
Tangram: Integrated Control of Heterogeneous Computers
Raghavendra Pradyumna Pothukuchi

pothuku2@illinois.edu
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA

Joseph L. Greathouse
Karthik Rao

Christopher Erb
Leonardo Piga

First.Last@amd.com
Karthik.Rao2@amd.com

Advanced Micro Devices, Inc.
Austin, Texas, USA

Petros G. Voulgaris
Josep Torrellas

voulgari,torrella@illinois.edu
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA

ABSTRACT
Resource control in heterogeneous computers built with subsystems
from different vendors is challenging. There is a tension between
the need to quickly generate local decisions in each subsystem
and the desire to coordinate the different subsystems for global
optimization. In practice, global coordination among subsystems is
considered hard, and current commercial systems use centralized
controllers. The result is high response time and high design cost
due to lack of modularity.

To control emerging heterogeneous computers effectively, we
propose a new control framework called Tangram that is fast, glob-
ally coordinated, and modular. Tangram introduces a new formal
controller that combines multiple engines for optimization and
safety, and has a standard interface. Building the controller for a
subsystem requires knowing only about that subsystem. As a het-
erogeneous computer is assembled, the controllers in the different
subsystems are connected hierarchically, exchanging standard co-
ordination signals. To demonstrate Tangram, we prototype it in
a heterogeneous server that we assemble using components from
multiple vendors. Compared to state-of-the-art control, Tangram re-
duces, on average, the execution time of heterogeneous applications
by 31% and their energy-delay product by 39%.

CCS CONCEPTS
•Computer systems organization→Heterogeneous (hybrid)
systems; • Hardware → Platform power issues; Chip-level power
issues; Temperature control.

KEYWORDS
Distributed resource management, formal control, heterogeneous
computers, modular control.
ACM Reference Format:
Raghavendra Pradyumna Pothukuchi, Joseph L. Greathouse, Karthik Rao,
Christopher Erb, Leonardo Piga, Petros G. Voulgaris, and Josep Torrel-
las. 2019. Tangram: Integrated Control of Heterogeneous Computers. In
The 52nd Annual IEEE/ACM International Symposium on Microarchitecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358285

(MICRO-52), October 12–16, 2019, Columbus, OH, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3352460.3358285

1 INTRODUCTION
An emerging trend in today’s computing systems is to integrate
subsystems built by different vendors into heterogeneous comput-
ers [10, 45, 47, 55, 77, 79, 86]. Such subsystems can be CPUs, GPUs,
or various accelerators. This approach is attractive because the
individual components are often easier and cheaper to develop
separately, and they can be reused across multiple products. For
example, the same GPU design is used in AMD’s Ryzen™ mobile
processors [8] and in Intel’s multi-chip Core i7-8809G [30].

Such heterogeneous systems, like other computers, need a re-
source control system — a vital unit that keeps the execution effi-
cient and safe. Resource controllers attain efficiency by customizing
the usage of limited resources like energy and storage to match
application requirements. They also protect the hardware from
hazardous conditions like high temperature or high current varia-
tion with time (dI/dt) [40]. Computers today are increasingly being
equipped with microcontrollers that monitor execution conditions,
run control algorithms, and actuate a set of configurable parameters
in the computer [15, 17, 19, 41].

Building resource controllers is challenging. There is a tension
between the need to generate local decisions in each subsystem
quickly for timely response and the desire to coordinate the different
subsystems for global optimization. Global coordination is espe-
cially challenging in heterogeneous computers with multi-vendor
subsystems, as one needs to compose logic from different vendors
that was designed oblivious of the full system configuration.

The current approach chosen by industry is to use centralized
decision-making [3, 5, 15, 17, 19, 41, 67], despite the availability of
per-subsystem sensors and actuators. The reason is the difficulty
of composing independently designed controllers for system-wide
efficiency [19, 57, 58]. There are many heuristic policies that are
difficult for designers to develop even within a single subsystem
like a CPU; it is even harder to redesign such logic to make it work
across subsystems [19].

Researchers too have examined the joint optimization of mul-
tiple hardware subsystems. For example, they have optimized the
combination of CPU and GPU [57, 58], GPU and memory [56], CPU
and memory [23], multiple cores in a multicore [14, 27, 63, 82, 83],
and servers in a datacenter [62]. In many of these works, however,
the decision-making is centralized [14, 23, 27, 56–58, 82, 83]. In
addition, many of these systems also rely on heuristics.

https://doi.org/10.1145/3352460.3358285
https://doi.org/10.1145/3352460.3358285

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pothukuchi et al.

CPUGPU

DPTF
SensorsInputs

OCC
Master

GPU

GPU

GPU

GPU

OCC
Slave

SMU
Master

SMU
Slave

SMU
Slave

SMU
Slave

GPU

Other socket

(a) Intel DPTF [22]

CPUGPU

DPTF
SensorsInputs

OCC
Master

GPU

GPU

GPU

GPU

OCC
Slave

SMU
Master

SMU
Slave

SMU
Slave

SMU
Slave

GPU
BAPM

Other socket

(b) IBM OCC [67]

CPUGPU

DPTF
SensorsInputs

OCC
Master

GPU

GPU

GPU

GPU

OCC
Slave

SMU
Master

SMU
Slave

SMU
Slave

SMU
Slave

GPU

Other socket
(c) AMD SMU [3, 17]

Figure 1: State-of-the-art resource control architectures for heterogeneous computers from leading vendors.

To control emerging heterogeneous computers effectively, we
need a new approach that is fast, globally coordinated, and modular.
This paper presents such an approach, based on a new control
framework called Tangram. Tangram is a decentralized framework
for fast response time. However, decentralization does not come at
the expense of global optimization. Further, Tangram is modular,
so it can be used in different computer configurations.

Tangram introduces a new controller that combines an optimiz-
ing engine from Robust Control [73] with fast engines for safety
and reconfiguration. This controller has a standard interface and is
present in each subsystem of the computer. As a heterogeneous com-
puter is built by assembling different subsystems, the controllers
of the subsystems are also connected hierarchically, exchanging
standard coordination signals. The resulting Tangram control frame-
work is fast, globally coordinated, and modular. It is fast because
each controller makes decisions on its own local subsystem im-
mediately. It is globally coordinated because coordination signals
propagate information and constraints between controllers. Finally,
it is modular because each controller is built with knowledge of
only its subsystem and has a standard interface.

We prototype Tangram in a multi-socket heterogeneous server
that we built using components from three different vendors. The
server has two quad-core CPU chips and a GPU chip. The con-
trollers use a robust control theoretic design. They run as privi-
leged software, accessing the System Management Units (SMUs)
of the subsystems. Compared to state-of-the-art control, Tangram
reduces, on average, the execution time of heterogeneous applica-
tions by 31% and their Energy-Delay Product (EDP) by 39%. The
contributions of the paper are:

• Tangram, a fast, globally coordinated, and modular control
framework to manage heterogeneous computers.

• A novel controller design that combines multiple engines
and uses formal control principles.

• A prototype of Tangram in a server that we build using
components from three different vendors, and its evaluation.

2 COMPUTER CONTROL TODAY
Controlling the operation of heterogeneous computer systems is a
challenging problem that is currently addressed in different ways.

2.1 Organization
Most controllers from leading vendors are centralized (Figure 1).
As shown in Figure 1a, Intel uses the Dynamic Power and Thermal
Framework (DPTF) to manage the CPU and GPU in their multi-chip
Core i7-8809G [19, 22]. The DPTF is a centralized kernel driver. Each

chip exposes sensor data and allows DPTF to set its controllable
inputs.

Figure 1b shows the On Chip Controller (OCC) in IBM POWER9.
It is a centralized hardware controller that actuates each on-chip
core and the GPUs attached to the chip [66, 67]. In a 2-socket system,
one OCC becomes the master for global control, and the other a
slave with restricted decision-making. The slave OCC is limited to
sending sensor data and applying input values given by the master.

Figure 1c shows the hardware System Management Unit (SMU)
design from AMD [17]. AMD’s EPYC™ and Ryzen™ processors
consist of one or more dies, each of which has one SMU. When
multiple dies are used in a socket, one SMU becomes the master
and the others are slaves, as with IBM. The slave SMUs handle only
events like high temperatures or current, where quick response
is necessary. The master SMU makes centralized decisions for the
modules in all the dies in the system. In a two-socket system, there
is a single master for both sockets.

When an on-die GPU is integrated with the CPU, AMD uses the
Bidirectional Application Power Management (BAPM) algorithm,
which is a centralized algorithm running on firmware to manage
power between the CPUs and GPU [3]. With discrete GPUs, there is
no communication channel between the CPU and GPU controllers.
Therefore, system-level coordination needs to be handled through
software drivers, as with the Intel design above.

Centralized hardware control is also the choice in research [14,
23, 27, 44, 56–60, 82, 83]. Unfortunately, centralized control is slow
because data and decisions must cross chip boundaries, and expe-
rience contention at the single controller. It is also non-modular
because integrating a new component or using a different configu-
ration of the subsystems requires a full re-design of the controller.

