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Abstract – AMD had previously detailed its exascale research 

journey from initial targets and requirements to the develop-

ment and evolution of its vision of a high-performance compu-

ting (HPC) accelerated processing unit (APU), dubbed the Ex-

ascale Heterogeneous Processor or EHP. At the conclusion of 

that work, the learnings were integrated into the design of the 

node architecture that went into the Frontier supercomputer, 

the world’s first exascale machine. However, while the Frontier 

node architecture embodied many of the attributes of the EHP 

concept, advanced heterogeneous integration capabilities at the 

time were not yet sufficiently mature to realize our vision of a 

fully-integrated APU for HPC and AI. In this paper, we finish 

the EHP’s story by digging deeper into why an APU was not the 

right solution at the time of our first exascale architecture, what 

the shortcomings were of previous EHP concepts, and how 

AMD further evolved the concept into the AMD Instinct™ 

MI300A APU. MI300A is the culmination of years of AMD de-

velopments in advanced packaging technologies, its APU hard-

ware and software, and the next step in our highly effective 

chiplet strategy to not only deliver a groundbreaking design for 

exascale computing, but to also meet the demands of new large-

language model and generative AI applications. 

I. INTRODUCTION 

Over a decade ago, the U.S. Department of Energy (DOE) 

created an ambitious set of goals to guide their exascale 

program [7]. In particular, the DOE was concerned that 

technical challenges like the end of Moore’s Law [23] and 

Dennard scaling [9], power consumption, the memory wall 

[43], and reliability at scale could significantly delay the 

introduction of exascale-class supercomputers. The DOE 

administered a series of advanced research public-private 

partnerships to enable and accelerate the pre-exascale 

research needed to achieve exascale compute capabilities. 

AMD was selected to participate in these research 

programs. Key aspects of our exascale research vision and 

how they evolved and ultimately led to the world’s first 

exascale supercomputer, Frontier at Oak Ridge National 

Laboratory [28][29][30], were detailed in our ISCA 2023 

Industry Track paper [22]. In particular, our research vision 

proposed the “Exascale Heterogeneous Processor” (EHP), a 

high-performance accelerated processing unit (APU) 

consisting of CPU and GPU compute along with multiple 

stacks of high-bandwidth memory (HBM) and other system-

on-a-chip (SoC) components all integrated into a single 

physical processor package. For a variety of factors to be 

discussed in this paper, what was ultimately deployed in the 

Frontier supercomputer’s node architecture had a logical 

organization that reflected many of the key architectural 

attributes of the EHP, but was constructed out of separate, 

discrete packages. 

Lawrence Livermore National Laboratory announced that 

their upcoming El Capitan supercomputer will utilize AMD 

Instinct™ MI300A APUs [37]. The MI300A APU represents 

the realization and embodiment of the original EHP concept, 

combining compute and memory components in a single 

advanced package. This paper provides an inside view into: 

why AMD did not initially pursue the EHP in the first 

generation exascale machine; remaining challenges with the 

original EHP concept; technical details of the AMD MI300A 

APU and how it ultimately surpasses the EHP; and the 

evolution of the AMD chiplet strategy into a modular 3D 

chiplet platform that also enables the AMD Instinct™ 

MI300X accelerator for targeting the rapid explosion in 

computational demands for machine learning (ML) large-

language models (LLM) and generative AI workloads. 

II. BACKGROUND AND CONTEXT  

This section provides a brief review of the AMD EHP con-

cept to provide the necessary context for Section III, where 

we discuss why the EHP was not utilized in the first genera-

tion AMD exascale approach. For the full story of the devel-

opment of the original EHP and the Frontier supercomputer, 

we refer the reader to our previous retrospective paper [22]. 

A. EHP Overview 

Our original EHP research concepts changed through sev-

eral different incarnations based on evolving information 

over time about technology capabilities and limitations, 

alignment with product roadmaps, and overall project perfor-

mance and power targets. An APU is attractive for HPC su-

percomputer scenarios because the GPU components provide 

very high computational throughput per Watt and per unit 

volume (m3) to maximize performance within the constraints 

of datacenter compute density and power consumption limits. 

The CPU components are still critical for code sections that 

are irregular or otherwise difficult to parallelize on the GPU 

(Amdahl’s Law must still be reckoned with), as well as in the 

dispatch and orchestration of GPU compute tasks. Co-pack-

aging the CPU and GPU can also reduce data movement la-

tencies, improve bandwidth between components, and im-

prove synchronization and coordination overheads. The EHP 

also proposed using in-package HBM, which enables “zero 

copy” memory allocation and management between the CPU 

and GPU. The CPU can initialize data directly in the HBM, 

and then kernels dispatched to the GPU can likewise directly 

access the same physical memory without explicitly copying 

the data from host to device memory as is typically needed 

when the CPU and GPU are implemented in discrete pack-

ages. Beyond the performance and power benefits of avoid-

ing the data copies, this unified shared memory architecture 

also provides programmability benefits, as users are now 
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freed from orchestrating the data copies from the CPU to the 

GPU and back. Placing everything in the same package also 

introduces new opportunities to dynamically shift power be-

tween the components based on workload characteristics. 

Figure 1(a) shows “version 3” of the EHP (EHPv3), which 

included the use of active silicon interposers 3D-stacked with 

compute chiplets and high-bandwidth memory (HBM) 

[20][31][42]. The main reason for the aggressive use of stack-

ing in this concept was to maximize the total compute and 

memory within the processor package. Due to the projected 

technologies that would be sufficiently mature for high-vol-

ume manufacturing in the timeframe of our first exascale ar-

chitecture, our final “version 4” of the EHP (EHPv4), shown 

in Figure 1(b), backed away from a 3D-stacked approach and 

instead relied on 2D chiplets on an organic substrate [27] 

combined with 2.5D passive silicon interposer integration [12] 

of the GPU and HBM. EHPv4 still maintained the key attrib-

utes of combining CPU, GPU, and HBM in a single package, 

but it was less aggressive in terms of its use of advanced in-

tegration and packaging technologies compared to EHPv3. 

B. Frontier Node Architecture Overview 

For a variety of factors to be discussed in Section III, the 

node architecture used in the Frontier supercomputer did not 

utilize an APU. Figure 2 shows the actual node architecture 

consisting of a CPU and four discrete GPU accelerators 

connected with AMD Infinity Fabric™ coherent interconnect 

[30][32]. As discussed in our prior retrospective paper [22], 

the underlying components of the Frontier node architecture, 

which has been widely deployed in several other 

supercomputers and datacenters [23], effectively consist of 

four instances of the EHP conjoined by a common I/O die 

(IOD). For example, the components within each of the four 

different-colored boxes in Figure 2 consist of two CPU 

chiplets, two large GPU die, and eight stacks of HBM, which 

match the compute and memory components of one EHPv4. 

A flat memory address space with cache coherence between 

the CPU and GPU portions enabled an APU-like view of the 

different components: architecturally unified although 

implemented in physically distinct packages. 

