
PPEP: Online Performance, Power, and Energy Prediction Framework
and DVFS Space Exploration

Bo Su∗, Junli Gu†, Li Shen∗, Wei Huang†, Joseph L. Greathouse†, Zhiying Wang∗

∗State Key Laboratory of High Performance Computing
National University of Defense Technology
{subo, lishen, zywang}@nudt.edu.cn

†AMD Research
Advanced Micro Devices, Inc.

{Junli.Gu, WeiN.Huang, Joseph.Greathouse}@amd.com

Abstract— Performance, power, and energy (PPE) are criti-
cal aspects of modern computing. It is challenging to accurately
predict, in real time, the effect of dynamic voltage and
frequency scaling (DVFS) on PPE across a wide range of
voltages and frequencies. This results in the use of reactive,
iterative, and inefficient algorithms for dynamically finding
good DVFS states. We propose PPEP, an online PPE prediction
framework that proactively and rapidly searches the DVFS
space. PPEP uses hardware events to implement both a cycles-
per-instruction (CPI) model as well as a per-core power model
in order to predict PPE across all DVFS states.

We verify on modern AMD CPUs that the PPEP power
model achieves an average error of 4.6% (2.8% standard
deviation) on 152 benchmark combinations at 5 distinct voltage-
frequency states. Predicting average chip power across different
DVFS states achieves an average error of 4.2% with a 3.6%
standard deviation. Further, we demonstrate the usage of
PPEP by creating and evaluating a highly responsive power
capping mechanism that can meet power targets in a single
step. PPEP also provides insights for future development of
DVFS technologies. For example, we find that it is important
to carefully consider background workloads for DVFS policies
and that enabling north bridge DVFS can offer up to 20%
additional energy saving or a 1.4× performance improvement.

I. INTRODUCTION

Performance, power, and energy (PPE) are primary opti-
mization targets in modern computers. For battery-powered
systems such as tablets and phones, energy usage directly
impacts usability, and power that is dissipated as heat must
be removed without bulky heat sinks. Desktops and laptops
have limited thermal headroom to share between integrated
devices, often necessitating intelligent ways of balancing
power usage [23]. Warehouse-scale systems must deal with
varying electricity costs and power substation limitations [10].
CPUs are still the dominant component in these calculations,
because they often dictate system performance and consume
a majority of the total system power [2].

Dynamic voltage and frequency scaling (DVFS) is a widely
used technique to optimize system energy efficiency [27],
maintain power caps [5, 14, 18, 20, 21], and share power
with other system components [23]. All of these involve peri-
odically monitoring dynamic system behavior and adjusting
the voltage and frequency (VF) state to meet specific power
management targets.

Simple algorithms for controlling DVFS observe how the
system is behaving during a time slice and will change VF
states in reaction to these measurements. If the power goal
is not met after this change, they will try a new VF state
in the next time slice, iteratively approaching the goal. This
mechanism is commonly used by commercial CPUs, but it
can be inefficient, as a great deal of time may be wasted
searching for the best solution.

Compared to such reactive algorithms, a predictive ap-
proach can be more efficient. For example, if an application is
memory bound, a predictive algorithm may lower the CPU VF
state just enough to achieve power savings without impacting
performance. This requires good performance and power
predictions in order to make the right decision in a single
step. Unfortunately, existing predictors have limitations.

It can be difficult to accurately predict performance across
frequencies due to interactions with devices (such as DRAM)
in other clock domains. There have been many proposed
hardware additions that enable such estimates [8, 17, 22, 25],
but they are generally unavailable in commercial processors.
We recently described a method for accurately estimating one
of these mechanisms, leading load counters, using existing
performance monitoring hardware [28], though we did not
demonstrate it in a proactive DVFS manager.

More problematically, it is difficult to estimate power at
the current VF state and to predict power usage at other VF
states [20]. Off-chip power monitors may measure the whole
chip, making it difficult to separate the effects of individual
cores. While core-event-based estimation has been shown
in simulation [24], demonstrations on real hardware have
been less accurate [27]. This leads to a need for specialized
hardware [13], per-application offline profiling [14], or
external power monitors [20] in order to know a core’s current
power usage. Previous work on estimating power at other VF
states has used simple models that do not take into account
workload variation, such as assuming a direct relationship
between total power usage and either frequency [29, 14] or
the number of executed instructions [27].

This paper introduces PPEP, an online PPE prediction
framework that uses execution statistics gathered on real
processors to estimate PPE at the current VF state and predict

PPE at all other states. PPEP is a software-level tool that does
not require per-application offline training, external power
monitors, or new hardware. PPEP periodically reads hardware
performance counters from the CPU cores, allowing it to
quickly adjust to program phase changes. It also models
the power of components outside the core such as the north
bridge (NB). It then predicts how the program would run at
different VF states, allowing accurate PPE decisions to be
made in a single step. While we focus our study on the CPU
in order to better characterize our prediction mechanism,
PPEP could also be included in system-level models, such
as CoScale [6], as a more accurate CPU estimator.

This paper makes the following contributions:
• We develop an online PPE prediction model, PPEP,

which uses hardware performance events and on-chip
temperature measurements to achieve an average chip
power estimation error of 4.6% versus a commercial
AMD CPU. When used to predict full-chip average
power across vastly different VF states, PPEP shows an
average error of 4.2%.

• We demonstrate that a predictive DVFS controller can
use PPEP to explore the energy-delay space and pick
energy- and EDP-optimal points with high accuracy.

• We show a power capping mechanism built with PPEP
that operates 14× faster than a common reactive model.

• We use PPEP to explore future DVFS designs and
estimate that an NB with multiple VF states could
achieve up to 20.4% additional power saving or 1.37×
higher performance.

This paper is organized as follows. Section II describes
the hardware and benchmarks that were used in this study.
Section III describes our cycles-per-instruction (CPI) pre-
dictor, and Section IV details our model of per-core power
consumption that works across VF states. Section V uses
these models to explore the ED space of programs and
provides insights for future DVFS technology. Section VI is
the related work, and the paper concludes with Section VII.

II. EXPERIMENTAL METHODOLOGY

We use real-time hardware measurements to derive our
performance and power prediction models. To measure CPU
power data, we use a Pololu ACS711 Hall effect current
sensor clamped onto the +12V ATX power line of the CPU,
between the power supply and the voltage regulator on the
motherboard. An Arduino board with an AVR microcontroller
is used to sample the output of the sensor, generate the power
readings and send them to the processor via a USB-based
serial port. This setup is similar to those used in previous
work [4, 7]. We take a power reading through this setup
every 20ms and record these to a power trace. We use 10
power readings for every DVFS decision interval, making
each interval 200ms.

The systems under test ran Ubuntu 12.04 LTS using kernel
version 3.2.0-24. For temperature measurements, we use the

socket thermal diode readings accessible through the hwmon
tree in sysfs. When gathering online performance statistics,
we use taskset to affinitize benchmarks to particular cores
and msr-tools to set and read performance counters.