As an alternative, Raghavendra et al. [62] describe a Cascaded
design for power capping in datacenters. The proposal is shown in
Figure 2. The datacenter is organized as a set of enclosures, each
containing a set of server blades. A Group divider splits the total
power budget among the enclosures. Then, the Enclosure divider in
each enclosure splits its designated power level Penclosure among
its blades. Then, each blade supervisor (Sup) receives its designated
power level Pblade , and enforces it by providing a target for a
PID controller. The PID controller changes the blade frequency to
achieve the target. The enclosure divider and the blade supervisor
always keep the power of the enclosure and blade at the respective
Penclosure and Pblade values they receive.

While this design is scalable, it has the limitation that the dividers
are not controllers that could optimize the system; they just divide
the power budget. In addition, changing a blade’s power budget

Tangram: Integrated Control of Heterogeneous Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

Enclosure
divider

BladePID+–

UtilbladePbladePenclosure
Sup

BladePID+–

UtilbladePblade
Sup

Group
divider Enclosure

Group

Enclosure

Enclosure
divider

BladePID+–

PbladePenclosure
Sup

BladePID+–

Pblade
Sup

Group
divider Enclosure

Group

Enclosure

BladePID+–
Group
divider

Enclosure
divider

PbladePenclosure
Sup

BladePID+–
Pblade Sup

Enclosure

Group

Enclosure

Figure 2: Cascaded control of a datacenter.

requires a long chain of decisions. When it is necessary to increase
the blade’s power, the group divider first increases Penclosure , after
which the enclosure divider can raise Pblade . Then, the supervisor
changes the target and, finally, the PID controller can increase
frequency. As the group divider’s decision loop is much slower than
the innermost PID controller [62], there is a long delay between
the need for a power increase and the actual increase. This may
cause suboptimal operation and instability [12].

2.2 Controller Objectives
There are Safety controllers that protect the system from dangerous
conditions (e.g., high current or voltage droops), and Enhancement
controllers that optimize the execution for goals like power, perfor-
mance, or EDP [17]. Safety controllers usually provide continuous
monitoring and an immediate response, while enhancement con-
trollers periodically search through a multidimensional trade-off
space for the best operating point. In current industrial designs,
these two types of controllers typically operate in a decoupled
manner [17].

Designs from research typically focus on enhancement, disre-
garding interaction with safety mechanisms. Some exceptions are
works that consider temperature as a soft constraint (e.g., [34, 60,
62]), or those that probabilistically characterize safety mechanisms
like circuit breaker tripping (e.g., [27]).

2.3 Formal Control vs Heuristics
Current industrial designs typically use heuristics for resource
control [3, 37, 61, 67, 69, 74]. A few use heuristics plus PID con-
trollers [16, 17, 19, 41]. In most cases, controllers monitor one single
parameter (i.e., output), like power or skin temperature, and ac-
tuate a single parameter (i.e., input), like frequency. Hence, they
are Single Input Single Output (SISO). Often, multiple controllers
actuate the same input, such as the CPU frequency. In this case, the
conflicting decisions are combined using heuristics. For example,
IBM’s OCC assigns each controller a vote and a majority algorithm
sets the input [66].

Heuristics can result in unintended inefficiencies [28, 42, 44,
59, 78, 84]. Further, they make it difficult to decentralize resource
control [19], which is necessary for fast response and modularity.
Paul et al. [57, 58] show real examples of how multiple controllers
using heuristics fail to coordinate in a system with a CPU and GPU.
For instance, in a workload whose performance is limited by the

GPU, CPU heuristics see low CPU memory traffic and boost CPU
frequency. This does not improve performance and wastes power.

3 BACKGROUND: ROBUST CONTROL
Robust control focuses on controlling systems with only partial
information [73]. Figure 3 shows a robust control loop. S is the
system (e.g., a multicore) and K is the robust controller. The system
has outputsy (e.g., power consumed) and configurable inputsu (e.g.,
frequency). The outputs must be kept close to the output targets r .
The controller reads the deviations of the outputs from their targets
(∆y = r − y), and sets the inputs. In this paper, we use controllers
with Multiple Inputs Multiple Outputs (MIMO); they can set several
inputs to meet several output targets simultaneously. This removes
the need for several piecemeal optimization algorithms.

Component

A
rb

ite
r

Safety

engines

Coordination

signals Full Component Controller

Outputs

Inputs

Mode

DetectorPreconfigured

engines

Robust

Control Block

System

S

Robust Controller

K

Inputs

u

Outputs

y

Output targets

r

Output deviations

Δy

K+
─

+
─

Δmargin

Issued

inputs

Actual

inputs
S++

+
+
+

+–

Component
Robust

Controller

Inputs OutputsTargets
+– Planner

Coordination

signals Robust Control Block

Robust

Controller
Issued

inputs

Actual

inputs
Component

Uncertainty
Δmargin

+– +
–

Figure 3: Robust control loop.

The controller is a state machine characterized by a state vector,
x(T), which is its accumulated experience that evolves over time
T . The controller advances its state to x(T + 1) and generates the
system inputs u(T) by reading the output deviations ∆y(T) and
using its state x(T):

x(T + 1) = A × x(T) + B × ∆y(T)
u(T) = C × x(T) + D × ∆y(T) x(0) = 0 (1)

where A, B, C , and D are matrices that encode the controller. Equa-
tion 1 is similar to how non-robust controllers like LQG [59] or
MPC [44] operate. However, with robust control, the controller K
has special properties that are relevant for this work.

First, designers can specify how big the output deviations can be
for each output. Hence, important outputs can be set with tighter de-
viation bounds. Designers can also specify the relative overheads of
changing each individual input. Then, the controller will minimize
the changes to the inputs with higher overheads.

Second, the controller can be built with only a partial model
of the true system. All unmodeled behavior is considered “un-
certainty”, and designers specify the worst case impact of such
uncertainty, called Uncertainty Guardband. For example, a 50% un-
certainty guardband means that the true system’s outputs can be up
to 50% different from what the model predicts. The controller guar-
antees to keep the output deviations within bounds even though it
was built with this much inaccurate system information.

Robust controller design is automated [32] and tools aid design-
ers in setting the controller parameters. Recently, robust control
has been used in Yukta [60], to co-design controllers for different
layers in the computing stack (e.g., hardware and OS).

4 TANGRAM: DECENTRALIZED CONTROL
Our goal is to design and prototype a control framework for hetero-
geneous computers that is decentralized, globally coordinated, and
modular. Decentralization is needed for fast control. However, it
should not come at the expense of global optimization. Further, the

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pothukuchi et al.

framework should be modular to be usable in different computer
configurations. These requirements rule out the conventional cen-
tralized and cascaded organizations. Moreover, for effectiveness,
the controllers in this framework should combine safety and en-
hancement functionalities, be formal rather than heuristic-based,
and be MIMO. We call our new framework Tangram.

In this section, we start by introducing the novel controller in
Tangram, and then the Tangram modular control framework. Later,
in Section 5, we build a Tangram prototype.

4.1 Controller Architecture
To the Safety and Enhancement types of controllers, we add a third
one, which we call Preconfigured. Table 1 shows the controller differ-
ences and the control strategies they follow. Section 2.2 described
safety and enhancement controllers. A preconfigured controller
looks for a certain well-known operating condition. When the exe-
cution is under such a condition, the preconfigured controller uses a
preset decision to bring the system to an optimal configuration. The
priority of preconfigured controllers is lower than safety controllers
but higher than enhancement controllers.

Table 1: Types of controllers.

Safety Enhancement Preconfigured

Goal: Hardware safety Optimality Optimality
Strategy: Simple, preset Complex, search based Simple, preset
Priority: Highest Low Medium

Operation: Nearly always Periodic Nearly always
Response time: Immediate Fast Immediate

In Tangram, we propose to build a controller that combines
enhancement, safety, and preconfigured engines.

4.1.1 Enhancement Engine. We use robust control [73] to build a
MIMO enhancement controller. The controller monitors all local
outputs to be optimized, like performance, power, and temperature,
and sets the local inputs to keep all outputs close to the desired tar-
gets. It works with a Planner, which changes these targets to match
changing conditions and to optimize metrics combining multiple
outputs like EDP. The combination of controller and planner is the
enhancement engine (Figure 4).

System

A
rb

ite
r

Safety

Engines

Coordination

Signals Full Controller

Outputs

Inputs

Mode

DetectorPreconfigured

Engines

Enhancement

Engine

System

S

Robust Controller

K

Inputs

u

Outputs

y

Output targets

r

Output deviations

Δy

K+
─

+
─

Δmargin

Issued

inputs

Actual

inputs
S++

+
+
+

+–

Component
Robust

Controller

Inputs OutputsTargets
+– Planner

Coordination

signals Robust Control Block

Robust

Controller
Issued

inputs

Actual

inputs
Component

Uncertainty
Δmargin

+– +
–

System
Robust

Controller

Inputs OutputsTargets
+– Planner

Coordination

Signals Enhancement Engine

Figure 4: Enhancement engine.

For example, to minimize EDP, the planner can search along
two directions: increasing performance targets more than power
targets, or decreasing power targets more than performance targets.
For each target point selected, the robust controller will determine
what inputs can make the system outputs match the targets. The
planner then computes the EDP and may select other performance
and power targets that may deliver a better EDP. In Appendix A,

we describe a generic search algorithm for the planner. Algorithms
like Gradient Descent can also be used to search for the best targets.

The planner is also the point of communication with other con-
trollers, if any, and exchanges coordination signals with them. It
uses some of these incoming signals to generate the local targets.