C. Dawn of the Modern ML Era 

At the start of the exascale program, the focus was on HPC 

and scientific computing. During this decade of research 

leading up to our first exascale architecture, the industry 

witnessed the explosion of the modern ML revolution. This 

created new requirements for our products, and AMD 

evolved our vision to devise a solution to provide world-class 

performance and power efficiency for both HPC and ML. 

There are many common requirements between HPC and ML, 

in particular very high memory bandwidth and compute 

throughput. However, ML also brings new requirements like 

lower-precision arithmetic not traditionally emphasized in 

HPC and greater memory capacity to hold growing model 

sizes, although there is now also significant activity toward 

adopting ML techniques for HPC use cases [34]. The market 

demand for world-class ML products steered the AMD 

strategy for its second generation exascale plans to support 

both sets of market needs. This necessitated taking the AMD 

chiplet strategy to new levels of 3D modularity. 

III. EHP: ALMOST THERE, BUT NOT QUITE 

We first provide some retrospective insights into why 

AMD did not pursue building either EHPv3 or EHPv4 for the 

Frontier supercomputer. The overall vision for an HPC APU 

was and remains technically sound, but the industry’s heter-

ogeneous integration capabilities at the time were not yet suf-

ficiently mature to support high-volume productization of our 

exascale APU concepts. This section also sets the stage for 

understanding our approach for the MI300A processor. 

A. Aggressive Technology Needs for EHPv3 

In some ways, EHPv3 was more desirable compared to 

EHPv4 due to its significantly higher levels of integration 

density. While AMD has been successfully utilizing hybrid-

bonding 3D stacking [14] in its CPU products enhanced with 

V-Cache™ technology, EHPv3’s stacking is significantly 

more aggressive than our V-Cache products. 

 
Figure 1. (a) “Version 3” of the Exascale Heterogeneous Processor 

(EHP) concept from the AMD pre-exascale research explorations [42], 

and (b) “Version 4” of the EHP [22]. 

 

           
          
                     

          
          

          
            

           

       
          
          

          
            

           

   

   

 
Figure 2. The Frontier Node Architecture’s compute components. 

 

 



 

 

For context, the V-cache technology used in AMD 

EPYC™ and Ryzen™ processors stacks an SRAM chiplet on 

top of a CPU chiplet that is only tens of mm2 in size [26][44], 

as shown in Figure 3(a). The 3D stacking assembly process 

for EHPv3 would be significantly more complex. First each 

GPU chiplet in Figure 3(b) would be equal to or larger than 

the footprint of an HBM stack (on the order of 100 mm2 per 

stack) [40]. Four of these GPU chiplets would then need to 

be stacked on top of an active interposer die that would have 

to be over 400 mm2 to have enough room. Furthermore, on 

top of each GPU chiplet, we would also need to stack the 

HBM. 

The amount of time needed to mature the overall assembly 

flow for EHPv3 would not have aligned with Frontier’s 

schedule. The reasons for this are primarily due to the number 

of additional processing steps required, the number of sepa-

rate dies/stacks that need to be individually handled and 

tested, additional die-thinning and TSV construction for go-

ing beyond a two-high stack, and the larger overall size of the 

structure. The heat dissipation through this 3D structure 

would have also exceeded contemporary cooling capabilities. 

Since the original Frontier plans were set, AMD continued to 

evolve and mature its 3D stacking technology with multiple 

3D-stacked Ryzen and EPYC products in collaboration with 

its foundry partners, and these improved capabilities were 

leveraged in our approach beyond Frontier. 

Beyond the 3D-stacking of the components of the EHPv3, 

the multiple complexes, each comprised of an active inter-

poser, chiplets, and HBM, also need to be co-packaged to-

gether. Heterogenous integration (HI) combining multiple 

different integration and packaging technologies has recently 

been gaining much attention [19], and AMD has already been 

mixing multiple forms of die-stacking and advanced packag-

ing for several years. The EPYC and Ryzen V-Cache proces-

sors combine 3D-hybrid bonded components with conven-

tional organic substrate-based 2D chiplet packaging. The 

AMD Instinct™ MI250X accelerator mixes two large GPU 

chiplets with 2.5D elevated fan-out bridge silicon die and 3D 

microbump-based HBM stacks [1][2][36]. However, none of 

these compare to the scale and size of heterogeneous 

integration required by EHPv3; it would have been too much 

to practically handle in the Frontier timeframe. 

B. Shortcomings of the EHPv4 

The EHPv4 had backed off from many of the more aggres-

sive packaging concepts presented by EHPv3 in an attempt 

to better intercept the Frontier timeline, but it still retained 

many compelling attributes to create a powerful and efficient 

HPC APU. However, the final EHPv4 still had several design 

aspects and some remaining technology challenges that pre-

vented it from being exactly what was needed. 

The EHPv4 attempted to reuse the IOD from our main-

stream EPYC server processors. While silicon reuse is gen-

erally desirable [27], the use cases must line up. In particular 

for EHPv4, the server-derived IOD introduced some chal-

lenges. First, the size and placement of die-to-die interfaces 

in the server IOD forced a non-optimal overall chiplet topol-

ogy for EHPv4. The two GPU portions ended up being sepa-

rated by a substantial distance that limits bandwidth and in-

creases power for memory accesses from a GPU die to HBM 

stacks on the other side, labeled as  in Figure 4. This long 

distance prevents the effective usage of higher-bandwidth 

packaging solutions such as passive silicon interposers or El-

evated Fanout Bridge (EFB) interconnects [36] (which are 

typically only utilized for directly adjacent/abutting die such 

as the GPU and HBM), and instead the design would be lim-

ited to interconnect options such as the 2D AMD Infinity 

Fabric™ (IF) links used between the GCDs in MI250X. 

The server IOD’s IF links between chiplets was also not 

ideal for our HPC APU. The server IOD’s IF links  were 

originally provisioned to handle DDR levels of memory 

bandwidth, and as such they can become bottlenecks for a 

system that is focused on in-package HBM. 

The overall chiplet topology creates a relatively long path 

from the CPU chiplets to the HBM , requiring two die-to-

die IF hops (plus the data fabric/network-on-chip traversals 

within the IOD and GPU) to get to the memory, and then pay 

that price again for the data response. The IOD would also 

 
Figure 4. Various remaining challenges in EHPv4. 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 
Figure 3. (a) AMD V-Cache technology SRAM chiplet stacked on a CPU 

chiplet, and (b) the stacked components of the GPU complex in EHPv3. 

(Illustration is approximately to scale.) 

 

             

                     

                               

                      

                         

   



 

 

have been inefficiently utilized as several of the 4th genera-

tion EPYC IOD’s twelve IF links [41]  would not have been 

connected to any chiplets and therefore represent wasted die 

area. In a similar vein, the placement of the GPU and HBM 

complexes would have blocked the signal escape routes for 

some of the IOD’s DDR memory channels and I/O lanes , 

and so those interfaces would also become unutilized die area. 

When building a solution to achieve the highest possible per-

formance, one should aim to maximize the utilization of the 

precious package area, but EHPv4 leaves several regions of 

the package empty . Reusing the server IOD also limits its 

connections to the other chiplets to 2D organic substrate-

based packaging (because an unmodified server IOD would 

not have the interfaces for, e.g., EFB-based links), resulting 

in sub-optimal bandwidth and energy costs for the EHP’s data 

movement. 

