instead, we use these events to infer that we are in a section
of the program that has data sharing. Working under the
hypothesis that data sharing often happens in bursts, this is
a signal to enable the software-based race detector for a pe-
riod of time. The demand analysis algorithm for our system,
shown in Figure 4, is therefore:

1. Run the software under test with race detection dis-
abled (but paying attention to synchronization opera-
tions) and HITM performance counters enabled.

2. Observe HITM performance events. If these occur
within the program’s instruction space, enable the soft-
ware race detector and disable the HITM performance
counters. Synchronization functions such as
pthread mutex lock that cause HITMs are observed
but do not cause the race detector to start.

3. Run the software with race detection enabled and keep
track (with software mechanisms) of data sharing. If
the race detector finds that the program is no longer
in a section of code with data sharing, disable the race
detector and return to step 1.

Enabling race detection for a length of time whenever
the hardware indicates that the software is in a region with
shared memory helps alleviate two of the limitations of our
hardware sharing indicator. First, it reduces the number of
interrupts, which can devastate the performance of a system
if they occur too often. Second, it raises the chance of detect-
ing W→W and R→W data races in the vicinity of detected
W→R sharing, the two race types that our current hard-
ware sharing indicator cannot detect. Because these races
are likely to happen in regions of code that have other data
sharing, they may be caught by the software race detector
after it is enabled by a W→R sharing event.

When the performance counters in our design are en-
abled, a HITM event increments PMC0, the first perfor-
mance counter. When this counter overflows, it arms the
PEBS hardware, which will fire on the next HITM event.
When the PEBS hardware fires, it writes the current archi-
tectural state into a physical memory buffer and causes an
interrupt to the kernel. The interrupt handler first checks
that the software-under-test (SUT) was scheduled when tak-
ing the interrupt (as other processes or the kernel could have
caused the event) before sending a signal to the race detector
and resetting PMC0. The signal causes the race detector to

access the performance counter driver to read the informa-
tion that the PEBS hardware wrote into physical memory.
It uses this information to decide whether the HITM was
caused by the SUT or the detector itself. Finally, if the in-
terrupt was caused by the SUT, the detector requests that
the driver disable the counter and enables full race detection.

The race detector, when enabled, keeps track of inter-
thread data sharing using software mechanisms. It does this
in order to enable the previously detailed filters, where in-
structions working on thread-local data are not sent through
the race detection algorithm. If no inter-thread data shar-
ing has taken place within some user-defined period of time,
the software race detector will disable itself. Before allow-
ing any further instructions to run, it also asks the driver to
again enable the HITM performance counters. This puts the
software back into the initial state where it runs at nearly
full speed, with no race detection occurring. The particular
timeout we used in this work is dependent on the internal
workings of our race detector. Broadly, the sharing check
occurred every few thousand instructions.

As we mentioned in Sections 4.1 and 4.2, this system is
not guaranteed to find all races, as the caches may miss some
data sharing events. However, we agree with the assertion of
other researchers that it is better to have a race detector that
is usable but slightly inaccurate than one that is unusable
[37]. For some developers, the performance offered by a
demand-driven race detector may be worth the chance at
missing some races. At other times, they may choose to
disable the demand-driven aspects and run the continuous-
analysis detector. Both options are possible with our system.

6. EXPERIMENTAL SETUP
We built our system on top of the IntelR© Inspector XE

race detector, a software-based happens-before race detector
built using Pin [22]. The Inspector XE pintool performs few
actions (such as updating Lamport clocks on synchroniza-
tion points) when race detection is disabled, but there is still
some slowdown due to the instrumentation overhead. When
race detection is enabled, the tool checks every memory op-
eration in some way and disables the performance counters
to avoid unnecessary interrupts.

Our experiments were performed on an IntelR© CoreTM i7-
870, a 2.93 GHz processor with 8 MB of shared L3 cache and
256KB of private L2 cache per core. This is normally a four-
core processor with 8 logical cores, but SMT was disabled
for these experiments. The test system was equipped with 8
GB of DDR3 DRAM and ran 64-bit SUSE Linux Enterprise
Server 11.0, kernel version 2.6.27.19.

Table 1: Our selection of concurrency bugs from RAD-
Bench These bugs were used to test the accuracy of our demand-
driven race detector versus a system that always analyzes memory
accesses. SpiderMonkey-0 is not described by Jalbert et al, as it
was removed in the final version of RADBench.