Our main experimental platform is an 8-core AMD
FX-8320 processor running on an ASUS M5A97 R2.0
motherboard with two 4GB DDR3 DRAM DIMMs. The
AMD FX-8320 processor has four compute units (CU), each
containing two CPU cores and 2MB of shared L2 cache.
All of these cores share an NB that includes the memory
controller and 8MB of L3 cache. Each CU supports five
software-visible VF states. The five VF states of our processor
are VF5 (1.320V, 3.5GHz), VF4 (1.242V, 2.9GHz), VF3
(1.128V, 2.3GHz), VF2 (1.008V, 1.7GHz), and VF1 (0.888V,
1.4GHz). The cores also have two hardware-controlled boost
states that are enabled only in VF5. We disabled these because
they are not software controllable; unexpectedly entering a
boost state would affect the power and event counts that we
measure. Our PPEP technique could be used by hardware
or firmware boost controllers, but we disable boosting to
maintain control of our experiments.

The AMD FX-8320 processor can also perform per-CU
power gating (PG). We first build a power model when PG is
disabled in the BIOS (Section IV-A to IV-C). After that, we
analyze the power difference when PG is enabled (Section
IV-D) and derive a new power model.

We also verify the accuracy of our model on an AMD
Phenom™ II X6 1090T processor, which supports four VF
states but does not support power gating. The results of our
study of the AMD FX-8320 are shown in the figures, while
the results from the AMD Phenom II processor are described
only in the text due to space constraints.

We test our models on 3 benchmark suites, which we
combine to make 152 benchmark combinations: SPEC®
CPU 2006 v1.2 [12], PARSEC v2.1 [3], and the NAS Parallel
Benchmarks (NPB) v3.3.1 [1]. We consider multi-threaded
runs for PARSEC and NPB, and multi-programmed runs for
SPEC CPU2006. We split our benchmarks into four equal
sets and test our models using cross validation.

III. PERFORMANCE PREDICTION MODEL

The first step in the process of building a power and
energy manager is to build an accurate performance prediction
model. To achieve this, we implement a mechanism that
can predict the cycles-per-instruction (CPI) at one VF
state from measurements taken at another VF state. We
recently described an approximation of a leading loads
predictor [8, 17, 25] that is built using miss address buffer
(MAB, commonly known as a miss status handling register)
occupancy information on AMD CPUs. We build on this
LL-MAB performance predictor in this work [28].

Leading loads performance predictors split the execution
of a program into core time, which scales as frequency
changes, and memory time, which stays constant. A leading

load is the first demand miss to leave a core’s clock domain
whenever no other leading load from that core exists. This,
in effect, avoids measuring the latency of loads caused by
memory-level parallelism (MLP) while still taking cache
effects and variable latencies into account. Miftakhutdinov
et al. demonstrated that this model is not ideal (especially
when bandwidth is constrained) [22], but this model has the
benefit of existing in contemporary hardware. In AMD CPUs,
performance monitors can measure the amount of time that
an off-core memory access is in the highest priority MAB,
which is a good approximation of a leading load.

We previously demonstrated that this yields accurate
performance predictions when estimating the whole-program
execution time of single-threaded applications. In this work,
we improve upon the existing LL-MAB model by extending
it to build an online CPI predictor which operates on periodic
execution intervals. We divide CPI into core CPI (CCPI) and
memory CPI (MCPI). CCPI stays the same across VF states
while MCPI scales proportionally with frequency. In each
prediction interval, we gather the CPI and MCPI in order
to calculate CCPI. This requires three performance counters
to implement. CPI is calculated by CPU Clocks not Halted
divided by Retired Instructions. Similar to our LL-MAB
model, MCPI is calculated by MAB Wait Cycles divided by
Retired Instructions. Thus, when running at frequency f, one
can predict the CPI at frequency f ’ as shown in Equation 1.

CPI(f ′) = CCPI(f) +MCPI(f)× f ′

f
(1)

Because this model predicts periodic CPI rather than
whole-program execution time (which our previous work
demonstrated), we tested its prediction accuracy on single-
threaded versions of the 52 benchmarks from our three
test suites. We measured the above-mentioned performance
counters every 200ms at both VF5 and VF2. A simple
comparison of the predicted and measured CPI values from
each sample would not properly test the model, as the
execution time of the program is different at the two different
frequencies.

Instead, after gathering the performance counter traces,
we divide them into segments based on the number of
instructions completed. We then sum the number of cycles
we predicted that segment to take (based on the performance
counters in the other trace) and compare to the number of
cycles that segment actually took. The difference between
these two is the prediction error.

Our LL-MAB CPI predictor had an average error of 3.4%
when predicting from VF5 down to VF2 and 3.0% when
predicting from VF2 up to VF5. The standard deviations
were 4.6% and 3.2% respectively. These values are similar
to those measured in our previous work, so we believe this
to be a good CPI predictor.

300

305

310

315

320

325

330

335

340

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

1 201 401 601 801 1001 1201 1401

Te
m

pe
ra

tu
re

 (K
)

N
or

m
al

iz
ed

 C
hi

p
Po

w
er

Step (200ms)

Power (Sampled Point)

Power (Curve)

Temperature

Heating Cooling

Figure 1 Idle power and temperature at VF5 as the workload
changes on an AMD FX-8320.

IV. PER-CORE POWER PREDICTION MODEL

In this section, we present a temperature-aware per-core
idle power model and a dynamic power model based on
performance monitor counters (PMCs). These can provide
per-core online power estimates without requiring application
profiling beforehand. Through measurements and microar-
chitectural analysis, we derive a method for scaling dynamic
power based on hardware event counts taken at various VF
states. In addition, we extend our power estimation model
to predict power consumption at other VF states.

A. Chip Idle Power Model

We define chip idle power to include both static leakage
power and active (not power gated) idle dynamic power
when only OS housekeeping threads are running. We use an
experiment, shown in Figure 1, to examine the relationship
between idle power, VF states, and temperature. First, we
run heavy workloads to heat up the processor until it reaches
a steady-state temperature. We then stop the work. The chip
remains active (not power gated) but idle at the VF state of
our choice while it cools. During the cooling process, power
and temperature traces are collected. These include leakage
power as a function of temperature and a constant dynamic
power, due to OS housekeeping threads, that exists whenever
the chip is idle but not power-gated.

Theoretically, the relationship between leakage power and
temperature should be exponential. However, we observed
that, when the variation ranges of power and temperature
are small, the relationship of idle power and temperature is
close to linear. A linear relationship significantly simplifies
the model training process and is a reasonable approach if
we are mostly interested in temperatures within the normal
operating range of our processor. Similar linear relationships
have been previously observed [19].

We use this data to build a regression model for the
chip idle power based on temperature and voltage, as
shown in Equation 2. T is the temperature in kelvin, and
both Widle1(V) and Widle0(V) are third-order polynomial

Table I Selected hardware events on an AMD FX-8320 processor.
(E1-E9 for dynamic power model; E10-E12 for performance model)

NO. Event Code Event Name
E1 PMCx0c1 Retired UOP
E2 PMCx000 FPU Pipe Assignment
E3 PMCx080 Instruction Cache Fetches
E4 PMCx040 Data Cache Accesses
E5 PMCx07d Request To L2 Cache
E6 PMCx0c2 Retired Branch Instructions
E7 PMCx0c3 Retired Mispredicted Branch Instructions
E8 PMCx07e L2 Cache Misses
E9 PMCx0d1 Dispatch Stalls
E10 PMCx076 CPU Clocks not Halted
E11 PMCx0c0 Retired Instructions
E12 PMCx069 MAB Wait Cycles

functions of voltage. We believe this is reasonable because
the leakage part of idle power is mostly exponentially related
to voltage in sub-100nm technologies. In addition, the active
idle power, frequency has a linear relationship to voltage.
Therefore, a third-order polynomial function can accurately
capture both leakage and idle active power in a simplified
model. Having a unified idle power model avoids storing a
static power table, as required by existing work [27]. Ambient
temperature’s impact on leakage is also naturally included in
the temperature term. All cores share the same voltage rail in
the processors used for this study. However, our methodology
can be extended to future processors with per-core voltage
rails. We verify the chip idle power model on an AMD FX-
8320 processor across each VF state. The average absolute
error (AAE) for VF5 down to VF1 is 2%, 3%, 4%, 3%,
and 3%, respectively. On the AMD Phenom™ II X6 1090T
processor, the AAE for VF4 to VF1 is 3%, 2%, 2%, and
2%, respectively.