As a result, the combination of EPYC CPUs and Instinct 

MI250X GPUs in a coherent, heterogeneous node architec-

ture was the right approach for our first-generation exascale 

architecture [22][32]. However, the success of the Frontier 

approach utilizing different combinations of advanced pack-

aging technologies combined with the learnings from these 

products increased confidence and reduced risk to pave the 

path to an APU for HPC and ML [23][24]. 

IV. MI300A ARCHITECTURAL ORGANIZATION 

The AMD Instinct™ MI300A APU builds on the EHP con-

cept. This section describes the architectural organization of 

the MI300A, and Section V covers its physical construction. 

A. Overview 

The MI300A APU consists of a mix of CPU and GPU 

chiplets along with a shared AMD Infinity Cache memory-

side cache, eight stacks of HBM, I/O interfaces, and Infinity 

Fabric (IF) interconnect to provide the data movement among 

all of these. Figure 5 shows a block diagram view of the 

MI300A APU. MI300A has a total of six accelerator complex 

dies (XCDs) that provide the APU’s highly-parallel and en-

ergy-efficient GPU compute engines (the term “GPU” is 

somewhat of a misnomer as the CDNA™ 3 architecture in 

the XCDs optimized out the traditional graphics-specific 

hardware for pixel processing and ray tracing). The MI300A 

APU also utilizes three CPU complex dies (CCDs) that pro-

vide the CPU cores. The XCDs and CCDs all connect to the 

IF interconnect that provides the SoC’s network-on-chip 

(NoC) functionality. Due to the physical construction of 

MI300A (Section V) the “NoC” spans multiple chips. The IF 

routes memory requests to and from the system’s 128 HBM 

memory channels as well as the I/O interfaces. Each memory 

channel is also paired with a 2MB slice of the Infinity Cache 

(256MB total capacity). The following subsections provide 

more details on each of these components. 

B. XCD 

The MI300A’s XCDs are implemented in a 5 nm technol-

ogy process, and each XCD provides 38 compute units (CUs) 

for a total of 228 CUs across the entire APU. Note that each 

XCD physically implements 40 CUs, but only 38 are utilized 

to improve yield (i.e., up to two CUs can be defective, as in-

dicated by the lightly-shaded CUs in Figure 5). Each XCD 

contains shared global resources, including the scheduler, 

hardware queues, and four Asynchronous Compute Engines 

(ACE) that send compute shader workgroups to the CUs. The 

CUs within an XCD share a 4MB L2 cache that serves to co-

alesce all of the memory traffic for the die.  

Each CU is a highly-threaded processor including an in-

struction fetch unit, scheduler, scalar/vector/matrix execution 

units, and load/store pipelines with a 32KB L1 data cache and 

 
Figure 5. Logical/architectural block diagram of the MI300A accelerated processing unit. 

 

        

        

        

        

        

        

        

        

        

        

            

                

   

        

        

        

        

        

        

        

        

        

        

            

                

   

        

        

        

        

        

        

        

        

        

        

            

                

   

        

        

        

        

        

        

        

        

        

        

            

                

   

        

        

        

        

        

        

        

        

        

        

            

                

   

        

        

        

        

        

        

        

        

        

        

            

                

   

    

        

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

   

               

              

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

    

        

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

   

    

        

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

  
  
  
 

 
 
 

   

              

     

 Vector Matrix 

FP64 FP32 FP64 FP32 TF32 FP16 BF16 FP8 INT8 

CDNA 2 128 128 256 256 n/a 1024 1024 n/a 1024 

CDNA 3 128 256 256 256 1024 2048 2048 4096 4096 

Table 1. Peak operations-per-clock-per-CU rates for the CDNA 2 CUs 

in MI250X versus the CDNA 3 CUs in MI300A. 

 

 



 

 

a 64KB Local Data Share (LDS) that form the start of the 

memory hierarchy. The L1 data cache line size has been in-

creased to 128B, and the bus widths to/from the data cache 

have correspondingly increased, effectively doubling the 

cache bandwidth compared to the CDNA 2 architecture [2]. 

Each pair of CUs shares a 64KB, 8-way set associative in-

struction cache. For GPU workloads, the overwhelmingly 

common case is that the stream gets executed by groups of 

CUs, so sharing the instruction cache increases the cache hit 

rate with minimal impact on die area. 

Compared to the CDNA 2 architecture used in the MI250X 

accelerator, the MI300A CDNA 3 architecture significantly 

increases the performance of the Matrix Cores’ support for 

machine learning data types for training and inference. Table 

1 shows the operations-per-clock-per-CU rates for CDNA 2 

and CDNA 3 architectures. The table also highlights the ad-

ditional support for FP8 data types in the MI300A XCDs. Not 

reflected in the table is that the CDNA 3 Matrix Cores also 

support 4:2 sparsity; under such conditions, the peak through-

put can reach as high as 8192 ops/cycle/CU (for FP8 and 

INT8). Additional details on CDNA 3 are available [5]. 

C. CCD 

The MI300A APU leverages the “Zen 4” CCD [26] from 

the AMD 4th generation EPYC CPU [4] with modifications 

for hybrid bonding. Like the XCDs, the CCDs are imple-

mented in a 5 nm technology. Each CCD provides eight “Zen 

4” cores that share a 32 MB L3 cache. The MI300A APU 

provides three CCDs for a total of 24 “Zen 4” cores. Full de-

tails of the “Zen 4” microarchitecture can be found in prior 

work [14][41]. A few key highlights of “Zen 4” over the prior 

generation “Zen 3” design include doubling the per-core L2 

cache size to 1MB, improvements in branch prediction accu-

racy, increases in the sizes of many of the microarchitectural 

structures (op cache, retire queue, integer and floating point 

register files), clock frequency improvements, performance-

per-Watt improvements, and the addition of ISA support for 

AVX 512 instructions. The CCDs execute all of the tradi-

tional x86-based code, including everything necessary for the 

operating system as well as all portions of user codes that 

have not been offloaded to the XCDs. 

D. In-package Infinity Fabric and Memory Organization 

The CCDs and XCDs share a unified HBM-based memory 

system. This enables direct load-store accesses to the HBM 

by either type of processor without any data copying as is 

typically required in systems that use discrete GPUs with 

their own video memory distinct from the host CPU’s 

memory. The CPU can initialize memory and then directly 

launch a kernel on the GPU components. This provides both 

performance and programmability benefits, which will be 

discussed further in Section VI. The CPUs are hardware co-

herent with all CPUs and GPUs using the same type of probe 

filter-based coherence protocol as in EPYC CPUs. The GPUs 

are software-coherent to GPUs in other sockets (to reduce 

hardware coherence bandwidth needs) and directory-based 

hardware coherent within a socket using a slightly simpler 

protocol than the CPUs use. 