4.1.2 Adding Safety and Preconfigured Engines. We add a safety en-
gine that continuously monitors for hazards like high temperature
or current. If the engine is triggered, it picks the most conservative
values of the inputs. This is done without any search overhead. For
example, if the computer overheats, the safety engine simply runs
the cores at the lowest frequency.

Similarly, we add a preconfigured engine that continuously mon-
itors for execution conditions that are well understood and for
which there is an optimal configuration. If the engine is triggered,
it sets the inputs to a predefined configuration, skipping any search
by the enhancement engine. For example, if there is a single thread
running, the engine boosts the active core’s frequency, and power-
gates the other cores.

Figure 5 shows the full architecture of our controller, with po-
tentially multiple safety and preconfigured engines in parallel with
the enhancement engine. All engines are connected to an arbiter. A
mode detector chooses one engine by controlling the arbiter. Each
engine can monitor potentially different outputs.

System

A
rb

ite
r

Safety

Engines

Coordination

Signals Full Controller

Outputs

Inputs

Mode

DetectorPreconfigured

Engines

Enhancement

Engine

System

S

Robust Controller

K

Inputs

u

Outputs

y

Output targets

r

Output deviations

Δy

K+
─

+
─

Δmargin

Issued

inputs

Actual

inputs
S++

+
+
+

+–

Component
Robust

Controller

Inputs OutputsTargets
+– Planner

Coordination

signals Robust Control Block

Robust

Controller
Issued

inputs

Actual

inputs
Component

Uncertainty
Δmargin

+– +
–

System
Robust

Controller

Inputs OutputsTargets
+– Planner

Coordination

Signals Enhancement Engine

Figure 5: Our proposed controller.

The mode detector uses the following priority order to select the
engine that sets the system’s inputs: (i) any active safety engine,
starting from the most conservative one, (ii) any active preconfig-
ured engine, starting from the most conservative one, and (iii) the
enhancement engine.

At runtime, the enhancement engine optimizes the system. It
may inadvertently trigger a safety engine, which then sets the
inputs to the lowest values. The change induced by the safety
engine is within the uncertainty guardband used in the controller’s
design. Once the hazardous condition is removed, the enhancement
engine resumes operation but it remembers (using its state) to avoid
further safety triggers. Thus, the enhancement engine can optimize
inputs without repeated conflicts with the safety engines [25].

4.2 Subsystem Interface
Computers are organized as a hierarchy of subsystems, possibly
built by different manufacturers. For example, a motherboard that

Tangram: Integrated Control of Heterogeneous Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

contains a GPU and a CPU chip is a subsystem, and a multicore
chip that contains multiple cores is also a subsystem. To build
decentralized, globally-coordinated modular control, we propose
that each subsystem has a controller with a standard interface.

Figure 6 shows the interface. To understand it, we logically break
a subsystem into its controller and the rest of the subsystem, which
we call the Component. The figure shows one subsystem with its
controller and its component. The controller generates or receives
three sets of signals:

Chip1
Module1

Node

Module2

Chip1
ComponentC

Chip2
Chip2

ComponentC

C

Module1 Component

C Module2 Component

Node Component

C

Subsystem

C

C

C

Component

C

12

33

1 Local inputs 2 Local outputs 3 Coordination signals
Parent to Child

Max power allowed
Max temperature allowed
Min performance required
Set on/off, #threads

Child to Parent
Actual power consumed
Actual temperature measured
Actual performance delivered
On/off status, #threads on

C

2

1

1

Subsystem

Component

C C

C

33

Local inputs Local outputs2 3 Coordination signals:
Parent to Child:

Max power allowed
Max temperature allowed
Min performance required
Set #subsystems

Child to Parent:
Actual power consumed
Actual performance delivered
Actual temperature measured
#subsystems active

C

2
1

1

Subsystem

Component

C C

C

33

Local inputs Local outputs2 3 Coordination signals:
Parent to Child:

Max power allowed
Max temperature allowed
Min performance required
Set #active subsystems

Child to Parent:
Actual power consumed
Actual temperature measured
Actual performance delivered
#active subsystems

Figure 6: Proposed controller interface. In the figure, C
means controller.

• Coordination Signals 3○. These signals connect a controller
with its parent controller and its potentially multiple child con-
trollers. The figure shows a controller with two child controllers.
The Coordination signals are shown on the right of the figure. From
a controller to its child controllers, the signals set the operating con-
straints (i.e., the maximum power allowed, maximum temperature
allowed, minimum performance required, and number of active
subsystems). The child controllers use this information as con-
straints as they optimize their own components. From a controller
to its parent controller, the signals report on the operating condi-
tions (i.e., actual power consumed, actual temperature measured,
actual performance delivered, and number of active subsystems).
The parent controller uses this information to potentially assign
new constraints to all of its children. The coordination signals use
parameters readily available in current systems.
• Local Inputs 1○ and Local Outputs 2○. These are the conven-
tional signals that a controller uses to change and sense its compo-
nent, respectively. They require no coordination and, therefore, can
be manufacturer-specific. Examples of local inputs are frequency
and cache size, and of local outputs are performance, power, tem-
perature, and dI/dt. Figure 5 shows how the inputs are generated
from the output measurements.

To build a modular control framework, the manufacturer of a
subsystem has to include a controller that provides and accepts the
standard coordination signals from parent and child controllers.

4.3 Tangram Control Framework
As a computer is built by assembling different subsystems hierar-
chically, the controllers of different subsystems are also connected
hierarchically, exchanging the standard Coordination signals (Sec-
tion 4.2). The result is the Tangram control framework. Figure 7
shows the framework – without the proprietary Local Input and Lo-
cal Output signals – for a computer node that contains twomodules,
with one of the modules containing two chips.

Chip1

Module1
Node

Module2

Chip1
Component

C

Chip2
Chip2

ComponentC

C

Module1 Component

C Module2 Component

Node Component

C

C C

C

Module1

Chip1

Chip2

Module 2C

C

Node

Figure 7: The decentralized, modular Tangram framework.
C means controller.

The Tangram control framework is modular, fast, and globally
coordinated. It is modular because each controller is built with
knowledge of only its subsystem. For example, in Figure 7, the de-
signers of Chip 1 and Chip 2 develop their controllers independently.
Similarly, the Module 1 controller is developed without knowing
about the Chip 1 and Chip 2 controllers. Further, changing a sub-
system is easy – only the interfacing controllers need to be rewired
and reprogrammed. For example, if we change Module 2, only the
Node controller is affected.

The framework is fast because each controller makes decisions
on its own subsystem immediately. This is unlike in cascaded de-
signs where, to make a change that affects the local system requires
a long chain of decisions (Section 2.1). It is also unlike centralized
systems, where decisions are made in a faraway central controller.

Finally, the framework is globally coordinated because there are
coordination signals that propagate information and constraints
across the system. These signals are used differently than in cas-
caded systems. In Tangram, the local controller in a subsystem uses
the constraints given by the coordination signals from the parent to
identify the subsystem’s best operating point; the local controller
in a subsystem passes constraints to the child controllers. In the
cascaded design discussed earlier (Section 2.1), instead, the divider
simply provides, at each level, the exact parameters that fully de-
termine the subsystem’s operating point; the local controller at the
leaf node tries to keep the outputs at this operating point.

4.4 Comparison to Contemporary Systems
The modular structure of Tangram may make the design appear
obvious. Therefore, why do current systems not use a similar frame-
work? A major reason is that their controllers do not use formal
control. The use of a MIMO robust controller in each subsystem en-
sures that its optimizations work in the presence of other controllers
in other subsystems. The controllers connected in a hierarchy can
coordinate their actions. These benefits cannot be guaranteed by
the current heuristic controllers used in individual subsystems,
and simply using them together does not lead to cohesive deci-
sions [19, 57].

4.5 Tangram Implementation
Tangram can be implemented in hardware or in software. For
time-critical and hardware-specific measures such as DVFS, the
controllers should be implemented in hardware or firmware, and
signals should be carried by a special control network. Examples
of such a network are AMD’s SMU in EPYC™ systems [17] and

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pothukuchi et al.

IBM’s OCC in POWER9 [67] (Section 2.1). For less critical measures,
controllers can be implemented in software, and communication
between controllers can proceed using standard software channels.

In a hardware implementation, it is not necessary to have dedi-
cated pins and physical connections for every signal. A few ports
and links are sufficient, as controllers can pass information in the
form of <property,value> pairs.

While verifying a decentralized system is a challenging task in
general, Tangram reduces verification cost because it uses formal
control. Further, each Tangram controller is simple, compared to a
single, large centralized controller.

4.6 Example of Tangram’s Operation
Figure 8 is an example of how Tangram works. The figure considers
amodule composed of a CPU chip and a GPU chip. It shows the time-
line of the actions of the three controllers, as they run in preconfig-
ured, safety, or enhancement modes. The figure shows the coordina-
tion signals passed between the three controllers, which can be the
local values measured (solid) or new constraints (dashed). For sim-
plicity, we only consider power-related and activation/deactivation
signals. As shown in the # Tasks timeline, the execution starts with
zero tasks, then one CPU task appears, then one GPU task is added,
and then many CPU tasks are added.