Pidle(V) =Widle1(V)× T +Widle0(V) (2)

B. Chip Dynamic Power Model

In order to build an estimate of dynamic power usage, we
use a regression model that takes nine power-hungry hardware
event counts as inputs. The model is built on information
collected at VF5 and then scaled to other VF states, which
is a one-time, offline effort. After that, it gives estimates of
dynamic power by reading performance counters, without
relying on power meters and current sensors.

1) Power Model Construction: A processor’s dynamic
power depends on circuit switching activity in its core and
the north bridge (NB). Among all collectible activities, we
identify nine hardware events, shown in Table I, which are
highly correlated to dynamic power. The first seven represent
the core activity, including the pipeline, and both the L1 and
L2 caches.

We attribute part of the NB’s power to each core, since they
share it. To do this, we can only choose NB-related PMCs
that can be collected on a per-core basis, rather than any

events counted in the shared NB. We use L2 Cache Misses
and Dispatch Stalls for this. The former represents L3
cache access operations from the core measuring the events.
The latter is usually caused by load/store queues or OoO
storage (e.g., reservation stations) being full. Load/store
queue stalls are usually due to the long latency of the last-
level cache or off-chip memory accesses, which happen in
the NB. Therefore, we found that Dispatch Stalls can help
approximate the NB activity caused by a core.

We build our dynamic power model based on a linear
regression that uses the events E1-E9 shown in Table I. We
use the three additional events, E10-E12, for the performance
predicting model described in Section III. We run a total of
152 benchmarks taken from SPEC® CPU2006, PARSEC, and
NPB to get the performance counter, power, and temperature
traces at a 200ms sampling interval. For SPEC CPU2006,
we run 61 multi-programmed benchmark combinations:
29 single-programmed, 15 double-programmed, 10 triple-
programmed, and 7 quad-programmed. For PARSEC, we
use 51 multi-threaded runs of the Pthreads (OpenMP for
freqmine) version using “native” input set. For NPB, we use
40 multi-threaded runs of the OpenMP versions. We divide
the 152 benchmarks evenly into four groups and use three
of them to perform any particular training run.

In each 200ms interval, we measure the chip power every
20ms and use the average value as the power of that interval.
Dynamic power is calculated by subtracting the calculated
idle power from the measured power. The AMD FX-8320
processor contains six performance counters for each core,
and we time-multiplex them in order to measure all 12 events
needed for both the CPI predictor and the power model.

Pdyn =

7∑
c=0

(

7∑
i=1

((
Vn
V5

)α ×Wdyn(i) × Ei)

+

9∑
i=8

(Wdyn(i) × Ei)) (3)

Our dynamic power model is shown in Equation 3. We
use i, c, and n to represent the event ID, core ID, and current
VF state. Ei is the per-second counts for event i. By adding
counts of the same event in different cores, we get a nine
element vector for each 200ms interval. The coefficients,
Wdyn(i), are derived from linear regression using the data
from VF5. To generalize the model, we use voltage to scale
Wdyn(1) – Wdyn(7) when the cores run at different VF states.
The exponential factor α for voltage scaling is a constant that
we derived from actual measured power at different voltages
and is unique for each process technology. For the two NB
events, we choose to use the system default setting and keep
the NB VF state constant in all of our tests.

2) Power Model Validation: To validate the accuracy of
the power model, we randomly split our collection of 152
benchmarks into four equally sized sets and perform 4-fold

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

SPE
PA

R
N

PB
A

LL

SPE
PA

R
N

PB
A

LL

SPE
PA

R
N

PB
A

LL

SPE
PA

R
N

PB
A

LL

SPE
PA

R
N

PB
A

LL

Va
lid

at
io

n
E

rr
or

 o
f D

yn
am

ic
 P

ow
er

 M
od

el Average Standard Deviation

VF5 VF4 VF3 VF2 VF1

Average Value = 10.6%

(a) Validation error of the dynamic power model.

0%

1%

2%

3%

4%

5%

6%

7%

8%

SPE
PA

R
N

PB
A

LL

SPE
PA

R
N

PB
A

LL

SPE
PA

R
N

PB
A

LL

SPE
PA

R
N

PB
A

LL

SPE
PA

R
N

PB
A

LL

Va
lid

at
io

n
E

rr
or

 o
f C

hi
p

Po
w

er
 M

od
el Average Standard Deviation

VF5 VF4 VF3 VF2 VF1

Average Value = 4.6%

(b) Validation error of the chip power model.

Figure 2 Validation error of the dynamic power model (a) and the chip power model (b) at each VF state. The bars are the averages of
AAEs. The crosses are the standard deviations of AAEs.

cross validation. This method uses all combinations of three
sets for training and tests the accuracy of our model on the
remaining set for all of the training collections. This ensures
that we test against all of our benchmarks without testing on
our training data at any point. We measure the absolute error
of the estimated (versus measured) power at each interval for
a given benchmark and VF state. We then gather the AAE
across all 200ms samples.

Figure 2(a) shows the error of the dynamic power model
on our AMD FX-8320. Due to space limitations, we only
present results at the granularity of each benchmark suite.
The error information includes the average value of the AAEs
as well as the standard deviation of each benchmark suite.

The AAE of the dynamic power estimates for all bench-
mark combinations at all VF states is 10.6%. The AAEs
across VF5 to VF1 are 8.9%, 8.4%, 9.5%, 12.0%, and 14.4%,
respectively. VF1 shows larger errors because: (1) lower VF
states have relatively smaller absolute power values, and
hence the larger percentage error; and (2) the coefficients are
derived at VF5, so the further VF states show a relatively
higher error. We also see that the average standard deviation
(SD), as shown by the cross, is 5.8% over all suites. We do
see a few outliers, with a maximum error up to 49%. This
happens in DC and IS from NPB, and dedup from PARSEC.
Possible sources of error are: (1) these benchmarks have
rapid phase changes, which may cause errors because of our
performance counter multiplexing; and (2) dedup and IS have
much shorter execution times than the other benchmarks and
may be poorly represented by the training data.

Combining the idle and dynamic power models yields the
full-chip power model. Figure 2(b) shows the accuracy of this
model. For all benchmark combinations at all VF states, it
achieves a 4.6% average AAE with an average SD of 2.8%.

We also validate the model on our AMD Phenom II
processor using PARSEC and NPB from VF4 to VF2. The
dynamic power estimates over these points have an average

AAE of 8.2%, 7.3%, and 7.1%, respectively, while the full-
chip model has average AAE of 3.6%, 3.1%, and 2.6%.

C. Predicting Power across VF States

The above model works by gathering performance counters
at the VF state to be estimated. It would be helpful to
predict power at other VF states during runtime without
actually switching to that state and gathering performance
counters. Unfortunately, simple linear scaling of power based
on frequency and voltage does not take into account the
possible change in workload characteristics. For example, a
workload can become memory bound at higher frequencies,
meaning some counters will scale in non-linear ways.