A common Infinity Fabric interconnect provides data 

transport between the CCDs and XCDs to and from the eight 

stacks of HBM, as previously shown in Figure 5. In aggregate, 

the MI300A APU provides 128 GB of memory capacity with 

a total of 128 memory channels and a peak theoretical band-

width of about 5.3 TB/s. The IF and HBM channels are rela-

tively finely interleaved. Every 4KB of sequential physical 

addresses map to the same HBM stack before moving on to 

another HBM stack chosen based on a physical address hash-

ing scheme. The IF also provides connectivity to the I/O in-

terfaces (discussed in more detail in Section VIII). 

Each of the 128 memory channels is paired with a 2 MB 

slice of the Infinity Cache (256 MB total). The Infinity Cache 

acts as a memory-side cache, and therefore it does not need 

to participate in cache coherence transactions. The primary 

function of the Infinity Cache is to provide bandwidth ampli-

fication for the HBM, delivering up to 17 TB/s of bandwidth. 

The Infinity Cache also features a hardware prefetcher to help 

reduce memory access latencies. 

V. MI300A PHYSICAL CONSTRUCTION 

The MI300A APU consists of about 146 billion transistors 

(not counting the HBM), which pushes the boundaries of 

manufacturing in multiple dimensions. This section discusses 

the AMD advancements in chiplets, 3D stacking, packaging, 

IP reuse, and modular architecture methodology that went 

into the MI300A APU. 

A. MI300A Heterogeneous Integration Technologies 

The sheer amount of logic represented by MI300A’s archi-

tecture requires multiple reticles worth of transistors to im-

plement. Our past work described how chiplet-based designs 

enable the decomposition of logically large architectures into 

multiple physically distinct silicon chiplets [27]. However, 

chiplets alone in a 2D/2.5D arrangement would still not have 

provided enough integration density to pack MI300A’s com-

ponents into a reasonably-sized package, as discussed earlier 

in the context of EHPv4. 

To make this all work, MI300A utilizes an aggressive com-

bination of multiple technologies, as illustrated in Figure 6. 

Individual XCD and CCD chiplets utilize 3D hybrid bonding 

technology to vertically interface to multiple active inter-

poser IOD. Hybrid bonding uses direct-contact bonding (as 

opposed to placing individual microbumps) where metal 

bonding pads on either die are atomically fused together. This 

results in dense vertical interconnects (9 m pitch for both 

AMD V-Cache products and MI300A) and superior thermal 

conduction properties compared to microbump-based 3D 

stacking [44]. The cross-sectional view illustrates the entire 

stack of passive and active components in MI300A, including 

structural and carrier silicon components required for the me-

chanical stability of the entire complex. (Note that the place-

ment of the HBM in the cross-sectional view has been pushed 

to the “sides” for illustrative purposes.) 

The amount of “beachfront” perimeter required to interface 

with eight stacks of HBM as well as to provide all of the I/O 



 

 

interfaces would have required a massive IOD well exceed-

ing a standard lithographic reticle’s size. In the past, AMD 

utilized chiplets for compute elements (e.g., CCDs in our 

EPYC and Ryzen CPUs), and MI300A exploits a similar par-

titioning approach and employs four separate IODs (visible 

in the areal views on the right of Figure 6, with the bottom-

left IOD highlighted, and also shown in Figure 7). Each IOD 

(with multiple CCDs or XCDs hybrid bonded on top) is then 

2.5D-integrated on a silicon interposer with the eight HBM 

stacks. Enabled by the tight spacing between adjacent IODs, 

we implement very low power and low latency ultra-short 

reach (USR) PHYs for data movement between IODs. The 

USR PHYs deliver more than a 10 improvement in area 

bandwidth density (Tbps/mm2) versus conventional SerDes 

[27] while reducing power consumption (0.4 mW/Gbps). The 

USR interface has a minimum microbump pitch of 35 m. In 

total, the USR interfaces deliver multiple TB/s of bandwidth 

(Figure 7) so that the HBM can be accessed as if the Infinity 

Fabric were implemented on a single monolithic IOD. 

B. 3D Interfaces 

The XCD was specifically designed for MI300A, and 

therefore we could directly place its 3D interfaces to align 

with the corresponding connection points on the IODs below. 

For silicon reuse, MI300A adapts the same CCDs that can 

be found in AMD EPYC™ CPUs. In the EPYC processor 

configurations, the CCD uses an IF SerDes interface designed 

for 2D organic substrate packaging, as highlighted in Figure 

8(a). However, for MI300A’s 3D-stacked organization, we 

needed to add bond pad metal (BPM) landing sites for the 

hybrid bonding stacking process. Figure 8(a) shows how we 

squeezed in the 3D interfaces within whitespace in the CCD 

floorplan. This also illustrates just how much denser the 

TSV-based 3D interfaces are compared to organic substrate-

based 2D interconnect solutions. Within the CCD, we utilize 

simple interface multiplexing between the 2D and 3D inter-

faces depending on which product the CCD is deployed in. 

On the IOD side, the corresponding 3D interfaces are im-

plemented to line up with the three CCDs, as shown in Figure 

8(b). Note that two of the CCDs are rotated 180° in relation 

 
Figure 6. Details of the heterogeneous integration construction of the MI300A APU utilizing multiple advanced integration and packaging technolo-

gies, chiplets, and 3D memory stacks. (Cross-sectional view is not drawn to scale.) 
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Figure 7. MI300A IOD bandwidths across various interfaces. 

 

 
  
  
 
  
  
  
  
 
 
 

 
  
  
 
  
  
  
  
 
 
 

                                  

          
            

        
     

        
     

        
     

        
     

        
     

        
     

        
     

        
     

          
         

          
            

          
         

          
            

          
         

          
            

          
         

 
Figure 8. (a) Illustration of 2D and 3D interfaces on the CCD, (b) IOD’s 

CCD 3D interfaces, and (c) IOD’s XCD 3D interfaces. 

 

 
 
  
 

 
 
  
 

  

   

   

   

   



 

 

to the other CCD, and the IOD’s interfaces are similarly ro-

tated to maintain correct alignment. 

MI300A utilizes the same IOD physical design whether a 

given IOD has CCDs or XCDs stacked on top. The CCDs and 

XCDs have different sizes, different bandwidths/interface 

widths, and different total chiplet counts (i.e., three CCDs on 

an IOD versus two XCDs). To support this, the IOD imple-

ments the superset of interfaces as shown in Figure 8(c). 

When the two XCDs are stacked on the IOD, the middle set 

(dark blue) of TSV interfaces are used, and the three sets of 

CCD interfaces are disabled (dashed/hashed boxes). Similar 

to the CCDs, one of the XCDs in the figure is rotated 180°, 

and therefore the corresponding TSV interface is likewise ro-

tated to match. The careful co-planning of the XCD, CCD, 

and IOD interfaces enables this seamless modular swapping 

of compute chiplets on top of the IOD. 

C. IOD Mirroring 

There are four total instances of the IOD silicon in MI300A. 

Two of the IOD are “mirrored” copies of the same physical 

design with minimal modifications. This enabled us to reuse 

almost all of the floorplanning, physical design, and engi-

neering effort across the two very similar tapeouts. Figure 9 

shows the four IODs: two normal versions and two mirrored 

versions, with one of each IOD type rotated 180° (“Instinct” 

logos and alignment markers in the corners of the IODs are 

provided to discern orientation and mirroring). 