SpiderMonkey-0 A data race in the Mozilla SpiderMonkey
JavaScript Engine, Mozilla bug 515403

SpiderMonkey-1 A data race and atomicity violation in
the Mozilla SpiderMonkey JavaScript Engine,
Mozilla bug 476934

SpiderMonkey-2 A data race in the Mozilla SpiderMonkey
JavaScript Engine, Mozilla bug 478336

NSPR-1 Mutexes being incorrectly allocated (resulting
in improper locking) in Mozilla NSPR, Mozilla
bug 354593

Memcached-1 Thread-unsafe incrementing of global vari-
ables in memcached, Memcached bug 127

Apache-1 List in Apache httpd incorrectly locked, caus-
ing crashes. Apache bug 44402

Two benchmarks suites were used to ascertain the per-
formance of our demand-driven race detection system. The
first, the Phoenix shared memory map-reduce benchmarks,
represents programs that, while parallel, have little data
sharing [36]. We also use the PARSEC suite version 2.1,
a collection of parallel applications with a wide range of
data access patterns, concurrency paradigms, and data shar-
ing [6]. All benchmarks were run with four threads, and
all except for freqmine were compiled with GCC 4.3 using
pthreads. Freqmine used ICC 10.1 and was parallelized with
OpenMP. The Phoenix benchmarks were given default in-
puts, while the PARSEC benchmarks used the simlarge in-
put set. Each benchmark was run multiple times to increase
statistical confidence, and the first run of every test was
discarded in order to preload data from the hard disk.

We also ran the Phoenix and PARSEC suites to compare
the race detection accuracy of our demand analysis system
versus the original continuous-analysis Inspector XE. In ad-
dition, we tested the accuracy of our system with a pre-
release version of RADBench by Jalbert et al. [17]. We list
the particular benchmarks from this suite that we used in
Table 1. Because we were only testing the accuracy of our
race detector, we did not run the two deadlock benchmarks
(NSPR-2 and NSPR-3). Similarly, we did not test Apache-
2 because it was an atomicity violation only, and our race
detector would not find it. We also tested a SpiderMon-
key bug that was not included in the final version of the
suite, SpiderMonkey-0. We also did not run the Chrome
benchmarks, as we were unable to compile either version of
Chromium within our particular version of Linux.

In all cases, for both the continuous and demand-driven
tools, we configured the race detector to search for races but
not cross-thread stack accesses or deadlocks. We enabled
the software filtering available within Inspector XE, meaning
that it would not run race detection on a variable until it was
accessed by at least two threads, and one of those threads
performed a write. We kept no call stack for debugging
purposes for any of the performance-related benchmarks.

7. EXPERIMENTAL RESULTS

7.1 Performance Improvement
Our initial tests quantify the performance improvements

that our demand-driven race detector could yield. We first

ran each benchmark with the original race detector, con-
figured as previously described, which yielded the baseline
slowdowns for continuous-analysis as shown in Figure 5. The
slowdowns between the benchmarks range from 5.3× for ray-

trace in the PARSEC suite to 278× for matrix multiply in
the Phoenix suite. The former spends most of its time in
single-threaded code where the race detector causes little
slowdown, while the latter is slowed heavily due to the soft-
ware filtering algorithm.

On the whole, the Phoenix benchmark ran 83× slower
while inside the race detector than on the bare hardware,
as shown in Figure 5a. While all of these algorithmic ker-
nels utilized similar forms of data parallelism in their con-
current sections, the slowdowns caused by the race detec-
tor can differ by an order of magnitude. Because these
benchmarks are written in a map-reduce manner (where
one thread assigns independent work to all the others), the
software filtering stops most of the memory accesses from
going through the slow race detection algorithm. The ben-
efit of this can be seen in benchmarks such as string match

and word count, where overheads are relatively low (28×
and 23.5×, respectively). Unfortunately, the memory ac-
cess filtering can itself cause high overheads, as can be seen
in linear regression and matrix multiply. These benchmarks
also have few shared memory locations, but their particu-
lar memory access patterns bring out inefficiencies in the
filtering algorithm. As such, even though the memory oper-
ations are not sent through the slow race detector, the fil-
tering mechanism itself causes overheads of 261× and 278×,
respectively.