1) Hardware Event Prediction: The key challenge in
making this estimate is predicting the hardware event counts
at other frequencies. Through experimentation, we made
two observations. Combining them with our performance
prediction model, we are able to predict hardware event
counts, and hence power consumption, at different VF states.
• Observation 1: At any given point in the execution

of a program, core-private hardware event counts per
instruction are independent of VF state.

Observation 1 indicates that the activity of a core’s private
resources incurred per instruction only depends on the core
microarchitecture and the application’s behavior. This is
like the fingerprint of the microarchitecture and application.
The core’s private resources include the pipeline, the L1
caches and accesses to the L2 cache. Our experiments show
that the first eight hardware events for the dynamic power
model happen in these core’s private resources and all follow
Observation 1 very well. We use the same configuration and
benchmarks we used in Section III to verify this observation.
For E1 to E8, the difference between VF5 and VF2 on an
AMD FX-8320 processor is 0.6%, 0.9%, 0.7%, 5.0%, 0.7%,
1.3%, and 4.0%, respectively. We observe similar results on
the AMD Phenom II processor.

• Observation 2: At any given point in the execution of a
program, (CPI - Dispatch Stalls per inst) is indepen-
dent of VF state.

Observation 2 indicates that the dynamic gap between CPI
and Dispatch Stalls per inst changes along with program
phase, but stays the same across all VF states at any given
point in the execution of a program. We use the same
configurations and benchmarks that we used in Section III
to verify this observation. The difference in the gap across
VF5 and VF2 on an AMD FX-8320 processor is 1.7%. We
observe similar results on the AMD Phenom™ II processor.
This observation is critical for predicting power across VF
states. At any particular point in a program, we can use the
predicted CPI from our performance prediction model to
predict Dispatch Stalls per inst using simple arithmetic.

This phenomenon can be explained as follows. We can
divide a core’s unhalted clock cycles into two parts: retiring
cycles and bubble cycles.

Retiring cycles are cycles with architectural states commit-
ments from instructions. On an ideal pipeline, the number is
equal to the commit width, which would be roughly equal
to the issue width in a balanced design. Applications do
not always retire Issue Width instructions in every retire
cycle, but interval analysis uses this simplified assumption
and shows good analytical modeling results [9]. We therefore
estimate that a retire cycle is a cycle with Issue Width
instructions retiring. We later discuss how this could be
generalized.

Bubble cycles are those cycles where no instructions
retire. These can further be divided into stall cycles and
discarded cycles. Stall cycles are cycles where the core
is stalled waiting for data from the memory hierarchy or
due to pipeline resource limitations such as reorder buffer
occupancy. Discarded cycles are those where no useful
work is accomplished due to pipeline flush events such as
branch mispredictions and interrupts. Equation 4 shows the
relationship between unhalted, retiring, stall, and discarded
cycles.

Cunhalted = Cretiring + Cbubble

= Cretiring + Cstall + Cdiscarded (4)

E10 ≈ E9+E7×MisBranchPen+
E11

Issue Width
(5)

CPI −DispatchStall Per Ins ≈ 1

Issue Width

+MisBranchPen× Inst MisPred

Inst Retired

(6)

The unhalted cycles can be counted by event E10,
CPU Clocks not Halted. The stall cycles can be counted
by event E9, Dispatch Stalls. The ideal retiring cycles

can be calculated by the ratio between event E11, Re-
tired Instructions, and issue width (which is a microar-
chitectural feature). Due to hardware limitations, we use
mispredicted cycles to approximate discarded cycles. Mispre-
dicted cycles can be expressed as the product of event E7,
Retired Mispredicted Branch Instructions, and the resulting
penalty cycles (MisBranchPen). We find that this approxima-
tion does not significantly increase power prediction error
due to its relatively small weight in Equation 3. Therefore,
Equation 4 can be rewritten in terms of event counts as
Equation 5. Dividing both sides of this equation by the retired
instructions and rearranging the terms yields Equation 6.

Among terms in the right-hand side of Equation 6,
Issue Width and MisBranchPen are microarchitecture-specific
constants, and Inst Retired and Inst MisPred are constants
at a given program point. Since none of these values are
dependent on frequency, CPI - DispatchStall Per Inst is
approximately a constant at a given point in a program,
regardless of VF states.

We note here that Equation 5 assumes that every retiring
cycle retires Issue Width instructions. We could make a
more accurate estimate of this value by separating out
Cycles Retiring 1, . . . , Cycles Retiring Issue Width. Unit
mask values in our performance counters could count these
values separately, at the cost of more counter multiplexing.
We note that this retire count is mostly a function of program
location and microarchitectural features, however. As such,
Observation 2 still holds.

The above two observations provide the relationship of
hardware event counters among different VF states. Therefore,
given the hardware event counts at one VF state, we can
derive good estimates of event counts at any other VF state.

2) Validation of Power Prediction across VF States:
We now evaluate the power prediction errors for all the
benchmark combinations across all pairs of VF states. For
each pair of VF states, we compare the average measured
power and the average predicted power for each benchmark
combination and illustrate the error for each suite.

Figure 3 shows the validation results of dynamic power
and chip power with predictions across different VF states.
VFi→VFj means predicting power at VFj based on event
counts gathered at VFi. We use the same 4-fold cross
validation method as was used for the power model, and for
each VF state pair, the prediction errors of all 152 benchmark
combinations are collected and presented in one column.

As Figure 3(a) shows, the average prediction error for
the dynamic power ranges from 5.5% to 13.7% in different
VF state pairs, with an overall average error of 8.3%. As
the voltage and frequency differences between VFi and VFj
increase, the prediction errors usually increase accordingly.
The errors are higher when the target state is VF1 because
the dynamic power model has higher error there. Figure 3(a)
also presents the standard deviation, which ranges from 4.7%
to 10.5%, with an overall average of 6.9%.

0%

2%

4%

6%

8%

10%

12%

14%

16%

V
F5->V

F5
V

F5->V
F4

V
F5->V

F3
V

F5->V
F2

V
F5->V

F1

V
F4->V

F5
V

F4->V
F4

V
F4->V

F3
V

F4->V
F2

V
F4->V

F1

V
F3->V

F5
V

F3->V
F4

V
F3->V

F3
V

F3->V
F2

V
F3->V

F1

V
F2->V

F5
V

F2->V
F4

V
F2->V

F3
V

F2->V
F2

V
F2->V

F1

V
F1->V

F5
V

F1->V
F4

V
F1->V

F3
V

F1->V
F2

V
F1->V

F1

D
yn

am
ic

 P
ow

er
 P

re
di

ct
io

n
E

rr
or

 A
cr

os
s V

F
St

at
es Average Standard Deviation

Average Value = 8.3%

(a) Prediction error of the dynamic power across VF states

0%

1%

2%

3%

4%

5%

6%

7%

8%

V
F5->V

F5
V

F5->V
F4

V
F5->V

F3
V

F5->V
F2

V
F5->V

F1

V
F4->V

F5
V

F4->V
F4

V
F4->V

F3
V

F4->V
F2

V
F4->V

F1

V
F3->V

F5
V

F3->V
F4

V
F3->V

F3
V

F3->V
F2

V
F3->V

F1

V
F2->V

F5
V

F2->V
F4

V
F2->V

F3
V

F2->V
F2

V
F2->V

F1

V
F1->V

F5
V

F1->V
F4

V
F1->V

F3
V

F1->V
F2

V
F1->V

F1

C
hi

p
Po

w
er

 P
re

di
ct

io
n

E
rr

or
 A

cr
os

s V
F

St
at

es Average Standard Deviation

Average Value = 4.2%

(b) Prediction error of the chip power across VF states

Figure 3 Dynamic (a) and chip power (b) prediction error across VF states. The bars are the averages of AAEs. The crosses are the
standard deviations of AAEs.