To enable the IODs to seamlessly interface with each other, 

the USR transmit (TX) and receive (RX) modules needed to 

be swapped on the mirrored IOD as indicated by the bidirec-

tional arrows on the mirrored IOD B and IOD D. In this fash-

ion, each TX module on an IOD is directly paired with its 

corresponding RX module in the adjacent IODs. This is an 

example of how the IODs are not exact geometric mirrors of 

each other, but such modifications can be supported with rel-

atively simple algorithmic changes to the design. 

The mirrored IOD also created an interesting interface 

challenge for the 3D-stacked chiplets. While the floorplan for 

the IOD is mirrored in a symmetric fashion, we do not imple-

ment mirrored versions of the CCDs and XCDs. Therefore, 

the interfaces needed to be designed so that unmirrored CCDs 

and XCDs could properly land on and remain aligned with 

the IODs underneath, regardless of whether the IOD below is 

an original or mirrored instance. The left side of Figure 9 
shows two XCDs (note the same, non-mirrored orientation 

for both) stacked on top of IOD A and IOD B. Red circles on 

IOD A indicate redundant TSV interfaces that are not used 

on the non-mirrored IOD instances. However, when the IOD 

is mirrored (e.g., IOD B), these previously redundant TSVs 

are now aligned with the non-mirrored XCD, thereby ena-

bling the XCD to interface to mirrored and non-mirrored IOD. 

Note that this type of TSV redundancy is limited to the 3D 

signal interfaces (power/ground TSVs are discussed in the 

next section). The carefully choreographed alignment of IOD, 

XCD, and CCD interfaces enables MI300A to deal with all 

of the required combinations of rotated and/or mirrored IODs 

and rotated CCDs and XCDs. 

D. Power Delivery 

The previous discussion focused on adapting the 3D inter-

faces for data and control under various permutations of mir-

roring and rotation. However, a similar challenge exists for 

TSV planning in the IOD to deliver power to the chiplets. Our 

solution uses a uniform grid of power/ground (P/G) TSVs 

that was consistent for both CCDs and XCDs. This is concep-

tually straightforward, but the implementation requires sig-

nificant advanced planning to make sure that every single P/G 

TSV lines up for every permutation of mirrored/rotated IOD, 

CCD, and XCD. The resulting IOD TSV grid can deliver 

more than 1.5 A/mm2 of current with minimal I2R loss. 

The microbump interface at the bottom side of the IOD (to 

the passive silicon interposer) can deliver an additional 0.5 

A/mm2 (beyond the 1.5 A/mm2 for the stacked chiplets) to 

power the IOD. As workloads transition between compute-

 
Figure 9. TSV replication (red circles) to align with non-mirrored chiplets, and IOD mirroring with USR PHY alignment. 

 

  
 
  

  
 
  

 
  
  
  
 

  
 
  

 
 
 
 

  
 
  

 
    
  
 
   
 
 
 

  
  
  
  

  
  
  
  

   

  
  
  
  

  
  
  
  

   

  
  
  
  

  
  
  
  

   

  
  
  
  

  
  
  
  

   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 

 
Figure 10. Coordinated floorplanning of chiplet power-delivery TSVs 

and Infinity Cache SRAM array macros. 

          
             

     

            
    



 

 

dominated and memory-intensive phases, power can be ver-

tically shifted/reallocated between the IOD and the compute 

chiplets (discussed further in the next section). 

Beyond the power/ground TSV planning, the Infinity 

Cache array macros also needed to be co-optimized with the 

overall power delivery solution. The arrays were customized 

so that they were pitch-matched to fit within the channels be-

tween the P/G TSV stripes, as shown in Figure 10. 

While MI300A uses the same fundamental hybrid bonding 

process as our V-Cache technology, further optimization to 

the stacking process was required for MI300A. Figure 11(a) 

shows a cross-sectional view of the 3D hybrid bonding inter-

face used in the “Zen 3” generation of CCDs with V-Cache 

technology [44]. The BPM at the hybrid-bonded interface is 

connected to the SRAM die’s top-level metal by a bond-pad 

via (BPV). For MI300A, however, the CCDs and XCDs are 

stacked on top, as shown in Figure 11(b), and these have 

higher power requirements compared to a V-Cache SRAM 

die. In MI300A, the BPV lands directly on the aluminum re-

distribution layer (RDL), which has lower resistance and is 

more effective for delivering power to the compute chiplets. 

E. Power Management and Thermals 

With 3D stacking, power and thermal management are 

very important factors in the overall physical design of the 

system.  As discussed in the previous section, power can be 

dynamically reallocated among the different physical compo-

nents of the MI300A accelerator.  Figure 12(a) shows two 

representative power distributions (normalized) correspond-

ing to compute-intensive (GPU) and memory-intensive 

workload scenarios.  In the compute-intensive case, the ma-

jority of the power can be directed to the compute chiplets.  

In a memory-intensive scenario, more of the power can be 

shifted to the memory system, data fabric, and USR links.  

This creates two extreme operating conditions that the power 

delivery system must handle. 

In addition to the power delivery, the thermal solution must 

likewise be able to accommodate these very different operat-

ing conditions. Figure 12(b) shows thermal simulation results 

for the GPU-intensive scenario, where the thermal hotspots 

are concentrated on the XCDs. Figure 12(c) shows the case 

for a memory-intensive workload.  The thermal distribution 

is somewhat more mixed here as the XCD activity is still dis-

cernable in the heat map, but the power-related impacts of 

data movement are more noticeable.  The eight HBM PHYs 

are visible along the periphery of the module, and the USR 

PHYs clearly stand out as they deliver multiple TB/s of data 

between the four IODs.  The effective power and thermal 

management of MI300A was accomplished through careful 

engineering and co-design of both TSV placement and power 

density/power map planning. 

F. Comparison Versus the EHP 

The final design of the MI300A APU is physically quite 

distinct from the prior EHP concepts, yet MI300A also em-

bodies many of the attributes originally envisioned to support 

exascale computing. Like the EHP, the MI300A is a single-

package APU solution combining heterogeneous CPU and 

GPU computing components with a unified, in-package 

memory system. The exact chiplet count is slightly different, 

but both ended up with the same ratio of two GPU compute 

chiplets for every CCD (i.e., 4:2 in EHPv4, and 6:3 in 

MI300A). Both the EHP and MI300A also used the same 

number of HBM stacks. EHPv3 also foresaw the eventual 

adoption of a 3D-stacked active interposer organization that 

separated compute chiplets from the cache and interconnect. 

The MI300A APU also features some key differences that 

provide significant advantages and improvements over the 

prior EHP concepts. Perhaps first and foremost, the availabil-

ity of the combination of both hybrid-bonded 3D stacking and 

microbump-based 2.5D interposers enabled the 

 
Figure 11. 3D bonding interfaces in (a) earlier V-Cache implementations 

and (b) the MI300A APU. 
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Figure 12. (a) Representative power distributions for different workload 

scenarios and thermal simulation projections for (b) GPU-intensive and 

(c) memory-intensive workload scenarios. 