The PARSEC benchmark suite contains a collection of
large programs with many different styles of parallelism.
These differences in the methods of concurrency can be seen
in Figure 5b. While benchmarks with little communication,
such as blackscholes and raytrace have little overhead (28.4×
and 5.3×, respectively), the program dedup has a significant
amount of sharing and runs much slower (99× slowdown).
Many of these benchmarks spend a large period of their
time either running in the race detection algorithm or going
through the software filtering mechanism. The geometric
mean of the slowdowns for the PARSEC suite is 74.7×.

We then ran the same benchmarks under our HITM-based
demand detection system. For these benchmarks, we chose
to ignore HITMs that occurred in some library calls (such
as malloc and free) because they had needless sharing that
should not cause data races. Performance differences be-
tween these experiments and the baseline are due to our de-
mand system disabling the race detector and software filters
when they are not needed. The results of these experiments
are presented in Figure 6.

Figure 6a shows the performance improvements yielded
by the HITM-based race detector in the Phoenix suite. The
average slowdown dropped from 83× to 8.3×, a 10× perfor-
mance improvement. This can be seen most dramatically in
the matrix multiply benchmark. In this case, the hardware
is able to observe that very little data sharing occurs, and
it keeps the race detector disabled for the majority of the
benchmark. With the race detector disabled, no memory
operations are sent through the software filter, yielding a
51× performance improvement. This reduction of the filter
overhead is also seen throughout the other benchmarks, in-
cluding those that originally had relatively little slowdown.

0

50

100

150

200

250

300
S

lo
w

d
o

w
n

 (
x

)

(a) Phoenix Suite

0

50

100

150

200

250

300

S
lo
w
d
o
w
n
(x
)

(b) PARSEC Suite

Figure 5: Continuous-analysis race detection slowdowns. Bars represent the mean slowdown; error bars represent 95% confidence
intervals. The dashed line is illustrative of a 75× slowdown. These benchmarks see a range of slowdowns, averaging (a) 83× and (b) 75×.
Much of the time in the high-overhead benchmarks is spent within the software filtering mechanism or the Lamport clock algorithm.

0

2

4

6

8

10

12

14

16

18

S
p

e
e

d
u

p
 (

x
)

51.0

(a) Phoenix Suite

0

2

4

6

8

10

12

14

16

18
S

p
e

e
d

u
p

 (
x

)

(b) PARSEC Suite

Figure 6: Speedups for to demand-driven race detection compared to continuous-analysis detection. Bars represent the
mean performance gain; error bars represent 95% confidence intervals. The dashed line is the baseline performance of the continuous
race detector. (a) The Phoenix map-reduce benchmarks see large speedups because they contain little data sharing between the worker
threads. (b) The PARSEC suite contains more data sharing, but the average speedup is still 3×.

The slowdown of the word count benchmark, for instance, is
reduced to 4.3×.

The concurrency model of the Phoenix benchmark suite
is well suited for our method of demand-driven race detec-
tion. Each benchmark shares very little data, so the vast
majority of memory accesses need not be sent through the
race detector. Without the hardware sharing detector, these
memory operations would still be sent through some type of
analysis to determine if they should be checked for races.

Figure 6b details the performance improvements of the
PARSEC benchmark suite. The geometric mean of the
speedups in these benchmarks is 3×, reducing the slow-
down from 74.7× to 25.2×. Freqmine sees the highest per-
formance gains (13.5×), as it is an OpenMP data parallel
program, similar to the benchmarks in the Phoenix suite.
Other benchmarks, such as x264 and canneal see less perfor-
mance gain (3.2× and 2.1×) because they have a significant
amount of inter-thread communication that must be sent
through the race detector. A few benchmarks (e.g. vips

and streamcluster) do not contain a large amount of shar-
ing, but still do not gain much performance (22% and 23%).
This appears to occur primarily because what little sharing
the programs perform causes the race detector to run for a
period of time, exit, and quickly reenter on the next shar-
ing event or falsely shared cache line. The speedups of all

the benchmarks are mitigated somewhat by the overheads
of going to the kernel to deal with performance monitor in-
terrupts, but it is especially apparent in these benchmarks
that have a small amount of data sharing.

Taken together, these benchmarks verify that a demand-
based race detector can result in higher performance than a
continuous-analysis detector, even when the latter uses ad-
vanced software filtering techniques. Even programs that
contain a high amount of data sharing gain some perfor-
mance benefits, as there are bound to be sections of code
that are not operating on shared data. Meanwhile, pro-
grams with large sections of code that do not share data can
be analyzed much faster.