BOn

A A

R

R

R D A

R D

R D A

R D

R D A

R D A

D

R D A R D A R D A

D

R D

R D

R D

K

P

K

P

K

P

R D A

Tresp

Tresp

Tresp

T0 T1 Tp

Chip1

Chip2

Module1

App

… …

… …

Preconfigured EnhancementSafety

Zero Single Many

Chip1

Chip2

Module1

#Threads

Preconfigured EnhancementSafety

1 2

Node
V

Off

B

3

3

V3

4

V3B3 B3

B

V3 B3

V3 B33

R

R

R

RR

3

Time

Activity
increased

PID raises
frequency

Utilization

Loss
Power

Sup raises
Utilblade

Group divider
raises Penclosure

Enclosure divider
raises Pblade

Sup lowers
Utilblade

PID lowers
frequency

PID raises
frequency

Time

BOn

Zero Single Many, low compute

Chip1

Chip2

Module1

#Threads

Preconfigured EnhancementSafety

1 2

Node

VOff

B

3

3

V3 4

V3B3 B3

B

V3 B3

V3 B333

Time
Many, high compute

BOn

Zero Single Many, low compute

Chip1

Chip2

Module1

#Threads

Preconfigured EnhancementSafety

Node

VOff

B

3

3

V3 4

V3B3 B3

B

V3 B3

V3 B333

Time
Many, high compute

Zero 1 CPU#Tasks

Preconfigured EnhancementSafety

Node

Time

1 CPU +
1 GPU

CPU Chip

GPU Chip

Module

Many CPU + 1 GPU

2

3

4

5 6 7 8

9

101

Figure 8: Example of coordination in Tangram. Solid arrows
send measured local values, while dashed arrows provide
new constraints.

All controllers begin in preconfigured modes. At 1○, the mod-
ule controller turns the GPU chip off. When a CPU task arrives,
the CPU controller changes to a new preconfigured mode. As the
module realizes that there is one thread running (2○), it changes
the power assignment to the CPU chip, and changes to a new pre-
configured state. When a GPU task arrives, the module changes to
enhancement mode, wakes up the GPU chip and assigns it a power
budget (3○). The GPU controller enters enhancement mode. The
GPU chip optimizes itself using the power assigned. When many
CPU tasks arrive, there is a current emergency in the CPU chip,
which causes the controller to enter safety mode (4○). The CPU
chip controller eventually transitions to enhancement mode. At 5○,
the module reads values from both chips and shifts power from
the GPU chip to CPU chip. There is local optimization and some
communication to find the best power across the module in 6○. At
7○, there is a thermal emergency in the module, which causes the
controller to lower the power limits of the chips. On recovery, the

module controller continues in enhancement mode, reading values
and providing constraints (8○). At 9○, the GPU chip overheats and
recovers from it, but the other subsystems are unaffected. At 10○,
the Node controller, which is the parent of the module controller,
reads the module’s state and provides new constraints for it.

4.7 Scalability of Tangram
Tangram’s scalability is helped by the fact that Tangram uses MIMO
control and has a hierarchical organization. Using MIMO helps scal-
ability because we can increase the number of inputs and outputs
of the controller, and the controller’s latency increases only pro-
portionally to the sum of the number of inputs and outputs. A
hierarchical organization helps scalability because the depth of
Tangram’s network typically grows only logarithmically with the
number of subsystems. Of course, with more subsystems, the root
controller has longer timescales. However, this is generally not a
problem because the time constants at which control is required
also grow with large systems. For example, a chip’s power supply
cares about fine-grain current changes because it has a modest in-
put capacitance, but a node’s power supply only cares about longer
timescales because it has a large capacitance.

5 TANGRAM PROTOTYPE
We prototype Tangram in a multi-socket heterogeneous server that
we build using components from different vendors. We bought a
computer motherboard from GIGABYTE [29], which we call the
Node. The motherboard comes with an AMD Ryzen™ 7 1800X CPU
cluster that has two quadcore processors with 2-way SMT [7]. To
this, we add a GPU card from MSI [49] that contains an AMD
Radeon™ RX 580 GPU [6]. Figure 9a shows a picture of the com-
puter, and Figure 9b its organization. The system is a node with
two subsystems: a CPU Cluster and a GPU Chip. The CPU Cluster
has two quad-core CPU chips. The computer has subsystems from
GIGABYTE, AMD, and MSI.

(a) Physical system.

CPU
Chip1

CPU Cluster
GPU
Chip

CPU
Chip2

Node

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

CPU Chip1
CPU Cluster

CPU
Chip1 C

CPU
Cluster C

1
2

3
4

CPU Chip2

CPU
Chip2 C

5

6

5

6

CPU Cluster
Node

CPU
Cluster C

Node
C

1
2

3

GPU Chip

GPU
Chip C

5

6

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

CPU Chip1
CPU Cluster

CPU
Chip1 C

CPU
Cluster C

1
2

3
4

CPU Chip2

CPU
Chip2 C

5

6

5

6

CPU Cluster
Node

CPU
Cluster C

Node
C

1
2

3

GPU Chip

GPU
Chip C

5

6

C
4

5

CPU Chip1

C
4

5

CPU Chip2

C

2 1

3

CPU Cluster

C

C
4

5

GPU Chip

C

2 1

3

Node

3

CPU Cluster

GPU
Chip

CPU
Chip1

CPU
Chip2

Node

CPU Cluster C C

CCPU
Cluster

CPU
Chip1

CPU
Chip2

GPU
ChipC

C

Node

Stage 1: CPU Chips and CPU Cluster
Stage 2: GPU Chip and NodeCPU

Cluster C
CPU

Chip1 C

GPU
Chip C

Node
C

CPU
Chip2 CCPU

Chip1

CPU Cluster

GPU
Chip

CPU
Chip2

Node

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

Stage 1

Stage 2

(b) Subsystems.

CPU
Chip1

CPU Cluster
GPU
Chip

CPU
Chip2

Node

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

CPU Chip1
CPU Cluster

CPU
Chip1 C

CPU
Cluster C

1
2

3
4

CPU Chip2

CPU
Chip2 C

5

6

5

6

CPU Cluster
Node

CPU
Cluster C

Node
C

1
2

3

GPU Chip

GPU
Chip C

5

6

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

CPU Chip1
CPU Cluster

CPU
Chip1 C

CPU
Cluster C

1
2

3
4

CPU Chip2

CPU
Chip2 C

5

6

5

6

CPU Cluster
Node

CPU
Cluster C

Node
C

1
2

3

GPU Chip

GPU
Chip C

5

6

C
4

5

CPU Chip1

C
4

5

CPU Chip2

C

2 1

3

CPU Cluster

C

C
4

5

GPU Chip

C

2 1

3

Node

3

CPU Cluster

GPU
Chip

CPU
Chip1

CPU
Chip2

Node

CPU Cluster C C

CCPU
Cluster

CPU
Chip1

CPU
Chip2

GPU
ChipC

C

Node

Stage 1: CPU Chips and CPU Cluster
Stage 2: GPU Chip and NodeCPU

Cluster C
CPU

Chip1 C

GPU
Chip C

Node
C

CPU
Chip2 CCPU

Chip1

CPU Cluster

GPU
Chip

CPU
Chip2

Node

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

Stage 1

Stage 2

(c) Controllers.

Figure 9: Tangram organization.

Tangram: Integrated Control of Heterogeneous Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 9c shows the Tangram framework. To demonstrate Tan-
gram’s modularity, we build it in two stages, similar to how we
assembled the computer. In stage one, we design and interconnect
the controllers in the CPU Cluster subsystem. In stage two, we
design the controllers for the GPU Chip and the Node subsystems,
and interconnect them with the stage one controllers to build the
full Tangram network.

We built the controllers as software processes. They run as priv-
ileged software, accessing the System Management Units (SMUs)
of the subsystems with internal calls. An alternative, higher perfor-
mance implementation in hardware requires major changes to the
testbed, as the SMUs are inside the chips.

The controllers read outputs and change inputs using Model
Specific Registers (MSRs) [3] and internal SMU calls with propri-
etary libraries. Since AMD GPUs do not provide public access to
dynamic performance counters, we read them using an internally
developed library that intercepts OpenCL™ calls to identify the
running kernel and its performance.

5.1 Stage One: CPU Cluster Subsystem
Figure 10 shows the Tangram network for the CPU cluster subsys-
tem, with the different signals labeled. Table 2 shows the controllers’
output and input signals that we use, based on the available sen-
sors and actuators in our testbed. As we see, in a controller, the
enhancement, safety, and preconfigured engines measure different
outputs.

CPU
Chip1

CPU Cluster
GPU
Chip

CPU
Chip2

Node

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

CPU Chip1
CPU Cluster

CPU
Chip1 C

CPU
Cluster C

1
2

3
4

CPU Chip2

CPU
Chip2 C

5

6

5

6

CPU Cluster
Node

CPU
Cluster C

Node
C

1
2

3

GPU Chip

GPU
Chip C

5

6

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

CPU Chip1
CPU Cluster

CPU
Chip1 C

CPU
Cluster C

1
2

3
4

CPU Chip2

CPU
Chip2 C

5

6

5

6

CPU Cluster
Node

CPU
Cluster C

Node
C

1
2

3

GPU Chip

GPU
Chip C

5

6

C
4

5

CPU Chip1

C
4

5

CPU Chip2

C

2 1

3

CPU Cluster

C

C
4

5

GPU Chip

C

2 1

3

Node

3

CPU Cluster

GPU
Chip

CPU
Chip1

CPU
Chip2

Node

CPU Cluster C C

CCPU
Cluster

CPU
Chip1

CPU
Chip2

GPU
ChipC

C

Node

Stage 1: CPU Chips and CPU Cluster
Stage 2: GPU Chip and NodeCPU

Cluster C
CPU

Chip1 C

GPU
Chip C

Node
C

Stage 1: CPU Chips and CPU Cluster
Stage 2: GPU Chip and Node

CPU
Chip2 CCPU

Chip1

CPU Cluster

GPU
Chip

CPU
Chip2

Node

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

Figure 10: Tangram network in Stage One.