Figure 3(b) shows the across-VF errors for the chip level
power prediction. The average prediction errors for each VF
state pair range from 2.7% to 6.3%, with an overall average
error of 4.2%. The standard deviations for all VF state pairs
fall within 5.5%, with the average deviation as 3.6%.

On the AMD Phenom II X6 1090T processor, we verify
the prediction accuracy between VF4, VF3, and VF2. The
overall average prediction error for dynamic power model
and chip power model are 5.6% and 3.1%, respectively.

D. Power Gating and Per-core Idle Power

In our AMD FX-8320 processor, power gating (PG) is
implemented at the CU level. That is, when PG is enabled
in the BIOS, a CU can be power gated if both of its cores
are idle. The NB can also be power gated if all of the CUs
are idle. To model the impact of PG on chip idle power
and to isolate the core idle power from NB idle power, we
developed a microbenchmark, bench A, which has an L1-
resident data set, requires no dynamic NB accesses, and has a
steady program phase. The performance and dynamic power
of each instance is the same if multiple instances are running
concurrently on different CUs.

We devised an experiment in which we fix the processor’s
VF state and sweep the number of busy CUs from 0 (chip
idle) to 4 (all CUs are actively running bench A), for both PG
enabled and PG disabled cases. Figure 4 shows the measured
chip power. We use Pidle(CU) and Pidle(NB) to denote a
CU’s idle power and the NB’s idle power. For each VF
state in the figure, the two bars in the 4CU case have no
difference because all CUs are busy and no CU is power
gated. In the 3CUs case, the gap between the two bars is
Pidle(CU). Similarly, in the 2CUs and 1CU cases, the gaps
are 2 × Pidle(CU) and 3 × Pidle(CU), respectively. For the
idle case, the difference is 4×Pidle(CU)+Pidle(NB) because
the NB is also power gated. When the chip is idle and PG

is enabled, there is still a constant power, Pidle(Base), which
exists when the processor is powered on. Pidle(Base) does
not change with the core VF state. For all VF states, we
quantify Pidle(CU) and Pidle(NB) using this method.

The idle power is partitioned by the busy cores running
the application. When PG is enabled, the busy cores in a
CU share Pidle(CU) and all busy cores in the chip share
Pidle(NB)+Pidle(Base). This is shown in Equation 7, where
m is the number of the busy cores in a CU and n is the
number of busy cores in the chip. When PG is disabled,
all busy cores share chip idle power, which is always
4 × Pidle(CU) + Pidle(NB) + Pidle(Base). This is shown in
Equation 8. Combining this with the per-core dynamic power
model, we can derive total per-core power.

Pidle(Core) = Pidle(CU)/m+ (Pidle(NB) + Pidle(Base))/n
(7)

Pidle(Core) = (4× Pidle(CU) + Pidle(NB) + Pidle(Base))/n
(8)

0

0.2

0.4

0.6

0.8

1

idle
1C

U
2C

U
s

3C
U

s
4C

U
s

idle
1C

U
2C

U
s

3C
U

s
4C

U
s

idle
1C

U
2C

U
s

3C
U

s
4C

U
s

idle
1C

U
2C

U
s

3C
U

s
4C

U
s

idle
1C

U
2C

U
s

3C
U

s
4C

U
s

N
or

m
al

iz
ed

 C
hi

p
Po

w
er Disable Power Gating

Enable Power Gating

VF5 VF4 VF3 VF2 VF1

Figure 4 Chip power when power gating is disabled and enabled.

Performance
Prediction

Model

Dynamic
Power
Model

H/W Events
Predictor

PMC at other VFs

CPIs at all VFs

Idle Power
Model

Dynamic Info:
PMC, VF,

Temperature

Temperature, VF

Dynamic
Power at all VFs

Idle Power at all VFs

CPI at all VFsPMC, VF

PMC
VF

All-in-one: PPEP

DVFS Exploring Space:
Energy -Delay Scaling,

Power Capping, etc.

DVFS Decision

VF Regulator

Energy
Prediction Core 0's

PPE

Core 1's
PPE

Core n's
PPE1

2

3

4

5

6

Figure 5 The framework of PPEP and the working flow of PPEP-based DVFS management.

E. Complexity and Generality Analysis

The PPEP framework has four components: a performance
prediction model, an idle power model, a dynamic power
model, and a power prediction model for estimating power
at other VF states. To predict energy consumption, we
can simply combine the power prediction model and the
performance prediction model.

PPEP can run as a user-level daemon without hardware
modifications, and we found that it had negligible overhead
at our 200 ms sampling rate. PPEP can also sample faster
without significant overhead in the kernel or in firmware. If
implemented in firmware, PPEP can also be used to control
hardware boost states, which were disabled in our tests.

While we have focused on implementing PPEP on AMD
processors, the general techniques should carry between
architectures and implementations. CPI predictors have been
demonstrated on other architectures [16, 25], for instance.
This work could also be taken as a recommendation for
the type of performance events that can be useful in other
commercial processors.

V. ENERGY AND POWER SPACE EXPLORATION

Figure 5 shows an overview of the PPEP framework. PPEP
is a software daemon that runs alongside regular applications
and can estimate their performance and power in order to
make DVFS decisions. It starts by recording the hardware
performance counters, current VF state, and temperature
diode values from the cores on the CPU. This is used as the
input to the PPEP manager.

From there, PPEP operates as follows: 1© it uses the
performance predictor to estimate the CPI of the application
at all VF states; 2© the hardware event predictor, which we
described in Section IV-C, takes the predicted CPI values,
the current performance counter values, and the VF state and
estimates what the hardware events would be at all of the

VF states; 3© these event predictions are used to predict the
dynamic power that would be consumed at other VF states;
4© the PG-aware idle power model estimates the remaining

power at all VF states; 5© these values are fed into a decision
algorithm; 6© this can use these power, energy, and related
projections in order to easily make decisions about changing
the chip’s VF states.

PPEP’s predictions can be used to dynamically explore the
performance-power-energy (PPE) space to select the optimal
VF states within one step. In this section, we demonstrate
how PPEP can be used for real-time energy prediction, high
responsive (one-step) power capping scheme and further PPE
exploration.