  

   

   

   

   

    

   

         

      

         

   

               

   

   

 
 
 
  
 
  
 
 
  
 

    

 
 
 
 
  
  
 
  
 
 
  
 

   

   

   



 

 

implementation of a much higher bandwidth and energy effi-

cient data movement substrate between all of the compute 

chiplets, HBM, and I/O. EHPv4 had inefficiencies due to the 

large distance between the GPU dies, and even EHPv3’s or-

ganic substrate-based links between the active interposers 

would have posed bandwidth and power challenges. EHPv3 

required two different active interposer types, which would 

have increased the design cost. MI300A is able to utilize what 

is effectively a single IOD design with which we can mix and 

match different compute chiplets. Designing a new IOD for 

MI300A was the better choice compared to EHPv4, which 

attempted to reuse the IOD from the EPYC processors. While 

silicon reuse is generally desirable, it is only effective when 

there exists a good fit with the target use cases; in the case of 

EHPv4, the EHP’s needs were too distant from the design re-

quirements of the EPYC server products. 

VI. PROGRAMMING MODEL AND SOFTWARE 

Software programmability was a major aspect of the EHP, 

and it was at the forefront of the MI300A design. To simplify 

software development for MI300A, we created mechanisms 

to present its multiple XCDs as a single, unified GPU and to 

share its unified HBM memory between CPU and GPU. 

A. Unified Multi-chiplet Accelerator 

EHP aimed to fulfill the expectation that kernels achieve 

greater performance in each generation of GPU. However, 

we found that EHPv4 was not amenable to single kernels ex-

ecuting on both GPU chiplets due to the lower bandwidth 

connections (compared to HBM) between the chiplets. For 

similar reasons, the AMD Instinct™ MI250X presented each 

GCD as a standalone accelerator. However, as the number of 

chiplets in a design increases, presenting each chiplet as its 

own accelerator is a less enticing option for developers. 

The kernel launch interface between user-mode software 

and MI300A is a queue in user-mode visible memory that can 

be filled with packets that describe the kernel. The queues are 

defined by the Heterogeneous System Architecture (HSA) 

standard [18]; the packets submitted to these queues follow 

HSA’s Architected Queueing Language (AQL) format. In 

contrast to lower-level packet formats that describe what val-

ues to put into which hardware registers in order to cause a 

particular GPU to launch a kernel, AQL packets describe a 

higher-level goal such as “launch kernel X with Y 

workgroups, each with Z threads.” 

As described in Section IV.B, each MI300A XCD contains 

the necessary hardware to handle dispatching kernels to that 

XCD. These Asynchronous Compute Engines (ACE) are re-

sponsible for interfacing with the user-mode queues, reading 

AQL packets, decoding these packets, and appropriately pro-

gramming microarchitectural resources to initiate the dis-

patch of the kernel. Further, ACE hardware then finds space 

within the XCD’s compute units for the workgroups, initial-

izes wavefront register state, and gives it a program counter 

to begin execution. Finally, ACE hardware is responsible for 

detecting when all workgroups in a kernel have completed 

and signaling completion indicators to software. While ACEs 

in AMD GPUs such as the MI250X work similarly, MI300A 

also allows the kernel scheduling hardware on each XCD to 

work cooperatively with other XCDs to present to user-mode 

software a multi-XCD partition. Because the AQL packets 

describe a high-level request such as “launch a kernel,” the 

ACE on each XCD can work together to process the request. 

For example, when a dispatch packet is submitted into the 

queue, an ACE in each XCD of a partition will read the AQL 

packet . All of these processors decode the packet and set 

up their local microarchitecture to launch a subset of the re-

quested workgroups ; the ACE knows how many XCDs are 

in the partition, so it knows that its XCD is only responsible 

for executing a subset of the kernel’s total workgroups. The 

decision of which workgroups are scheduled into which XCD 

is configurable to allow tradeoffs between factors like inter-

workgroup data reuse in the XCD’s L2 cache versus initiating 

work on as many XCDs as possible to maximize memory 

bandwidth; after deciding which workgroups to launch, 

workgroup creation then proceeds as normal within the XCD. 

At various points in the processing of a packet, the XCDs’ 

ACEs may need to synchronize with each other . For ex-

ample, all XCDs must indicate that their subset of a dis-

patch’s waves have completed, and their writes are visible to 

the appropriate coherence scope before a nominated XCD 

can send a signal that indicates the kernel has completed . 

The Infinity Fabric on MI300A includes a high-priority com-

munication channel to facilitate performant communication 

and synchronization between the ACEs on each XCD of a 

partition. 

This cooperative protocol allows the partition to take a sin-

gle kernel dispatch from a single software-visible queue and 

spread the workgroups across the XCDs, making the partition 

appear as a single logical GPU despite its multi-chiplet nature. 

This is a natural pairing to MI300A’s unified memory, where 

the entire HBM memory space is visible to a single process. 

Instead of requiring a separate scheduling chiplet, we used 

per-chiplet schedulers to reduce inter-chiplet wiring require-

ments and increase workgroup scheduling throughput as 

more chiplets are added. This also enables MI300A to present 

partitions with different numbers of chiplets (Section VIII). 

Presenting the MI300A device as a single partition helps 

existing software easily use the entire device. Several soft-

ware frameworks commonly used in HPC are supported, in-

cluding OpenMP®, RAJA [6], and Kokkos [10]. The most 

popular AI/ML frameworks, such as PyTorch, TensorFlow, 

JAX [10], and Triton [38], are likewise supported. The AMD 

ROCm™ open compute platform [3] provides familiar 

 
Figure 13. Multi-XCD kernel dispatch and completion flow. 

 

        

        

        

    

    

        

        

        

    

    

        

        

        

      

    

        

        

        

    

    

 

         

                   

            

                

    

    

 

 



 

 

optimized libraries (e.g., rocBLAS, rocDNN) to aid program-

mers in accessing optimized implementations of common 

compute tasks. 

B. Unified Memory 

MI300A presents a single unified memory to the CPU 

cores and GPU CUs, which simplifies the programming 

model. A unified memory enables eliminating redundant data 

copies, removing the distinction between host and device 

memory spaces, and enables fine-grained sharing between 

processing elements. While some platforms provide the ap-

pearance of unified memory to the software (e.g., via page 

migration to transparently copy data between the CPU’s 

DDR and the GPU’s HBM), MI300A avoids such data move-

ment overheads by matching the actual physical memory or-

ganization with the programmer’s view. Figure 14 illustrates 

a code simplification example. In the CPU-only code shown 

in Figure 14(a), one allocates memory (e.g., malloc), initial-

izes it, and then computes on the data. With separate CPU 

and GPU memories, the code is more involved, shown in Fig-

ure 14(b). Memory space must first be allocated on both the 

CPU and GPU (malloc and hipMalloc). The CPU then in-

itializes the memory, but then must copy the data from the 

CPU’s memory space to the GPU memory buffer (hipMem-

cpy). The CPU can then launch a kernel on the GPU and then 

wait for the GPU to finish (e.g., hipDeviceSynchronize). 

Rather than immediately continuing its own post-kernel com-

putations, the CPU first copies the results from the GPU 

memory back to the CPU side (another hipMemcpy), at 

which point the CPU can complete any remaining operations. 