Table 2: Inputs and outputs of Stage One controllers.

Controller Local outputs Local inputs
Enhancement Safety Preconfigured

CPU
Chip

5○Chip
performance,
power

5○Current,
temperature

5○ #threads 4○ frequency,
#cores on

CPU
Cluster

2○Cluster
performance,
power

2○Current,
temperature

2○#threads 1○ Cluster
frequency,
#chips on

Consider Table 2. A CPU chip controller monitors many outputs.
The enhancement engine monitors the chip’s performance (mea-
sured in billions of instructions committed per second or BIPS),
and power. The safety engine monitors the Thermal Design Cur-
rent (TDC) used to prevent voltage regulator overheating [21], and

the hotspot temperature. The preconfigured engine monitors the
number of running threads. The controller sets two inputs, namely,
the chip’s frequency (2.2 GHz – 3.6 GHz) and the number of active
cores (0 – 4).

The CPU cluster controller monitors the same outputs at its level,
which combine the contributions of both chips, caches, and other
circuitry in the cluster. The controller sets the cluster frequency
of peripheral components (1.6 GHz – 3.6 GHz) and the number of
active chips (0 – 2).

The coordination signals (3○) measure the values and set the
constraints discussed in Section 4.2.

5.2 Stage Two: Node Subsystem
Figure 11 shows the Tangram network for the whole node. It shows
the details for the new controllers at this stage, namely, the con-
trollers for the GPU Chip and Node. Table 3 lists the controllers’
output and input signals, organized as in Table 2.

CPU
Chip1

CPU Cluster
GPU
Chip

CPU
Chip2

Node

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

CPU Chip1
CPU Cluster

CPU
Chip1 C

CPU
Cluster C

1
2

3
4

CPU Chip2

CPU
Chip2 C

5

6

5

6

CPU Cluster
Node

CPU
Cluster C

Node
C

1
2

3

GPU Chip

GPU
Chip C

5

6

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

CPU Chip1
CPU Cluster

CPU
Chip1 C

CPU
Cluster C

1
2

3
4

CPU Chip2

CPU
Chip2 C

5

6

5

6

CPU Cluster
Node

CPU
Cluster C

Node
C

1
2

3

GPU Chip

GPU
Chip C

5

6

C
4

5

CPU Chip1

C
4

5

CPU Chip2

C

2 1

3

CPU Cluster

C

C
4

5

GPU Chip

C

2 1

3

Node

3

CPU Cluster

GPU
Chip

CPU
Chip1

CPU
Chip2

Node

CPU Cluster C C

CCPU
Cluster

CPU
Chip1

CPU
Chip2

GPU
ChipC

C

Node

Stage 1: CPU Chips and CPU Cluster
Stage 2: GPU Chip and NodeCPU

Cluster C
CPU

Chip1 C

GPU
Chip C

Node
C

Stage 1: CPU Chips and CPU Cluster
Stage 2: GPU Chip and Node

CPU
Chip2 CCPU

Chip1

CPU Cluster

GPU
Chip

CPU
Chip2

Node

CPU
Chip1 C

CPU
Cluster C

Node
C

CPU
Chip2 CGPU

Chip C

Stage 2

Stage 1

Figure 11: Tangram network in Stage Two.

Table 3: Inputs and outputs of Stage Two controllers.

Controller Local outputs Local inputs
Enhancement Safety Preconfigured

GPU
Chip

5○ GPU
performance,
power

5○Current,
temperature

5○#kernels 4○ Compute
frequency,
memory frequency

Node 2○ Node
performance,
power

2○Current,
temperature

2○#tasks,
task type

1○ Node
frequency

As shown in Table 3, the GPU chip controller monitors the fol-
lowing outputs: the GPU performance and power (enhancement),
the current and temperature (safety), and the number of kernels
(preconfigured). The controller sets the frequency of the GPU com-
pute units (300 – 1380MHz) and of the graphics memory (300 –
2000MHz). The node controller monitors similar outputs at its
level (including whether the threads are CPU-type, GPU-type, or
both), and sets the node frequency for the board’s circuitry (300 –
2000MHz).

The coordination signals (3○) measure the values and set the
constraints discussed in Section 4.2. The Node controller has no
parent controller.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pothukuchi et al.

5.3 Structures in the Controllers
Wenow build the structures in each controller: enhancement engine
(robust controller plus planner), safety engines, and preconfigured
engines.
Enhancement Engine - Robust Controller: To design a robust
controller, we need to (i) model its system (e.g., a CPU chip), and
(ii) set the controller’s input weights, uncertainty guardband, and
output deviation bounds [73]. For the former, we use the System
Identification modeling methodology [43]. In this approach, we run
training applications on the system and, during execution, change
the system inputs. We log the observed outputs and the inputs.
From the data, we construct a dynamic polynomial model of the
system:

y(T) = a1 × y(T − 1) + . . . + am × y(T −m)+
b1 × u(T) + . . . + bn × u(T − n + 1) (2)

In this equation, y(T) and u(T) denote the outputs and inputs at
time T. This model describes outputs at any time T as a function
of the m past outputs, and the current and n-1 past inputs. The
constants ai and bi are obtained by least squares minimization
from the experimental data [43].

Appendix A describes how we set the controller parameters:
input weights, uncertainty guardband, and output deviation bounds.
With the model and these parameters, standard tools [32] generate
the set of matrices that encode the robust controller (Section 3).
Enhancement Engine - Planner: The planner monitors local out-
puts and receives coordination signals from the parent and child
controllers. With this information, it issues the best targets for all
local outputs to the robust controller, and coordination signals to
parent and child controllers. For example, the planner in a CPU
chip’s controller receives power, performance, temperature, and
activation settings from the CPU cluster controller, and generates
targets for its controller to optimize EDP. Our planners use the
Nelder-Mead algorithm [48] described in Appendix A to search
for the best targets under constraints received from the parent
controller. We choose this search algorithm for its simplicity, ef-
fectiveness, and low resource requirements to run on firmware
controllers [48].
Safety Engines:We consider two safety conditions: current and
temperature. A hazard occurs if any exceeds the limits. Appendix A
lists the hazardous values for current and temperature. If a hazard
occurs in the CPU chip, the controller turns off all the cores except
one, and sets the latter to the lowest frequency. If it occurs in the
CPU cluster, the controller turns off one CPU chip and runs the
other at the lowest frequency. If it occurs in the GPU chip or in the
Node, the controllers set the frequencies to the lowest values.
Preconfigured Engines: We build the preconfigured engines of
the different controllers to have the modes in Table 4.

5.4 Controller Overhead and Response Time
To show the nimbleness of our prototype, we list the overhead and
response time of the controllers. Table 5 lists the overhead of the
four structures that comprise the CPU Chip controller. For each
structure, the table lists the dimension, storage required, number of
instruction-like operations in the computation needed to produce an
output, latency of computation, and power consumption. A robust

Table 4: Modes of the different preconfigured engines.

Controller Preconfigured Regime Action

CPU chip No active thread Only one core on, which runs at the
lowest frequency

Single active thread Only one core on, which runs at the
highest frequency

CPU cluster
No active thread One CPU chip can use up to 1/8 of its

TDP; the other CPU chip is turned off

Single active thread One CPU chip can use up to 1/2 of its
TDP; the other CPU chip is turned off

#threads ≤ 8 (i.e., # of
SMT contexts in a chip)

One CPU chip can use its full
TDP; the other CPU chip is turned off

GPU chip No active task GPU chip goes to a low power mode

Node CPU-only tasks CPU cluster can use its full TDP;
GPU chip can use up to 1/8 of its TDP

GPU-only tasks CPU cluster can use up to 1/8 of its TDP;
GPU chip can use its full TDP

controller’s dimension is the number of elements in its state (i.e., the
length of vector x in Equation 1 of Section 3). A planner’s dimension
is the number of possible modes in the Nelder-Mead search in
Appendix A. From the table, we see that the storage, operation
count, latency, and power values are very small – especially for the
safety and preconfigured engines. The overheads of the controllers
in the CPU cluster, GPU chip, and Node are similar.

Table 5: Overheads of Tangram’s CPU chip controller.

Structure Dimension Storage # Ops Latency Power

Robust controller 9 1 KB ≈245 ≈15 µs 10-15mW
Planner 5 125 B ≈350 ≈25 µs 10-15mW

Safety engines – 8 B 2 < 1 µs < 1mW
Preconfigured engines – 8 B 2 < 1 µs < 1mW

We now consider the response time of the enhancement engines.
Each enhancement engine has a robust controller and a planner (Fig-
ure 4). The response time of the robust controller includes reading
outputs and targets, deciding on new inputs, and applying the new
inputs. The response time of the planner includes reading outputs
and coordination signals, deciding on targets, and communicat-
ing targets to the controller. Table 6 shows the measured response
time of the robust controllers and planners in the enhancement
engines of the different controllers in Tangram. For a parent con-
troller/planner, the response time includes the time for its decisions
to propagate through all the children and grandchildren until they
affect the leaf robust controller’s decision to change inputs. This
may take multiple invocations of the leaf robust controller, which
is activated every 50ms. For comparison, we also show data for a
centralized and a cascaded control framework that we implemented.