7.2 Accuracy of Demand-Driven Race
Detection

The next question in regards to our demand-driven race
detector is its accuracy compared to the slower continuous-
analysis race detector. If our system was faster but found
no errors, it would be of little use.

We compared the data races we found in the Phoenix,
PARSEC, and RADBench suites using the demand-driven
race detector against the races found with the continuous-
detection system. These races include both benign races
(such as threads checking a variable in a racy way before

Table 2: Accuracy of the demand-driven race detector The demand-driven race detector finds most of the races observed by the
continuous race detector (including previously unknown races in facesim and freqmine). The W→W races that are missed are due to the
lack of HITMs on reads-for-ownership, while cache size limitations cause the missed races in facesim.

kmeans facesim ferret freqmine vips x264 streamcluster

W→W 1/1 (100%) 0/1 (0%) - - 1/1 (100%) - 0/1 (0%)
R→W - 0/1 (0%) 2/2 (100%) 2/2 (100%) 1/1 (100%) 3/3 (100%) 1/1 (100%)
W→R - 2/2 (100%) 1/1 (100%) 2/2 (100%) 1/1 (100%) 3/3 (100%) 1/1 (100%)

SpiderMonkey-0 SpiderMonkey-1 SpiderMonkey-2 NSPR-1 Memcached-1 Apache-1

W→W 0/9 (0%) 0/1 (0%) 0/1 (0%) 3/3 (100%) - 1/1 (100%)
R→W 3/3 (100%) - 1/1 (100%) 1/1 (100%) 1/1 (100%) 7/7 (100%)
W→R 8/8 (100%) 1/1 (100%) 2/2 (100%) 4/4 (100%) - 2/2 (100%)
Total 55/69 (79.7%)

attempting to acquire a lock and rechecking the variable)
and actual data races. We report every observed race be-
cause the difference is meaningless to the tool; it is up to
the programmer to designate a race either benign or real.

The accuracy results are presented in Table 2, which only
lists benchmarks with data races detected by the continu-
ous-analysis tool. Our system misses no W→R races, the
type of sharing that our hardware performance counters can
observe. We also find most W→W and R→W races, ver-
ifying our assumption that, quite often, W→R sharing is
an indicator of shared sections of the program. In total,
our demand-driven race detector observes nearly 80% of the
races visible to the continuous analysis race detector.

We also note that among the races observed with the
demand-driven race detector, two were true data races that
had not been previously reported. Facesim contained a
W→R data race due to a mistake in the code that did not
appropriately create thread-local copies of the working data.
Freqmine (the OpenMP benchmark with a high speedup)
contained a W→R error due to a missing OMP critical state-
ment. Both bugs were reported to the PARSEC developers
and confirmed, and we have developed patches to be de-
ployed in the next version of PARSEC. We also found a
true data race in x264 that had previously been reported to
the developers and patched.

We found that debugging these races was easier than nor-
mal thanks to the increased speed of our demand-driven
race detector. The multiple runs we performed to pinpoint
the locations and call-stacks of the error in freqmine, for in-
stance, were completed before the continuous-detection run
completed for the first time.

7.3 Races Missed by the Demand-Driven
Detector

Despite these benefits, our demand-driven tool misses 20%
of the data races found with the continuous-analysis system.
The first reason for these inaccuracies is because executing
a read-for-ownership (RFO) on a cache line stored in the
modified state within another cache does not increment the
HITM performance counter. This is why we do not observe
the W→W race in streamcluster, for instance; there is no
W→R sharing in the section of code that causes this race.

Additionally, the limited size of the L2 cache makes it
difficult to observe the remaining races in facesim. The ini-
tial write and subsequent racy accesses are far apart (with
a large amount of data written by all threads in between),
and thus the modified line is evicted from the cache before
it can cause a HITM event.

7.4 Observing more W→WData Sharing
If it were possible to detect RFO accesses that cause HITM

events, we should be able to detect some W→W races that
we previously could not. One way to do this would be to
modify the HITM performance counter event in future pro-
cessors to also count stores that cause RFO HITMs.

In order to test this solution on our existing system, we
modified our race detection pintool to insert an innocuous
load before every store. This load should cause a HITM
performance event at the same location that would cause an
event on a processor that counted RFO HITMs. We reran
the accuracy tests and observed that this indeed allowed
us to detect the missing W→W races. The total detection
accuracy is listed in Table 3.