A. Energy Prediction

For battery-powered handheld devices, it is important to
predict energy consumption in order to make runtime power
control decisions that will meet battery life targets. Energy
can be calculated by multiplying power and interval length.
When using the PPEP framework, we use energy from the
current interval to predict energy of the next interval. Besides
model fitting errors, phase changes between neighboring
intervals can also introduce errors. To examine the total error,
we compare the estimated chip energy of the current interval
and the measured chip energy of the next interval. We then
calculate the AAE across all intervals in each benchmark
combination. Figure 6 shows the energy prediction error at
VF5 for SPEC® CPU2006 benchmark combinations, with
the average AAE (second-to-last bar) on the AMD FX-
8320 processor. We also compare our result to the result
of the existing work of Green Governors [27] (the last bar)
which is also implemented on an AMD processor. The Green
Governors power model is based upon a theoretical power
model (i.e. CV2f) and does not consider energy contributions
from the NB. As seen in Figure 6, PPEP achieves a 3.6%

0%

1%

2%

3%

4%

5%

6%

7%

8%

400
401
403
429
445
456
458
462
464
471
473
483
410
416
433
434
435
436
437
444
447
450
453
454
459
465
470
481
482
400+401
403+429
445+456
458+462
464+471
473+483
410+416
433+434
435+436
437+444
447+450
453+454
459+465
470+481
482+429
400+401+403
429+445+456
458+462+464
471+473+483
410+416+433
434+435+436
437+444+447
450+453+454
459+465+470
481+482+429
400+401+403+429
445+456+458+462
464+471+473+483
410+416+433+434
435+436+437+444
447+450+453+454
459+465+470+481
A

V
G

A
V

G
(G

G
)

A
A

E
 o

f E
ne

rg
y

Pr
ed

ic
tio

n(
V

F5
)

Green Governors

PPEP

Figure 6 Energy prediction error of the whole chip (including cores and the NB).

average energy prediction error while Green Governors
has about 7% average error. We also evaluate the energy
prediction error at all other VF states. From VF4 to VF1 the
average AAE are 3.3%, 3.7%, 4.0%, and 4.9%, respectively.

B. One-step Power Capping

Power caps are often enforced by temporarily running cores
at lower VF states [14, 29, 20, 21]. Finding the VF state
that maximizes performance under the power cap is usually
an iterative process. A control loop will change the VF state
and spend some time determining the current power usage.
If the power usage is not yet under the cap, this VF state
is lowered and the process repeats. Similarly, if the power
is far enough below the cap, the controller will try to raise
the VF state in order to gain back performance. In contrast
to such an iterative algorithm, PPEP allows proactive power
consumption predictions across all VF states. This allows it
to directly select the VF state that maximizes performance
under the power cap.

Similar to previous work [20, 21], we assume for this
experiment that each CU of the processor has a separate
power plane, allowing per-CU DVFS. This is in contrast to
most current hardware, which supports per-CU frequency
scaling but only supports global voltage scaling.

Figure 7 shows the dynamic power capping responsive-
ness when running a benchmark combination of 429.mcf,
458.sjeng, 416.gamess, and swaptions on four CUs. PPEP
adjusts chip power within a single 0.2s sampling period (OS
or firmware implementations could respond even faster). In
addition, it adheres to the power budget with 94% accuracy.
The simple iterative mechanism, which takes 2.8s to adjust
to the power budget, adheres to the power budget with 81%
accuracy and occasionally violates the power cap. Note that
we chose a large power cap swing to demonstrate PPEP’s
ability to more rapidly reach the cap than iterative algorithms.
This is not perfectly representative of all power cap changes,
but as an example, removing a laptop from its wall power
can cause a significant and rapid power cap change.

0
20
40
60
80

100
120

1 61 121 181 241 301

C
hi

p
Po

w
er

 (W
)

Step (200ms)

Power Target PPEP Based Policy

0
20
40
60
80

100
120

1 61 121 181 241 301
C

hi
p

Po
w

er
 (W

)
Step (200ms)

Power Target Simple Iterative Policy

Figure 7 Power capping time responsiveness.

C. Further PPE Exploration

Using the PPEP framework, we are also able to provide
insights for future DVFS technology. Note that power gating
is enabled for all of these experiments.

1) How background workloads impact energy and EDP:
In this experiment, we run the SPEC CPU2006 benchmarks
at VF5 with a different number of concurrent instances. We
then use PPEP to explore their energy and EDP at other VF
states. Of these results, we illustrate 433.milc and 458.sjeng,
typical memory- and CPU-bound benchmarks, respectively.

Figure 8 shows the per-thread energy consumption for
these programs at different VF states and with a different
number of instances. We make three observations:

1) For both CPU- and memory-bound applications, run-
ning at the lowest VF state produces the lowest energy
consumption;

2) At a high VF state, a single memory-bound applica-
tion consumes less per-thread energy than a multi-
programmed memory-bound application; and,

3) At the same VF state, a single CPU-bound applica-
tion consumes more per-thread energy than multi-
programmed CPU-bound applications.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

433 x1 433 x2 433 x3 433 x4

N
or

m
al

iz
ed

 E
ne

rg
y

VF5 VF4 VF3 VF2 VF1

(a) Per-thread energy of memory-bound 433.milc.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

458 x1 458 x2 458 x3 458 x4

N
or

m
al

iz
ed

 E
ne

rg
y

VF5 VF4 VF3 VF2 VF1

(b) Per-thread energy of CPU-bound 458.sjeng.

Figure 8 Energy comparison (per thread) at different VF states with different background workloads.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

433 x1 433 x2 433 x3 433 x4

N
or

m
al

iz
ed

 E
D

P

VF5 VF4 VF3 VF2 VF1

(a) Per-thread EDP of memory-bound 433.milc.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

458 x1 458 x2 458 x3 458 x4

N
or

m
al

iz
ed

 E
D

P

VF5 VF4 VF3 VF2 VF1

(b) Per-thread EDP of CPU-bound 458.sjeng.

Figure 9 EDP comparison (per thread) at different VF states with different background workloads.

The first observation shows that regardless of the number of
background workloads, the chip always achieves the least
energy at the lowest VF state. Therefore, static VF state
policies are useful for energy optimization. Experiments
on the AMD FX-8320 and AMD Phenom™ II X6 1090T
processors demonstrate that adopting dynamic DVFS policies
improves the results by less than 2%.

The second observation is caused by shared resource
contention in the NB, which leads to longer execution time
and higher core static energy. Although there are more threads
to share the NB’s static power, the increase in execution time
caused by memory system contention quickly dissipates any
energy savings by requiring more cores to be awake in the
high VF state for more time. This is not the case in the low
VF states, as they reduce the total energy wasted by core
static power.

In the third observation, for CPU-bound applications, there
is no contention in the NB. Meanwhile the threads running
together share the NB’s energy, reducing the per-thread
energy across the core.

Figure 9 shows the per-thread EDP for 433.milc and
458.sjeng at different VF states and with a different number
of running instances. Memory-bound applications tend to
have lower EDP when running alone due to the lack of NB
contention. CPU-bound applications tend to have lower EDP
when running with more instances from similar applications
because they can share chip-wide static power. Another

observation is that, with the increasing number of background
threads, the VF state for best EDP shifts from VF5 to VF4.

In summary, background workloads have significant impact
on an application’s energy and EDP. Dynamic DVFS policies
should also carefully consider background workloads and
adjust VF states for the best energy and/or EDP.