The Tangram robust controller and planner in the CPU chip
and GPU chip have a response time of 15ms. Hence, performance,
power, and temperature can be controlled in a fine-grain manner.
As we move up in the hierarchy of controllers, the response time
increases. At the node level, the response times are close to 500ms.

In Centralized, we place the single enhancement engine in the
Node subsystem. Since the engine has to read many sensors, buffer

Tangram: Integrated Control of Heterogeneous Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

Table 6: Response time of the enhancement engines.

Subsystem Tangram Centralized Cascaded

Robust Planner Robust Planner Robust Divider
Controller Controller Controller

CPU Chip 15ms 15ms – – 15ms –
CPU Cluster 115ms 115ms – – – 165ms
GPU Chip 15ms 15ms – – 15ms –

Node 515ms 515ms 200ms 200ms – 665ms

the data, and change many inputs across the system, it has a sizable
response time (200ms). Hence, it is not suited for fast response.

In Cascaded, we build the design in Figure 2. Only the leaf sub-
systems (CPU and GPU chips) have robust controllers, and their
response time is similar to those in Tangram. Higher levels in the
hierarchy only have dividers, which set the power levels. A leaf con-
troller cannot steer the system to new outputs until all the dividers
in the hierarchy, starting from the topmost one, have observed a
change in regime and, sequentially, agreed to a change in the power
assignment. Because each divider is activated at longer and longer
intervals as we move up the hierarchy, a round trip from the leaf
subsystem to the outermost divider in the Node and back to the
leaf takes 665ms. Therefore, Cascaded has a long response time.

Table 6 shows that our software implementation of Tangram is
fast. In mainstream processors, control algorithms are typically im-
plemented as firmware running on embedded micro-controllers [17,
19, 52, 67, 68], and operate at ms-level granularity. Therefore, we
envision the controllers in Tangram to be deployed as vendor-
supplied firmware running on micro-controllers in their respective
subsystems. This requires little change to existing hardware. Fur-
ther, the storage overhead and number of operations from Table 5
indeed show that Tangram can be easily run as firmware on a
micro-controller. With a firmware implementation, we estimate
that Tangram’s response times in Table 6 reduce by about one order
of magnitude, providing much better real-time control. A firmware
implementation would also lower the response times of the other
frameworks in Table 6, but is unlikely to change the relative differ-
ence between the frameworks.

6 EVALUATING THE PROTOTYPE
6.1 Applications
Weuse the Chai applications [31], which exercise both the CPUs and
the GPU simultaneously, unlike most benchmarks. They cover many
collaboration patterns and utilize new features in heterogeneous
processors like system-wide atomics, inter-worker synchronization,
and load balancing of data parallel tasks. We use two applications
for training (pad and sc) and five for evaluation (bfs, hsti, rscd,
rsct, and sssp). For Stage One controllers, we run NAS 3.3 [24] and
PARSEC 2.1 [13]. From NAS, we use two applications to train (bt
with dataset D and mg with dataset C) and nine for evaluation (dc
with dataset B, cg, ft, lu, sp and ua with dataset C, and ep, is and mg
with dataset D). From PARSEC, we use two applications to train
(raytrace with dataset native and swaptions with dataset simlarge)
and eight for evaluation (blackscholes, bodytrack, facesim, ferret,
swaptions, fluidanimate, vips and x264, all with dataset native).

6.2 Designs for Comparison
Our evaluation is comprised of three sets of comparisons, each
evaluated using the appropriate subsystem of the prototype that
can give us the most insights. The systems compared are: different
enhancement engine designs on a CPU chip, different control ar-
chitectures on a CPU cluster, and different complete frameworks
on our full prototype. In all cases, our goal is to minimize the EDP
of the system under constraints of maximum power, temperature,
and current in each subsystem.
Comparing Enhancement Engine Designs. We compare our
enhancement engine (which we call Robust) to alternative designs,
such as LQG and Heuristic (Table 7) on a CPU chip. LQG is the
Linear Quadratic Gaussian approach proposed by Pothukuchi et
al. [59]. Heuristic is a collection of heuristics that use a gradient-
free search to find the inputs that optimize the EDP metric. Instead
of using a controller or a planner, it approximates the gradient
using the past 2 output measurements and navigates the search
space. The search uses random-restart after convergence, to avoid
being trapped in local optima. This design is based on industrial
implementations [2, 3, 17].

Table 7: Comparing enhancement engine designs.

Strategy Description

LQG LQG controller from [59].
Heuristic Industrial-grade gradient-free optimization heuristics [3].
Robust Our enhancement engine of Figure 4

Comparing Control Architectures.We take our proposed con-
troller from Figure 5 and use it in Tangram, Centralized, and Cas-
caded architectures on a CPU cluster. Centralized uses a single
instance of our Figure 5 controller in the CPU cluster. Cascaded
follows the design by Raghavendra et al. [62]. It uses a controller
in each leaf subsystem, and a divider in the CPU cluster. For Cen-
tralized and Cascaded, each subsystem has its own safety engine
for fast response time, as in existing systems [17].
Comparing Complete Frameworks. Finally, we compare com-
plete framework designs on our full computer. The framework
designs are built with combinations of the above control architec-
tures and enhancement engine designs, as listed in Table 8. Specifi-
cally, Tangram Robust is our proposed framework with our robust
controller. Cascaded LQG is a state-of-the-art design combining
prior work [59, 62]. Tangram LQG uses our control framework with
LQG-based controllers. Tangram Heuristic uses our control frame-
work with controllers based on industry-class heuristics. For this
complete framework evaluation, we use the Chai programs.

Table 8: Comparing complete control frameworks.

Control System Description

Cascaded LQG Architecture based on [62] with LQG controllers from [59].
Tangram LQG Tangram architecture using LQG-based controllers.

Tangram Heuristic Tangram architecture using industry-standard heuristics.
Tangram Robust Tangram architecture with our proposed controllers.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pothukuchi et al.

7 RESULTS
7.1 Comparing Enhancement Engine Designs
We compare the enhancement engine designs in Table 7 on a sin-
gle CPU chip running NAS and PARSEC applications. Figures 12a
and 12b show the execution time and EDP, respectively, with LQG,
Heuristic, and Robust enhancement engines, normalized to LQG.

cg dc ep ft is lu mg sp ua bl bo fa fe sw fl vi x2 Av
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Normalized Execution Time

LQG Heuristic Robust

(a) Normalized execution time (lower is better).

cg dc ep ft is lu mg sp ua bl bo fa fe sw fl vi x2 Av
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Normalized Energy Delay Product

LQG Heuristic Robust

(b) Normalized EDP (lower is better).

Figure 12: Comparing enhancement engine designs.

We see that LQG has the highest average execution time. To
understand why, note that LQG controllers converge more slowly
than robust controllers, as they are less capable of handling the
relatively unpredictable execution of the applications. For example,
LQG controllers in our design converge on the targets given by a
planner after ≈6 intervals. For a robust controller, this value is 2.

This effect worsens when there is interference with safety en-
gines. For example, when the LQG enhancement engine inadver-
tently increases current or temperature toomuch, the safety engines
lower the frequency. As a result, performance falls much below its
target. Then, the LQG engine responds aggressively to reduce its
output deviations, but lacks the robustness to avoid future safety
hazards. The planner does revise the output targets, but it is invoked
only every 6 intervals of the LQG, because of the LQG’s longer
convergence time.

Heuristic also operates inefficiently, with oscillations between
safety and enhancement engines as with LQG. It cannot effectively
identify a configuration that is optimal and safe with heuristics
alone. It has the highest average EDP. Finally, Robust has the fastest
execution because the robust controller learns to optimally track
output targets without safety hazards. Since it converges faster than
LQG and keeps the output deviations within guaranteed bounds, the
planner’s search is effective and completes fast. Overall, Figure 12
shows the superiority of the Robust engine. On average, it reduces
the execution time by 33%, and the EDP by 27% over LQG.

For more insight, Figure 13 shows a partial timeline of the power
consumed by a CPU chip when running ep, an embarrassingly par-
allel NAS application that has a uniform behavior. The power is
shown normalized to the maximum power that the CPU chip can
consume in steady state. For this application, LQG and Heuristic
have many oscillations due to switching between the safety and
enhancement engines. However, the power in Robust converges
rapidly and stays constant, thanks to the better control of its en-
hancement engine.

0 5 10 15 20 25 30

Time (s)

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

P
ow

er

(a) LQG

0 5 10 15 20 25 30

Time (s)

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

P
ow

er

(b) Heuristic

0 5 10 15 20 25 30

Time (s)

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

P
ow

er

(c) Robust

Figure 13: Partial timeline of the power consumed by ep.