In total, this modification raises the accuracy of our de-
mand-driven tool from 80% to 97% in our tests. The only
extra overhead would come from the additional time spent
in the race detector from W→W sharing events if it were
possible to detect these events in hardware. Instead, insert-
ing the extra loads using binary instrumentation slows the
program an additional 5–130% of its original speed. This
reduces the performance gains seen by the demand-driven
race detector by less than 5% in all cases (e.g. the speedup
seen by freqmine is reduced from 13.5× to 12.9×).

7.5 Negating the Limited Cache Size
Even when observing RFO HITM events, we do not ob-

serve the remaining races in facesim. As mentioned, these
data races are missed because the data from the first write
is evicted from the L2 cache before the second thread’s read
or write. This is an inherent limitation of our cache-event-
based race detection architecture. There are a number of
ways that this shortcoming might be mitigated.

1. Ignore the problem, as races that take place far apart
(such that the cache has enough time to evict the mod-
ified line) may be less likely to affect the program’s
output.

2. Increase the size of the monitored L2 cache.
3. Take events when data is evicted from the cache, as

ECMon does [27].
4. Perturb the schedules of the threads such that the sec-

tions that may race are put closer to one another by,
for instance, placing sleep() calls throughout the code
to perturb the regular schedules [32]. This is an active
area of research in concurrency bug analysis [11].

We choose to focus on method 4, leaving a more in-depth
analysis of the tradeoffs in this area for a future work. We

Table 3: Change in detection accuracy with HITMs on RFOs. By taking HITM events on the innocuous loads before the stores
to shared variables, we are able to observe the previously missed W→W races, though we still miss the races in facesim due to cache
size limitations. This table lists only the benchmarks that previously had less than 100% accuracy.

facesim streamcluster SpiderMonkey-0 SpiderMonkey-1 SpiderMonkey-2

W→W 0/1 (0%) 1/1 (100%) 9/9 (100%) 1/1 (100%) 1/1 (100%)

R→W 0/1 (0%) 1/1 (100%) 3/3 (100%) - 1/1 (100%)

Total 67/69 (97%)

found that by modifying the scheduling of the threads, we
were able to cause the racy regions to overlap, and were
able to detect both remaining races in facesim. This pro-
cess, however, was labor-intensive in its current form, and
we think a more systematic method (such as those in the
literature) would help.

In general, through a combination of techniques, our
demand-driven race detector was able to observe all data
races that the continuous-analysis Inspector XE race detec-
tor observed.

8. RELATED WORK

8.1 Data Race Detection
Data races are common concurrency bugs that affect many

parallel programs. Netzer and Miller formalized the defini-
tions of both feasible data races (those that could happen
in some possible program ordering) and apparent data races
(those that can be inferred based on the explicitly observed
synchronization of the program) [30]. This work focuses on
the latter.

This paper focuses on IntelR© Inspector XE [2, 3], but
there are also other commercial and open-source race de-
tectors in use. Examples include Valgrind’s Helgrind tool
[18], Google ThreadSanitizer [39], IBM Multicore SDK [35],
and Oracle (formerly Sun) Thread Analyzer [42]. Some of
the race detection algorithms used in these tools are based
on detecting violations of Lamport’s happens-before relation
[19], while others use the lockset algorithm [38] or a hybrid
combination of the two [31].

In general, these tools all suffer from high overheads. For
example, our measurements put Helgrind at about the same
order of magnitude as the continuous-analysis Inspector XE.
We feel that our demand-driven analysis technique would be
amenable to many, if not all, of these race detectors.

8.2 Software Acceleration Methods
Dynamic data race detectors can have extremely high

overheads, so researchers have looked at software mecha-
nisms for improving their performance. Choi et al. use
static analysis methods to find memory operations that are
subsumed by more important accesses [9], while Sack et al.

looked into ways of filtering superfluous race detection in
software [37]. FastTrack shows that by carefully using scalar
clocks instead of vector clocks, a happens-before race detec-
tor can be made much faster without significant loss of ac-
curacy [12]. In a different vein, Umbra shows methods for
making the shadow memory accesses needed for dynamic
analysis tools much more efficient [46].

Though these works show large performance improvements,
current dynamic data race detectors are still quite slow. As
we show in this work, our hardware-assisted demand-driven
race detection method is able to achieve much higher per-

formance than a commercial race detection tool that uses a
number of the mechanisms present in the literature.