2) How does the NB impact energy savings: Recent
work on simulated big.LITTLE architecture for mobile
workloads [11] underscored that the uncore part of the
chip also plays an important role and highlighted the need
for uncore scalability to improve energy efficiency. Since
PPEP is able to provide separate core energy and NB energy
estimates, we use them to explore the potential benefit of
multiprocessors to have an NB with multiple VF states.
Figure 11 shows the per-thread energy of 433.milc and
458.sjeng and breaks it down by core and NB energy. For
memory-bound applications, the NB consumes 60% of the
total energy on average, and a minimum of 45% of the total
energy. For CPU bound applications, the NB consumes much
less energy—25% of the total on average, and a minimum
of 10%. When the number of busy CUs is small, the NB
consumes a higher percentage of total energy because there
are fewer busy cores to share the NB energy consumption.
When running at a lower VF state, the NB’s fraction increases.
Lowering a core’s voltage does not reduce the dynamic energy
used by the NB, but it increase the program’s execution time,
which does increases the NB’s energy usage.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%

0

0.2

0.4

0.6

0.8

1

1.2

V
F5

V
F4

V
F3

V
F2

V
F1

V
F5

V
F4

V
F3

V
F2

V
F1

V
F5

V
F4

V
F3

V
F2

V
F1

V
F5

V
F4

V
F3

V
F2

V
F1

N
B

 R
at

io

N
or

m
al

iz
ed

 E
ne

rg
y

Energy(Core) Eneryg(NB) NB Ratio

433 x1 433 x2 433 x3 433 x4
(a) NB energy share in memory-bound 433.milc.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%

0

0.2

0.4

0.6

0.8

1

1.2

V
F5

V
F4

V
F3

V
F2

V
F1

V
F5

V
F4

V
F3

V
F2

V
F1

V
F5

V
F4

V
F3

V
F2

V
F1

V
F5

V
F4

V
F3

V
F2

V
F1

N
B

 R
at

io

N
or

m
al

iz
ed

 E
ne

rg
y

Energy(Core) Eneryg(NB) NB Ratio

458 x1 458 x2 458 x3 458 x4
(b) NB energy share in CPU-bound 458.sjeng.

Figure 10 NB energy consumption percentage.

This shows that it is important to evaluate the energy
benefit of scaling the NB voltage and frequency. As such,
we use PPEP to conduct studies assuming two VF states
for the NB. The higher one is the current VF hi (1.175V,
2.2GHz). We introduce a lower VF state to the NB with
a 20% voltage drop and a 50% frequency drop as VF lo
(0.940V, 1.1GHz). We assume the idle power of the NB
drops 40%, and dynamic power for same operations drops
36%. For performance prediction, we assume the leading
loads cycles increase by 50% when frequency drops from
high to low. We adopt these considerations and re-evaluate
the PPE of the new Core-NB VF combinations.

As can be seen in Figure 11(a), both memory- and CPU-
bound applications can achieve further energy saving through
scaling the VF state of the NB. We compare the scaling range
of energy consumption when fixing the run mode to x1, x2,
x3 or x4. For 433.milc, the potential of energy savings with
NB VF scaling are 26%, 23%, 21%, and 20%, respectively,
with NB VF scaling. For 458.sjeng these values are 25%,
19%, 16%, and 14%. For memory-bound applications, a lower
voltage makes a large reduction in the NB’s dynamic energy.
Although the increase in execution time causes a larger
portion of the program’s energy to come from the NB idle
energy, it still reduces chip-wide energy usage. The energy
benefits are also significant for CPU-bound applications,
which may run slightly slower but see much less static NB
energy usage.

Figure 11(b) shows that scaling the NB can reduce
execution time with similar energy consumption. We observe
that, because the NB uses less power, the cores can now run at
a higher VF state. This reduces their execution time without
changing chip-wide energy usage. Using core-VF1 and NB-
VF hi as the baseline, we observe that for the memory
bound 433.milc, the potential performance gains are 1.54×,
1.30×, 1.27×, and 1.25×. For the CPU-bound 458.sjeng,
these values are 1.99×, 1.19×, 1.19×, and 1.20×.

Note that due to measurement limitation, we cannot
separate the power of the memory controller from that of
the last-level cache in our NB. As such, we scale both in

0%

10%

20%

30%
433x1
433x2
433x3
433x4

458x1
458x2
458x3
458x4

En
er

gy
 S

av
in

g
(%

)

Average=20.4%

(a) Energy savings.

0

0.5

1

1.5

2

433x1
433x2
433x3
433x4

458x1
458x2
458x3
458x4

Sp
ee
du
p

Average=1.37

(b) Speedup.

Figure 11 Further energy savings with a scalable NB and the
performance speedup with similar energy consumption.

the above results. In reality, for SRAM reliability reasons,
only the memory controller power should be scaled.

This experiment indicates that future DVFS technology
should also consider scaling the NB to achieve energy savings
and higher performance.

VI. RELATED WORK

Research on power modeling has evolved from simple fre-
quency and voltage scaling to hardware event counter-based
regression models. Many other empirical models require off-
line profiling or preprocessing for each application, which
do not provide flexibility and generality for new workloads.
There are many studies that use linear power models built
from different performance counters combinations. Karan
et. al. [26] propose a real-time power model based on
four hardware event counters on AMD Phenom™ quad-
core processor. Isci et al. [15] collected hardware event
information to create a fingerprint of the power traces, but
their particular microprocessor required many counters, and
was thus quite costly. Deng et al. [6] proposed a simulation
based system-level framework, CoScale, with performance

and power predictions. The recent work on Green Governors
built a power model from a theoretical (CV2f) power formula
by calculating the effective capacitance and the processor’s
dynamic activity [27]. This work measured the voltage
regulator to get the power traces for cores but did not
consider the NB for DVFS benefits. In contrast, PPEP
builds performance and power models based on hardware
measurements and extends them to predict across VF states
by implementing a hardware event predictor. Once the model
is built for a specific processor, runtime usage does not
require power meters or off-line application training. It simply
follows the application’s behavior with high sensitivity.

Power capping has been achieved by migrating threads [5]
or scaling down core frequency [20, 21, 29] to meet the
power budget. Steepest Drop [29] assumes knowledge of
the power consumption of each core, which is not yet
fully supported by modern processors. Others [20, 21]
have developed the three-layer power control architecture
called FreqPar for many-core processors, which requires
a power monitor attached to the chip. Pack & Cap [5]
predicts performance with a multi-nomial logistic regression
(MLR) classifier trained through an offline analysis. When
queried at runtime, this classifier returns the best candidate
operating point. In contrast, PPEP predicts performance and
power directly from architectural properties, providing more
general and theoretical insights with a low complexity. This
ability, especially for distant VF states, makes PPEP a good
infrastructure to implement single step power capping policies
in commercial processors without attaching external power
monitors.

VII. CONCLUSION

In this paper, we propose the PPEP framework to provide
online PPE estimations across all available voltage-frequency
states. PPEP implements a hardware event predictor that
takes the performance counters from one VF state and uses
them to generate dynamic information about another VF
state. We verify PPEP’s modeling accuracy on both an AMD
FX-8320 and an AMD Phenom™ II X6 1090T processor
with a broad set of benchmarks, including SPEC® CPU2006,
PARSEC, and the NAS Parallel Benchmarks.

Using PPEP, we conduct an energy and power space
exploration which demonstrates the following: PPEP is able
to make power adjustment decisions that meet the target
power cap in a single step, improving the response time
compared to a commonly-practiced iterative power capping
mechanism. We also show that background workloads have
significant impact on application’s energy and EDP. Thus it
is an important factor to consider in DVFS policies. Finally,
we show that future processor designs which take advantage
of scalable VF states in the north bridge, can offer an extra
20% energy saving or 1.4× performance improvement versus
modern cores which maintain mostly constant north bridge
VF states.