Finally for an APU programming model (e.g., in MI300A) 

shown in Figure 14(c), the programmer can avoid the 

memory management steps needed for separate CPU and 

GPU memories. The APU code omits GPU memory alloca-

tions (no hipMalloc), and because there is only a single 

copy of the data like in the CPU-only case, there is also no 

need to copy the data around (no hipMemcpy). Once the CPU 

has finished initializing the data, it can immediately launch 

the GPU kernel due to the APU’s unified memory (including 

cache coherency between CPU and GPU). The CPU must 

still properly synchronize with the GPU, after which it can 

complete its post-kernel computations, again without any ad-

ditional data copy operations. 

Beyond programmability benefits, APUs like MI300A can 

also enhance performance from optimized data movement. 

For discrete GPUs, the bandwidth between the host CPU and 

an external GPU is typically limited by the PCIe® interface, 

typically tens of GB/s. The bottom portion of Figure 14(b) 

illustrates the discrete GPU scenario where the CPU can read 

data from DDR memory at a few hundreds of GB/s but is then 

bottlenecked by PCIe. In the APU situation in Figure 14(c), 

the CPU writes to HBM as fast as it can, and then the GPU 

can immediately operate on the data at HBM speeds. 

The APU programming model can also open up new op-

portunities to further optimize how the CPU and GPU com-

ponents work together. Figure 15(a) shows pseudocode 

where the unified memory enables overlap of GPU and CPU 

compute and removes coarse-grained kernel-level synchroni-

zation. This example adds an array of completion flags (one 

per output element), which enables the GPU to set these flags 

 
Figure 14. Example code and data movement/synchronization for (a) CPU-only, (b) CPU and a discrete/external GPU with separate memory spaces, 

and (c) APU with a unified memory. 

 

                                    
                                     

                                     

            

                         

                                      

             

             
                                    
                                     

                         

                         

                                     

            

                           

                              
                       

                             

                                      

             

                       
                                    
                                     

                                     

            

                              
                       

                                      

             

        

   

          

     

   

          

     

   

          

     

    

              

     

   

                  

         

     

    

 
Figure 15. (a) Example code for fine-grained decoupling of GPU and 

CPU execution, (b) timeline showing overlapping of GPU and CPU ex-

ecution, and (c) timeline of original code. 

 

                                    
                                     

                                

                                       

            

            

 

                              

                       

                             

                                    

                                      

 

                            

          

                   

           

           

           

       

         

    

      

 
  
 



 

 

as it produces its data output, shown in Figure 15(b). On the 

CPU side, the CPU waits in a spin-loop thanks to the APU’s 

cache coherent memory system. As the GPU produces indi-

vidual data elements, the CPU can immediately proceed with 

its post-processing, thereby increasing compute concurrency. 

Presenting a single accelerator with a unified memory 

space opens opportunities to automatically accelerate appli-

cations on an APU because data are always accessible to CPU 

cores or GPU CUs via the in-package HBM. This means that 

software largely does not need to consider non-local over-

head of access across a link. This permits standard library 

APIs, such as BLAS or LAPACK, to be linked to both CPU 

and GPU libraries. The generic library calls invoke a thin 

shim library that dispatches the work to either the CPU or 

GPU processing elements depending on simple heuristics 

such as problem size, etc. This enables code that might be 

CPU-only, with frequent calls to standard libraries, to be of-

floaded to an APU without explicit code refactoring. 

VII. MI300X 

As discussed in the introduction, the industry is witnessing 

an explosion in compute demand for ML and generative AI 

workloads. Many of these customers desire solutions with 

both massive computational throughput and memory systems 

that deliver high bandwidth and large capacities. Large lan-

guage models (LLMs) are a key example of this type of very 

demanding modern workload. Some market segments make 

use of AI-specific accelerators, but many users desire the eas-

ier programmability associated with more general-purpose 

GPU architectures such as that supported by our CDNA 

XCDs. 

The silicon building blocks of MI300A provide a modular 

chiplet platform that enables stacking different compute 

chiplets on the IODs. By reusing the silicon components of 

MI300A, AMD has also designed the AMD Instinct MI300X 

accelerator [33]. MI300X is structurally similar to MI300A, 

but the three CCDs are swapped with a pair of XCDs to create 

an accelerator-only module, shown in Figure 16. The eight 

XCDs provide a total of 304 CUs, delivering more 

FLOPS/mm3 than MI300A. MI300X also utilizes 12-high 

HBM stacks for a total of 192 GB of memory capacity (24 

GB per HBM stack). MI300X is an especially strong match 

for LLM use cases where the prompt phase demands high 

compute throughput, the token generation phase is typically 

constrained by memory bandwidth, and modern LLMs de-

mand more total capacity to handle these larger models. 

Our modular design approach represents a new level in our 

highly successful chiplet strategy [27]. Our previous chiplet 

approaches reused the same chiplet types for different prod-

uct lines (e.g., EPYC and Ryzen processors), but this repre-

sents a new approach to chiplet modularity wherein we can 

optionally swap different types of chiplets. AMD only needed 

to design the XCD and IOD, and then by leveraging mirror-

ing of the IOD and adapting an existing CCD, we are able to 

utilize different combinations of these components to create 

both the MI300A and MI300X products without compromis-

ing either. MI300 presents a new type of modular architecture 

and a true embodiment of the heterogeneous integration ap-

proach combining chiplets, different technology nodes, mix-

and-match chiplet interfaces, 2.5D silicon interposers, 3D 

HBM, and 3D hybrid bonding all in one package. 

VIII. PLATFORM ARCHITECTURE AND SCALABILITY 

While a chiplet-based approach provides design flexibility, 

MI300 also features additional capabilities to offer flexibility 

to users in how they deploy MI300. The first set of options 

allow MI300A and MI300X to support different partitioning 

configurations for multi-user deployments. For MI300A, the 

six XCDs can be used as a single compute device or as three 

separate partitions, shown in Figure 17(a). In both partition-

ing modes, the entire HBM address space is uniformly inter-

leaved, implementing a single non-uniform memory access 

(NUMA) domain per socket (NPS1). The XCD-only 

MI300X lends itself to additional partitioning options, as il-

lustrated in Figure 17(b). The XCDs can be partitioned in 

powers of two from a single unified partition down to eight 

separate partitions (one XCD per partition). The memory sys-

tem also supports a single unified NUMA domain (NPS1) as 

well as sub-dividing the memory space into four NUMA do-

mains per socket (NPS4). This scheme lends itself to PCIe® 

single root I/O virtualization (SR-IOV) where each PCIe vir-

tual function (VF) can be mapped to a separate partition. 

The MI300 architecture also provides I/O configurability 

to enable flexibility in how multiple MI300 modules can be 

 
Figure 16. Modular replacement of MI300A’s CCDs with XCDs to cre-

ate the MI300X accelerator. 

 

          

      

      

                  

      

      

         

   

   

   

   

   

   

   

   

   

   

   

   

 
 
 

 
 
 

 
 
 

   

   

 
Figure 17. Compute and memory partitioning modes for (a) the 

MI300A APU and (b) the MI300X accelerator. 