A somewhat different software method of increasing race
detection performance is to use memory access sampling.
LiteRace [23] and PACER [7] present methods of performing
data race detection on a user-controllable subset of the dy-
namic memory accesses of a program. In doing so, they are
able to make the overheads user-controlled at the expense
of missing some races. The choice of sampling is orthogo-
nal to our work, however, as sampling could be added to a
demand-driven race detector, with the higher performance of
the demand-driven tool yielding fewer false negatives under
a performance threshold. We previously showed this combi-
nation of demand analysis and sampling for other dynamic
analysis systems [13].

8.3 Hardware Race Detection
Hardware race detection systems take advantage of the

fact that cache events are related to software data sharing
by tracking these events and using them as signals to other
hardware mechanisms. One popular area of research in hard-
ware race detection is hardware race recorders, which are
used for post-mortem data race debugging [1]. Systems such
as FDR record enough information about inter-processor
cache events (and other metrics) to backing store that it
is possible to deterministically replay the multi-threaded
software execution afterwards to observe the bug occurring
again [16, 28, 45]. These systems are unable to perform
online race detection.

There has also been work in performing dynamic race
detection within hardware. Min and Choi described one
of the earliest works in this area; their system performs
happens-before analysis on the cache line level, and uses
inter-processor cache events to detect sharing [24]. Their
system came with a number of limitations, however, as they
assume that cache evictions will be caught by the OS and
virtualized (a slow proposition), and that shared variables
will be contained on their own cache line. More recently,
CORD and HARD described hardware happens-before and
lockset race detectors, respectively [34, 47]. The former uses
inter-processor cache events to detect data sharing and stud-
ies the accuracy loss of ignoring races that happen outside
of the cache. The latter uses bloom filters to detect when a
variable has associated lockset data that is stored alongside
the cache (and in main memory). Muzahid et al. describe
a signature-based mechanism, SigRace, where accesses that
conflict in a lossy filter will cause the hardware to roll back
execution and enable hardware race detection [26].

Despite their ability to find data races while running the
original application at (close to) full speed, these hardware
race detectors require application-specific additions to the
processor’s pipeline and cache system. Unlike our proposed
solution, these systems do not currently exist in processors,

though some of their additions may be useful in making a
more accurate demand-driven software race detector.

8.4 Observing Hardware Events
Other researchers have proposed hardware structures that

make memory events available to the user. Horowitz et al.

described Informing Memory Operations, or memory op-
erations that cause execution to branch to a user-defined
handler whenever a cache miss occurs [15]. Nagarajan and
Gupta proposed ECMon, a hardware mechanism that can
take user-level interrupts when a program causes particular
cache events [27]. They mention that these events could be
used to perform lockset-based race detection, though they
do not give any details of an implementation. Regardless,
both IMO and ECMon require user-level interrupts, as their
designers expect to perform actions on every cache or mem-
ory event. In comparison, this work describes a way to per-
form demand-driven detection while requiring many fewer
hardware changes and taking many fewer interrupts.

We were able to do build our demand-driven race detector
by utilizing the performance counter system that already ex-
ists on commercial microprocessors. Post-silicon verification
of hardware operation and offline software optimization are
the most common uses of these performance counters [41],
but a number of researchers have looked into new ways of
using these devices. Because processor activity can be moni-
tored using these counters, Singh et al. use them to estimate
power usage in a processor [40]. Additionally, Singh et al.

and Chen et al. both propose using performance counters as
input to the process scheduler in an effort to better utilize
processor resources [8, 40].

8.5 Demand Analysis
Our demand-driven race detector is not the first demand-

driven dynamic analysis tool. Ho et al. described a sys-
tem that uses a virtual machine monitor in combination
with a software emulator to perform demand-driven taint
analysis [14]. By marking pages that contained tainted val-
ues as unavailable in the virtual memory system, they were
able to take page faults whenever accessing memory near
a value they wanted to analyze. This allowed them to dis-
able their analysis routines until they began working on data
that needed to be analyzed, yielding significant performance
improvements when not operating on tainted data. Unfor-
tunately, this mechanism is not usable for data race detec-
tion between threads within the same process space, as each
thread exists within the same virtual memory space.

Berger et al. sidestepped this problem in their tool, Grace,
by limiting it to fork/join parallel code and starting a new
process, rather than thread, at each fork [5]. Nonetheless,
using the paging system for sharing detection could lead to
a significant number of false positives, as pages are usually
much larger than the granularity on which data is shared.
By using cache lines, which are much smaller, we avoid most
false sharing cases.