7.2 Comparing Control Architectures
We compare Tangram to the Centralized and Cascaded architectures
running applications in the CPU cluster. They all use our proposed
controller from Figure 5 with a robust enhancement engine. Tan-
gram uses a controller in each subsystem, Centralized uses a single
controller in the CPU cluster, and Cascaded uses a controller in each
leaf subsystem and a divider in the CPU cluster. Figures 14a and 14b
show the execution time and EDP of the architectures, respectively,
normalized to Centralized.

cg dc ep ft is lu mg sp ua bl bo fa fe sw fl vi x2 Av
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Normalized Execution Time

Centralized Cascaded Tangram

(a) Normalized execution time (lower is better).

cg dc ep ft is lu mg sp ua bl bo fa fe sw fl vi x2 Av
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Normalized Energy Delay Product

Centralized Cascaded Tangram

(b) Normalized EDP (lower is better).

Figure 14: Comparing control architectures.

Tangram: Integrated Control of Heterogeneous Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

These architectures differ mainly in the response times of their
robust controllers and planners/dividers. In Centralized, there is a
single planner and robust controller that have long response times.
As a result, they sometimes miss opportunities to adjust power and
performance, even though they have a global view. This results in
inefficient execution. In Cascaded, the CPU chip controllers respond
fast, but their interaction with the next-level divider is slow. As
a result, the targets used by the controller lag behind the system
state, limiting efficiency. Moreover, a divider is not as effective as
a controller in setting the targets. Finally, Tangram has the lowest
response times at all levels. Therefore, on average, it reduces the
execution time by 11% and the EDP by 20% over Centralized.

To provide more insight, Figure 15 shows the power consumed
by the entire CPU cluster as a function of time in dc, another NAS
application. The power is shown normalized to themaximum power
that the CPU cluster can consume in steady state. We see that
Tangram uses higher power than Centralized and Cascaded. This
is because it is responsive to application demands with its fast
response time. While controllers communicate, they independently
optimize their components for changing conditions by generating
output targets and inputs fully locally. Therefore, the application
finishes the earliest and even consumes the least energy.

0 25 50 75 100 125

Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

P
ow

er

(a) Centralized

0 25 50 75 100 125

Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

P
ow

er

(b) Cascaded

0 25 50 75 100 125

Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

P
ow

er

(c) Tangram

Figure 15: CPU cluster power in dc as a function of time.

Due to their longer response time, Centralized and Cascaded
consume lower power even when the application can use higher
power. Cascaded attempts to follow application demands, thanks
to the low response times of the CPU chip controllers. However,
the longer response time of the next level of control often results
in stale targets, which triggers oscillations. This results in worse
behavior than Centralized.

7.3 Comparing Complete Frameworks
Finally, we compare our proposed Tangram Robust framework to
state-of-the-art designs (Table 8) on our full heterogeneous pro-
totype. Figures 16a and 16b show the execution time and EDP,
respectively, running the heterogeneous Chai applications. The
bars are normalized to those of Cascaded LQG, which we consider
the state-of-the-art.

If we compare Cascaded LQG to Tangram LQG, we see that the
latter has a lower execution time and EDP. This is because Cascaded
is a slow response-time architecture in large systems (Table 6).
Moreover, it lacks the hierarchy of MIMO controllers that optimize
each level of the control hierarchy. In particular, the bfs application
suffers from this limitation.

bfs hsti rscd rsct sssp Avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Normalized Execution Time

Cascaded LQG
Tangram Robust

Tangram LQG Tangram Heuristic

(a) Normalized execution time (lower is better).

bfs hsti rscd rsct sssp Avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Normalized Energy Delay Product

Cascaded LQG
Tangram Robust

Tangram LQG Tangram Heuristic

(b) Normalized EDP (lower is better).

Figure 16: Comparing complete control frameworks.

Comparing Tangram LQG to Tangram Heuristic, we see that
the latter is a worse design. With heterogeneity and complex ap-
plication patterns (e.g., hsti), the heuristics are unable to identify
system-wide efficient settings.

Finally, we see that our proposed framework (Tangram Robust)
has the lowest execution time and EDP. This efficiency is due to
two factors: its fast response time (Table 6), and the safety and
optimality guarantees from using robust controllers at each level
of the hierarchy. We see large gains even for programs like rsct
that finely divide compute between the CPUs and the GPU. Overall,
Tangram Robust reduces, on average, the execution time by 31%
and the EDP by 39% over the state of the art Cascaded LQG. This
makes Tangram Robust a significant advance.

For more insight, consider rsct, which has rapidly-changing GPU
kernels and CPU threads. Figure 17 shows a partial timeline of the
number of active CPU threads and GPU kernels. Figure 18 shows
a partial timeline of the power consumed by the CPU Cluster and
the GPU. The power is shown normalized to the maximum power
that the node can consume in steady state.

0 4 8 12 16

Time (s)

0

5

10

15

#
T

as
k
s

CPU Cluster GPU

(a) Cascaded LQG

0 4 8 12 16

Time (s)

0

5

10

15

#
T

as
k
s

CPU Cluster GPU

(b) Tangram LQG

0 4 8 12 16

Time (s)

0

5

10

15

#
T

as
k
s

CPU Cluster GPU

(c) Tangram Robust

Figure 17: Partial timeline of the number of active threads
in the CPU cluster and number of kernels in the GPU in rsct.

The frequent peaks and valleys in the three charts of Figure 17
show that this application is very dynamic. The number of active
threads in the CPU cluster and the number of kernels in the GPU

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pothukuchi et al.

0 4 8 12 16

Time (s)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
ow

er CPU Cluster GPU

(a) Cascaded LQG

0 4 8 12 16

Time (s)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
ow

er CPU Cluster GPU

(b) Tangram LQG

0 4 8 12 16

Time (s)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
ow

er CPU Cluster GPU

(c) Tangram Robust

Figure 18: Partial timeline of the power consumed by the
CPU cluster and the GPU in rsct.

changes continuously. Hence, all the frameworks try to continu-
ously change the power assigned to the CPU cluster and the GPU,
based on their activity. In many cases, they trigger the preconfig-
ured engines, such as when only a few CPU threads are active or
no GPU kernel is running.

However, as shown in Figure 18, the different frameworks man-
age power differently. In Figure 18a, we see that Cascaded LQG is
slow to shift power between the CPU cluster and the GPU, and
vice-versa. This framework reacts slowly for two reasons. First,
the cascaded architecture intrinsically has a long response time
(Table 6). Second, the LQG controller takes long to converge. As a
result, many tasks in the CPU or GPU start and complete before
the power to that subsystem is changed.

In Figure 18b, we see that Tangram LQG is more responsive. How-
ever, the slow LQG engine in Tangram LQG can hardly match the
fast-changing execution. In contrast, Tangram Robust in Figure 18c
quickly reassigns power to the subsystem which best improves the
overall EDP. This capability explains the programs’ lower execution
time and EDP in this framework.

8 RELATEDWORK
General Control
There is a large body of work on controlling homogeneous or single-
ISA heterogeneous processors [1, 2, 23, 27, 38, 44, 46, 51, 56, 59, 60,
62, 65, 70, 75, 78, 85]. Only a few consider heterogeneous processors
with CPUs and GPUs [11, 57, 58, 69, 80]. Still, they use non-modular
controllers that do not match the modular heterogeneous environ-
ments we target.

Resource control in production computers is predominantly
heuristic [2–4, 16, 17, 37, 53, 57, 58, 61, 68, 69, 72, 74, 76, 78, 81].
As we indicated, heuristic control has limitations.

Research works propose many optimizing controllers [27, 34,
36, 38, 44, 59, 60, 62, 82–84]. Most do not consider interference
from dedicated safety controllers. Therefore, they do not simulta-
neously guarantee optimality and safety. Some works do consider
temperature as a soft constraint [34, 60, 62] while some probabilis-
tically characterize mechanisms like circuit breaker tripping for
their search [27]. In real designs, there are many safety engines
that interrupt and override optimizing engines unpredictably. We
guarantee optimality and safety simultaneously.

Enhancement Approaches
Heuristic Control. Many designs rely heavily on heuristics for re-
source control [23, 36, 37, 56–58, 68, 69, 72, 78]. While easy to
implement for simple systems, designing, tuning and verifying

heuristics becomes dramatically expensive as systems and resource
management goals become complex. This can result in unintended
inefficiencies [28, 42, 44, 59, 78, 84].
Formal Control. PID controllers are popularly used in many works
due to their simplicity [9, 17, 18, 28, 39, 50, 51, 62, 64, 68, 70, 71].
However, PID controllers are Single Input Single Output (SISO)
designs, inadequate to meet the multiple objectives in comput-
ers [44, 59, 60]. LQG [59, 63] and MPC [44] controllers can han-
dle Multiple Input Multiple Output (MIMO) systems, but are rel-
atively less effective in uncertain and multi-controller environ-
ments [60, 73]. Yukta [60] proposes the use of robust controllers for
computer systems. These controllers operate well in environments
that are not fully modeled. Yukta introduces the use of a robust
controller for each system layer (e.g., the hardware and OS layers).
In this paper, we focus only on a single layer, and propose a frame-
work with a controller in each subsystem, forming a hierarchy of
controllers connected with coordination signals.
Other Systematic Methods. Some works formulate Energy×Delayn
minimization as a convex optimization problem solved with linear
programming solvers [34, 35, 65]. Solver-based approaches require
more time to generate a decision than robust controllers. Some use
market-theory [82, 83] or game-theory [27] to manage resources in
specific contexts. Finally, some researchers use machine learning
(ML) techniques for resource management [14, 20, 26, 33]. Mishra
et al. [51] use ML to tune a PID controller and a solver that manage
a big.LITTLE processor.