 

                 
    

                 
    

              
    

               
             

                
             

                
    

 
  
 
 
 
  
 
 

 
  
 
 
 
  
 
 
 
  
  
  
 

   

   



 

 

organized in a variety of scalable node topologies. Each IOD 

provides two x16 I/O interfaces. One of the x16 links is ded-

icated for Infinity Fabric connections, and the other can act 

as either an Infinity Fabric link or a PCIe gen5 interface. In 

total, each MI300 socket has eight x16 links (four of which 

can serve as either Infinity Fabric or PCIe). Each x16 link has 

a peak theoretical bidirectional bandwidth of 128 GB/s (64 

GB/s per direction) for a total of 1,024 GB/s per socket. 

Figure 18(a) shows an example MI300A node architecture 

featuring four MI300A APUs. Each MI300A has direct load-

store access to all HBM across all four modules (i.e., flat 

physical address space). In this example, each MI300A 

socket uses six of its eight x16 I/O links to implement cache-

coherent Infinity Fabric links in a fully-connected topology 

with the other MI300A modules (i.e., two x16 links between 

every pair of MI300A APUs). The remaining I/O interfaces 

can be made available for network interfaces, storage, etc. 

Figure 18(b) shows a different system topology utilizing 

eight MI300X accelerator modules that act as PCIe devices 

connected to EPYC CPU hosts. In this case, seven of the eight 

x16 I/O links per MI300X module are utilized to create a 

fully-connected IF topology among the eight MI300X accel-

erators. The last PCIe link provides connectivity back to the 

CPU host, possibly through PCIe switches depending on the 

exact node architecture. Note that in these two scalable sys-

tem topologies, both MI300A and MI300X utilize the exact 

same IOD designs, but we leverage the configurability of the 

interfaces to enable very different overall systems. 

IX. RESULTS 

The focus of this industry track paper is not on bottom-line 

performance, but rather on sharing with the computer archi-

tecture community our insights, learnings, and the evolution 

from the prior EHP research concepts to a high-volume, high-

performance, highly aggressive yet still practically manufac-

turable series of APU and accelerator products to address 

HPC and AI markets. This section provides only a few results 

to give a flavor of the benefits of MI300A and MI300X. 

The MI300A APU (and MI300X accelerator) provides 

generational performance improvements over the AMD In-

stinct MI250X accelerators. Figure 19 shows the side-by-side 

comparison of MI250X, MI300A, and MI300X across a va-

riety of metrics of interest. Peak computational throughput 

rates are increased across the board, the peak memory band-

width has also improved by 70%, and I/O (network) band-

width has also doubled to support HPC and AI/ML scale out. 

For the MI300X accelerator, the total memory capacity is 

also 50% greater to better service LLMs. 

Figure 20 shows performance speedups of a few HPC 

workloads of MI300A compared to the prior generation 

MI250X accelerator. The MI300A results were measured on 

an MI300A (128GB HBM3, 550W TDP*) bring-up reference 

platform running Ubuntu® Linux and ROCm 6.0, and the 

MI250X (128GB HBM2e, 560W TBP*) results used Ubuntu 

Linux with ROCm 5.4.3. All runs utilized a single APU or a 

single GPU. For GROMACS, the N-body kernel [16], and 

the HPCG [17] benchmark, MI300A delivers higher perfor-

mance due to its higher compute throughput (GROMACS, N-

body) and HBM3’s higher memory bandwidth vs. the 

HBM2e memory in MI250X (HPCG). OpenFOAM® is a 

computational fluid dynamics workload [15] that sees a 2.75 

 
Figure 19. Generational uplift of MI300A and MI300X over MI250X. 

 

                   
       

                   
       

                   
       

                                                 

 
 
  
 
 
  
  
 
 
 
 

                                                              

                                                                                                  

                          

                                              

                                            

                

          
                         

                                

 
 
 
  
 
 
 
 

 
 
  
  
  
 
 
 
 

                                  

                                  

                                  

                                                                           

 
  
 
 
 
 
  
 
  
  

  
 
 
 
                                                                                    

                                                                                        

                                                                            

                                                                                   

 
Figure 20. Measured speedups on HPC workloads of the AMD MI300A 

APU over an AMD MI250X accelerator. 

 

   

   

   

   

   

   

   

                             

 
 
 
 
 
 
 

      

      

     
          

     

 
Figure 18. Exemplary node architecture configurations for (a) the 

MI300A APU and (b) the MI300X accelerator. 

 

 

            

            

             

             

             

             

        

     

               

         

 

   

   

      

       
 
  
 
 
 
  
 
 
 
 

            

            

      

       
 
 
  
 
 
 
 
 
  
  

   

       

 

             

          

* TDP = Thermal Design Power, TBP = Total Board Power. Accounting for voltage 

regulation losses, MI300A TBP is approximately 670W. 



 

 

performance improvement. This workload (on the HPC Mo-

torbike test/input) really matches well with the APU compu-

ting paradigm as it (1) is computationally intense, (2) requires 

high memory bandwidth, and (3) also tends to exhibit a lot of 

CPU-GPU data movement in discrete-GPU implementations. 

MI300A’s massive compute resources and eight stacks of 

HBM deliver on the first two needs of this workload. The 

APU’s unified memory architecture addresses the data move-

ment aspect, as the fastest way to move data is to not move it 

all if possible. 

While the focus of this paper is on the MI300A APU for 

exascale computing, we also highlight a few results for the 

MI300X accelerator. Figure 21 shows performance results 

for inference on the Llama-2 model with 70 billion parame-

ters [39]. For these experiments, we used a batch size of one, 

2048 input tokens, and 128 output tokens. Full platform con-

figuration details can be found online [6]. The first set of re-

sults on the left shows the improvement in median inference 

latency using the vLLM inference and serving library [21] for 

both the baseline GPU and MI300X to directly compare hard-

ware capabilities. In this experiment, MI300X was measured 

to provide more than 2 improvement in inference latency. 

The second set of results uses the TensorRT-LLM library that 

is optimized specifically for the baseline GPU. Even in this 

scenario, MI300X still delivers a 30% improvement. The 

last set of results considers a baseline where the FP8 number 

format is used, which effectively allows the baseline GPU to 

double its peak compute and memory throughputs. The 

vLLM library currently does not support FP8, and so the 

MI300X results continue to use the FP16 format instead. De-

spite the difference in numerical formats, MI300X continues 

to demonstrate a performance advantage when measuring ab-

solute latency. 

X. CONCLUSIONS 

While the seeds for our HPC APU vision were planted over 

a decade ago, some ideas, no matter how technically compel-

ling, cannot be rushed to production before technology, busi-

ness, and other conditions are ready. The contrast between 

the MI250X-based Frontier node architecture and the APU in 

the MI300A design just a couple years apart illustrates how 

roadmaps and product plans must be carefully adapted based 

on the specific circumstances. The decision to not implement 

an APU in the first-generation exascale supercomputer was 

not a technical indictment of the idea of an HPC APU, but it 

was simply not yet the right time. Technology matures, the 

market changes, and customer demands evolve, and now the 

time has finally arrived for AMD to bring forth our high-per-

formance APU. 
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