9. CONCLUSION AND FUTUREWORK
In this paper we designed a demand-driven race detec-

tor. Because happens-before race detectors find apparent
data races by observing data sharing events that are not ap-
propriately protected, there is no need to execute the race
detection analyses if there is no data sharing. Our demand-
driven tool therefore does not perform race detection until

a hardware-based indicator informs it that the program has
entered a section that is potentially sharing data. We then
described how to use the performance counter facilities on
current consumer processors to build this hardware sharing
indicator and used this to build a demand-driven race de-
tector.

We showed that demand-driven race detection can signif-
icantly increase the performance of software race detectors.
We were able to achieve a mean performance improvement
of 10× in the Phoenix benchmark suite because its pro-
grams have little data sharing, while we observed 3× per-
formance improvements in the PARSEC suite. While using
cache events to perform demand-driven analysis can cause
the race detector to miss some races, we show a number of
solutions to combat these inaccuracies. Our demand-driven
detector was able to catch 97% of the races observed us-
ing a continuous-analysis detector, two of which were new
bugs in the PARSEC suite that have been reported to the
developers.

Future research directions include new methods of auto-
matically scheduling threads so that their potentially racy
regions are in the cache at the same time. Current works in
this area focus on perturbing thread schedules in order to
cause errors to manifest, which is slightly different than the
data-oriented idea of observing cache-line sharing. Another
potentially fruitful direction of research may come from ex-
panding the use of architectural performance counters to
accelerate other software analyses. For example, detectors
such as Valgrind’s MemCheck that only care about unini-
tialized values may benefit from only operating on data that
has recently missed in the cache. Finally, there are more
useful directions to take fine-grained memory analysis. This
demand-driven race detection would benefit from systems
such as ECMon and MemTracker, but these hardware sys-
tems will not be built if they do not offer enough advan-
tages to offset their design and verification costs. The ideal
demand-driven detector described in this paper is one more
work that would benefit from a generalized memory analysis
framework.

10. ACKNOWLEDGMENTS
We wish to thank Matt Braun and the rest of the In-

spector XE team for their help and insights throughout this
project. Thanks to Lee Baugh for his suggestions about
testing RFOs, and to Debapriya Chatterjee, Jason Clemons,
and Andrea Pellegrini for their edits and suggestions. The
authors acknowledge the support of the Gigascale Systems
Research Center.

11. REFERENCES

[1] D. F. Bacon and S. C. Goldstein. Hardware-assisted replay of
multiprocessor programs. In ACM/ONR Workshop on Parallel
& Distributed Debugging, 1991.

[2] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. A theory of data
race detection. In Workshop on Parallel and Distributed
Systems: Testing and Debugging, 2006.

[3] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. Unraveling data
race detection in the Intel Thread Checker. In Workshop on
Software Tools for MultiCore Systems, 2006.

[4] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware
memory protection to build a high-performance,
strongly-atomic hybrid transactional memory. In Int’l. Symp.
on Computer Architecture (ISCA), 2008.

[5] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
multithreaded programming for C/C++. In Conf. on

Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), 2009.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In Int’l. Conf. on Parallel Architecture and
Compilation Techniques (PACT), 2008.

[7] M. D. Bond, K. E. Coons, and K. S. McKinley. PACER:
Proportional detection of data races. In Conf. on Programming
Language Design and Implementation (PLDI), 2010.

[8] H. Chen, W.-C. Hsu, J. Lu, P.-C. Yew, and D.-Y. Chen.
Dynamic trace selection using performance monitoring
hardware sampling. In Int’l Symp. on Code Generation and
Optimization (CGO), 2003.

[9] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In Conf. on
Programming Language Design and Implementation, 2002.

[10] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2006.

[11] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded java program test generation. IBM Systems
Journal, 41:111–125, 2002.

[12] C. Flannagan and S. N. Freund. FastTrack: Efficient and
precise dynamic race detection. In PLDI, 2009.

[13] J. L. Greathouse, C. LeBlanc, T. Austin, and V. Bertacco.
Highly scalable distributed dataflow analysis. In Int’l Symp. on
Code Generation and Optimization (CGO), 2011.

[14] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical taint-based protection using demand emulation. In
European Conf. on Computer Systems (EuroSys), 2006.

[15] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith.
Informing memory operations: Memory performance feedback
mechanisms and their applications. Trans. on Computer
Systems, 16:170–205, 1998.

[16] D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In Int’l Symp. on
Computer Architecture (ISCA), 2008.