ACKNOWLEDGMENT

We would like to thank our shepherd and anonymous
reviewers for their comments and suggestions that have
greatly improved this paper. In addition, we wish to thank Y.
Eckert and I. Paul for their help and advice. Finally, thanks
to V. Spiliopoulos for his help in understanding the Green
Governors model. This work is partially supported by 863
Program of China (2012AA010905), NSFC (61472431). Bo
Su is supported by NUDT/Hunan Innov. Fund. For PostGrad.
(B120604, CX2012B029).
AMD, the AMD Arrow logo, AMD Phenom, and combina-
tions thereof are trademarks of Advanced Micro Devices, Inc.
SPEC is a registered trademark of the Standard Performance
Evaluation Corporation (SPEC). Other names used in this
publication are for identification purposes only and may be
trademarks of their respective companies.

REFERENCES

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Finebert, P. Frederickson, T. Lasinski,
R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weer-
atunga, “The NAS Parallel Benchmarks,” Tech. Rep. RNR-
94-007, March 1994.

[2] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale
Machines, Second ed. Morgan & Claypool, 2013.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations,” in Proc. of the Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), 2008.

[4] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The
Yin and Yang of Power and Performance for Asymmetric
Hardware and Managed Software,” in Proc. of the Int’l Symp.
on Computer Architecture (ISCA), 2012.

[5] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack &
Cap: Adaptive DVFS and Thread Packing Under Power Caps,”
in Proc. of the Int’l Symp. on Microarchitecture (MICRO),
2011.

[6] Q. Deng, D. Meisner, A. Bhattacharjee, T. Wenisch, and
R. Bianchini, “CoScale: Coordinating CPU and Memory
System DVFS in Server Systems,” in Proc. of the Int’l Symp.
on Microarchitecture (MICRO), 2012.

[7] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S.
McKinley, “Looking Back on the Language and Hardware
Revolutions: Measured Power, Performance, and Scaling,”
in Proc. of the Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2011.

[8] S. Eyerman and L. Eeckhout, “A Counter Architecture
for Online DVFS Profitability Estimation,” IEEE Trans. on
Computers, vol. 59, no. 11, pp. 1576–1583, 2010.

[9] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A
Mechanistic Performance Model for Superscalar Out-of-Order
Processors,” ACM Transactions on Computer Systems, vol. 27,
no. 2, pp. 3:1–3:37, 2009.

[10] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The
Cost of a Cloud: Research Problems in Data Center Networks,”
ACM SIGCOMM Computer Communication Review, vol. 39,
no. 1, pp. 68–73, Dec. 2008.

[11] V. Gupta, P. Brett, D. Koufaty, D. Reddy, S. Hahn, K. Schwan,
and G. Srinivasa, “The Forgotten ’Uncore’: On the Energy-

Efficiency of Heterogeneous Cores,” in Proc. of the USENIX
Annual Technical Conf. (USENIX ATC), 2012.

[12] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,”
ACM SIGARCH Computer Architecture News, vol. 34, no. 4,
pp. 1–17, 2006.

[13] W. Huang, C. Lefurgy, W. Kuk, A. Buyuktosunoglu, M. Floyd,
K. Rajamani, M. Allen-Ware, and B. Brock, “Accurate Fine-
Grained Processor Power Proxies,” in Proc. of the Int’l Symp.
on Microarchitecture (MICRO), 2012.

[14] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi, “An Analysis of Efficient Multi-Core Global
Power Management Policies: Maximizing Performance for
a Given Power Budget,” in Proc. of the Int’l Symp. on
Microarchitecture (MICRO), 2006.

[15] C. Isci and M. Martonosi, “Runtime Power Monitoring in
High-End Processors: Methodology and Empirical Data,” in
Proc. of the Int’l Symp. on Microarchitecture (MICRO), 2003.

[16] R. Joseph and M. Martonosi, “Run-time Power Estimation
in High Performance Microprocessors,” in Proc. of the Int’l
Symp. on Low Power Electronics and Design (ISLPED), 2001.

[17] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-Based
Models for Run-Time DVFS Orchestration in Superscalar
Processors,” in Int’l Conf. on Computing Frontiers (CF), 2010.

[18] C. Lefurgy, X. Wang, and M. Ware, “Power Capping: a Prelude
to Power Shifting,” Cluster Computing, vol. 11, no. 2, pp. 183–
195, 2008.

[19] Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate
Temperature-Dependent Integrated Circuit Leakage Power Es-
timation is Easy,” in Proc. of the Conf. on Design, Automation
and Test in Europe (DATE), 2007.

[20] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable Power
Control for Many-Core Architectures Running Multi-threaded
Applications,” in Proc. of the Int’l Symp. on Computer
Architecture (ISCA), 2011.

[21] K. Ma and X. Wang, “PGCapping: Exploiting Power Gating
for Power Capping and Core Lifetime Balancing in CMPs,”

in Proc. of the Int’l. Conf. on Parallel Architectures and
Compilation Techniques (PACT), 2012.

[22] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt, “Predicting
Performance Impact of DVFS for Realistic Memory Systems,”
in Proc. of the Int’l Symp. on Microarchitecture (MICRO),
2012.

[23] I. Paul, S. Manne, M. Arora, W. L. Bircher, and S. Yalaman-
chili, “Cooperative Boosting: Needy versus Greedy Power
Management,” in Proc. of the Int’l Symp. on Computer
Architecture (ISCA), 2013.

[24] M. D. Powell, A. Biswas, J. S. Emer, S. S. Mikherjee, B. R.
Sheikh, and S. Yardi, “CAMP: A Technique to Estimate Per-
Structure Power at Run-time using a Few Sample Parameters,”
in Proc. of the Int’l Symp. on High Performance Computer
Architecture (HPCA), 2009.

[25] B. Rountree, D. K. Lowenthal, M. Schulz, and B. R. de Supin-
ski, “Practical Performance Prediction Under Dynamic Voltage
Frequency Scaling,” in Int’l Green Computing Conf. and
Workshops (IGCC), 2011.

[26] K. Singh, M. Bhadauria, and S. A. McKee, “Real Time Power
Estimation and Thread Scheduling via Performance Counters,”
ACM SIGARCH Computer Architecture News, vol. 37, no. 2,
pp. 46–55, 2009.

[27] V. Spiliopoulos, S. Kaxiras, and G. Keramidas, “Green Gov-
ernors: A Framework for Continuously Adaptive DVFS,” in
Proc. of the Int’l Green Computing Conference and Workshops
(IGCC), 2011.

[28] B. Su, J. L. Greathouse, J. Gu, M. Boyer, L. Shen, and Z. Wang,

“Implementing a Leading Loads Performance Predictor on
Commodity Processors,” in Proc. USENIX Annual Technical
Conf. (USENIX ATC), 2014.

[29] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable
Thread Scheduling and Global Power Management for Het-
erogeneous Many-Core Architectures,” in Proc. Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT),
2010.

	I Introduction
	II Experimental Methodology
	III Performance Prediction Model
	IV Per-core Power Prediction Model
	IV-A Chip Idle Power Model
	IV-B Chip Dynamic Power Model
	IV-B1 Power Model Construction
	IV-B2 Power Model Validation

	IV-C Predicting Power across VF States
	IV-C1 Hardware Event Prediction
	IV-C2 Validation of Power Prediction across VF States

	IV-D Power Gating and Per-core Idle Power
	IV-E Complexity and Generality Analysis

	V Energy and Power Space Exploration
	V-A Energy Prediction
	V-B One-step Power Capping
	V-C Further PPE Exploration
	V-C1 How background workloads impact energy and EDP
	V-C2 How does the NB impact energy savings

	VI Related Work
	VII Conclusion