[17] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. RADBench: A
Concurrency Bug Benchmark Suite. In Workshop on Hot
Topics in Parallelism (HotPar), 2011.

[18] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy.
Helgrind+: An efficient dynamic race detector. In Int’l Parallel
& Distributed Processing Symp. (IPDPS), 2009.

[19] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM,
21(7):558–565, 1978.

[20] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes - a
comprehensive study on real world concurrency bug
characteristics. In Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2008.

[21] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
atomicity violations via access interleaving invariants. In Int’l
Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2006.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic
instrumentation. In Conf. on Programming Language Design
and Implementation (PLDI), 2005.

[23] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
Effective sampling for lightweight data-race detection. In Conf.
on Programming Language Design and Implementation
(PLDI), 2009.

[24] S. L. Min and J.-D. Choi. An efficient cache-based access
anomaly detection scheme. In Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 1991.

[25] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In Int’l Symp.
on High-Performance Computer Architecture (HPCA), 2006.

[26] A. Muzahid, D. Suárez, J. Torrellas, and S. Qi. SigRace:
Signature-based data race detection. In Int’l Symp. on
Computer Architecture (ISCA), 2009.

[27] V. Nagarajan and R. Gupta. ECMon: Exposing cache events
for monitoring. In Int’l Symp. on Computer Architecture
(ISCA), 2009.

[28] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously recording program execution for deterministic
replay debugging. In Int’l Symp. on Computer Architecture
(ISCA), 2005.

[29] National Vulnerability Database. Vulnerability Summary for
CVE-2010-3864: OpenSSL 1.0.0. http:
//web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-3864,
2010.

[30] R. H. B. Netzer and B. P. Miller. What are race conditions?
some issues and formalizations. ACM Letters on Programming
Languages and Systems, 1(1):74–88, March 1992.

[31] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race
detection. In Symp. on Principles and Practice of Parallel
Programming (PPoPP), 2003.

[32] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing atomicity
violation bugs from their hiding places. In Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2009.

[33] J. Pincus and B. Baker. Beyond stack smashing: Recent
advances in exploiting buffer overruns. IEEE Security and
Privacy, 2(4):20–27, 2004.

[34] M. Prvulovic. CORD: Cost-effective (and nearly overhead-free)
order-recording and data race detection. In Int’l Symp. on
High-Performance Computer Architecture (HPCA), 2006.

[35] Y. Qi, R. Das, Z. D. Luo, and M. Trotter. MulticoreSDK: A
practical and efficient data race detector for real-world
applications. In Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging, 2009.

[36] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and
multiprocessor systems. In Int’l. Symp. on High-Performance
Computer Architecture (HPCA), 2007.

[37] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrellas.
Accurate and efficient filtering for the Intel Thread Checker
race detector. In Workshop on Architectural and System
Support for Improving Software Dependability, 2006.

[38] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. Trans. on Computer Systems,
15(4):391–411, 1997.

[39] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer – data
race detection in practice. In Workshop on Binary
Instrumentation and Applications, 2009.

[40] K. Singh, M. Bhadauria, and S. A. McKee. Real time power
estimation and thread scheduling via performance counters. In
Workshop on Design, Architecture, and Simulation of Chip
Multi-Processors, 2008.

[41] B. Sprunt. The basics of performance-monitoring hardware.
IEEE Micro, 22(4):64–71, 2002.

[42] C. Terboven. Comparing Intel Thread Checker and Sun Thread
Analyzer. Parallel Computing: Architectures, Algorithms and
Applications, 38:669–676, 2007.

[43] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic.
MemTracker: An accelerator for memory debugging and
monitoring. ACM Transactions on Architecture and Code
Optimization, 6(2):1–33, 2009.

[44] E. Witchel. Mondriaan Memory Protection. PhD thesis,
Massachusetts Institute of Technology, January 2004.

[45] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder” for
enabling full-system multiprocessor deterministic replay. In
Int’l Symp. on Computer Architecture (ISCA), 2003.

[46] Q. Zhao, D. Bruening, and S. Amarasinghe. Umbra: Efficient
and scalable memory shadowing. In Int’l Symp. on Code
Generation and Optimization (CGO), 2010.

[47] P. Zhou, R. Teodorescu, and Y. Zhou. HARD:
Hardware-assisted lockset-based race detection. In Int’l Symp.
on High-Performance Computer Architecture (HPCA), 2007.