Control System Architectures
Centralized.Most works use centralized frameworks (e.g., [34, 35,
44, 57–59, 84]). Some use two-step proxy designs where a proxy
module in each component requests resources and a centralized
manager performs the allocation [14, 27, 36, 38, 82, 83]. Centralized
designs are not modular, do not scale to multi-chip computers, and
do not fit IP-based system designs. As systems grow large, the
controller’s response time degrades quickly because it runs a bulky
algorithm and becomes a point of contention.
Cascaded. Raghavendra et al. [62] propose a multilevel cascaded
system tomanage power in a datacenter. Rahmani et al. [63] propose
a similar 2-level design for a big.LITTLE processor. Here, each
component has two LQG controllers. A supervisor chooses one of
them to control the system and provides targets for all local outputs.
We showed that cascaded is non-modular and has a poor response
time.
Other Architectures.Muthukaruppan et al. [54] use a combination of
cascaded and decoupled PID controllers for a big.LITTLE processor.
Some designs order decoupled controllers by priority for limited
coordination [28, 71].

9 CONCLUSION
To control heterogeneous computers effectively, this paper intro-
duced Tangram, a new control framework that is fast, globally coor-
dinated, and modular. Tangram introduces a new formal controller
that combines multiple engines for optimization and safety, and has
a standard interface. Building the controller for a subsystem requires
knowing only about that subsystem. As a heterogeneous computer

Tangram: Integrated Control of Heterogeneous Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

is assembled, the controllers in the different subsystems are con-
nected, exchanging standard coordination signals. To demonstrate
Tangram, we prototyped it in a multi-socket heterogeneous server
that we assembled using subsystems from multiple vendors. Com-
pared to state-of-the-art control, Tangram reduced, on average,
the execution time of heterogeneous applications by 31% and their
energy-delay product by 39%.

ACKNOWLEDGMENTS
This work has been supported in part by NSF under grants CNS
17-63658, CCF 17-25734, and CCF 16-29431.

A PROTOTYPE DESIGN DETAILS
Modeling the Subsystems
To model computer systems, we use black-box system identification
from experimental data [43]. For the CPU chip and CPU cluster,
we run two training applications from NAS and two from PARSEC.
The obtained models have an order of 2 for the CPU chip and CPU
cluster (i.e.,m = n = 2 in Equation 2). For the GPU chip and node,
we use two training applications from Chai [31]. The model orders
for the GPU chip and node are 2 and 4, respectively.

Designing Robust Controllers
To design the robust controllers with automated tools, we need
to specify the input weights, uncertainty guardbands and output
deviation bounds [32]. We specify the weight for each input in a
subsystem based on the relative overhead of changing that input.
For the CPU chip, turning a core on/off takes at least twice as long
as changing the frequency. Hence, we use weights of 1 and 2 for
the CPU frequency and number of active cores, respectively. For
the CPU cluster, we also use weights of 1 and 2 for the CPU cluster
frequency and number of active CPU chips. The GPU chip inputs
are compute frequency and memory frequency. They have similar
overheads and hence, we use weights of 1 for both. The node has a
single input, namely the node frequency, and we set its weight to 1.

Next, we specify the uncertainty guardbands. The robust con-
trollers must work with safety engines which can force the inputs
to their minimum values when hazardous conditions are detected.
For example, while the CPU chip frequency can range from 2.2 GHz
to 3.6 GHz, the worst case is when the enhancement engine wants
to set it to the maximum value and the safety engine sets it to the
minimum one. Hence, we set the uncertainty guardband of every
robust controller to 100%, to ensure optimality in this scenario.

With the system model, weights, and uncertainty guardband,
MATLAB [32] gives the smallest output deviation bounds the con-
troller can provide. We use the priority of outputs along with these
suggestions to set the final output deviation bounds. In each con-
troller, we rank performance bounds as less critical than power
bounds. With these specifications, MATLAB generates the set of
matrices that encode the robust controller (Equation 1). The output
deviation bounds guaranteed by the robust controller in the CPU
chip, CPU cluster, and GPU chip are [±15%,±10%] for performance
and power, respectively. For the node, the bounds are [±25%,±20%]
for performance and power, respectively.

Designing Planners
Our planners use Nelder-Mead search [48] to generate the local
output targets and the coordination signals to the child controllers.
As shown in the outline below, the algorithm moves through the
following five modes.
1) Initialize: To findN targets, choseN+1 initial points with random
output targets and observe the EDP at each point.
2) Rank: Based on EDP, identify three points out of these N + 1 and
rank them as Best, Worst, and Lousy (i.e., the point better only than
Worst). Compute the centroid of all the N + 1 points except Worst.
The Best, Worst, and Lousy points, plus the centroid are shown in
Figure 19.
3) Reflect: Find a new point by reflecting the Worst point about the
Centroid. This is shown as Point 1 in Figure 19. If the EDP at this
point is better than Worst, Point 1 replaces Worst and the search
returns to Step 2. Otherwise, the search moves to Step 4.
4) Contract: The search finds a new point which is the midpoint
between Centroid and Worst. This is Point 2 in Figure 19. If this
point is better than Worst, it replaces Worst and the search returns
to Step 2. Otherwise, the search moves to Step 5.
5) Shrink: All points except Best are moved towards Best, and search
returns to Step 2.

This process repeats until the value of the Best point converges.

Best

Lousy Worst

Centroid

1

23 3

Figure 19: Nelder-Mead search used by the planner.

Safety Engine Limits
The maximum values that we use for current (TDC) and thermal
safety of each subsystem are shown in Table 9.

Table 9: Limits used in safety engines in all controllers.

CPU Chip CPU Cluster GPU Chip Node

Current (A) 15 25 30 50
Temperature (◦ C) 55 65 60 70

AMD, the AMD Arrow logo, EPYC, Radeon, Ryzen, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple Inc.
used by permission by Khronos Group, Inc. Other product names used herein are for
identification purposes only and may be trademarks of their respective companies.

REFERENCES
[1] Almutaz Adileh, Stijn Eyerman, Aamer Jaleel, and Lieven Eeckhout. 2016. Maxi-

mizing Heterogeneous Processor Performance Under Power Constraints. ACM
Trans. Archit. Code Optim. 13, 3 (Sept. 2016), 29:1–29:23.

[2] Advanced Micro Devices, Inc. 2011. AMD FX Processors Unleashed | a Guide
to Performance Tuning with AMD OverDrive and the new AMD FX Proces-
sors. https://www.amd.com/Documents/AMD_FX_Performance_Tuning_Guide.
pdf. Advanced Micro Devices, Inc.

https://www.amd.com/Documents/AMD_FX_Performance_Tuning_Guide.pdf
https://www.amd.com/Documents/AMD_FX_Performance_Tuning_Guide.pdf

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pothukuchi et al.

[3] Advanced Micro Devices, Inc. 2015. BIOS and Kernel Developer’s Guide (BKDG)
for AMD Family 15h Models 10h-1FFh Processors. http://developer.amd.com/
resources/developer-guides-manuals/. Advanced Micro Devices, Inc.

[4] Advanced Micro Devices, Inc. 2018. BIOS and Kernel Developer’s Guide (BKDG)
for AMD Family 15h Models 70h-7Fh Processors. http://developer.amd.com/
resources/developer-guides-manuals/. Advanced Micro Devices, Inc.

[5] Advanced Micro Devices, Inc. 2018. Understanding Power Management
and Processor Performance Determinism. https://www.amd.com/system/files/
documents/understanding-power-management.pdf. Whitepaper.

[6] Advanced Micro Devices, Inc. 2019. AMD Radeon RX 580 Graphics. https:
//www.amd.com/en/products/graphics/radeon-rx-580. Accessed: 2019.

[7] Advanced Micro Devices, Inc. 2019. AMD Ryzen. http://www.amd.com/en/ryzen.
Accessed: 2019.

[8] Advanced Micro Devices, Inc. 2019. AMD Ryzen Mobile Processors with Radeon
Vega Graphics. https://www.amd.com/en/products/ryzen-processors-laptop.
Accessed: 2019.

[9] Nawaf Almoosa, William Song, Yorai Wardi, and Sudhakar Yalamanchili. 2012.
A Power Capping Controller for Multicore Processors. In American Control Con-
ference.

[10] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman Ebrahimi,
Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David Nellans. 2017. MCM-GPU:
Multi-Chip-Module GPUs for Continued Performance Scalability. In International
Symposium on Computer Architecture.

[11] Trinayan Baruah, Yifan Sun, Shi Dong, David Kaeli, and Norm Rubin. 2018. Aira-
vat: Improving Energy Efficiency of Heterogeneous Applications. In Conference
on Design, Automation and Test in Europe.

[12] Arka A. Bhattacharya, David Culler, Aman Kansal, Sriram Govindan, and Sriram
Sankar. 2012. The Need for Speed and Stability in Data Center Power Capping.
In International Green Computing Conference.

[13] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
International Conference on Parallel Architectures and Compilation Techniques.

[14] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. 2008. Coordinated Man-
agement of Multiple Interacting Resources in Chip Multiprocessors: A Machine
Learning Approach. In International Symposium on Microarchitecture.

[15] Nathan Brookwood. 2018. EPYC: A Study in Energy Efficient CPU De-
sign. https://www.amd.com/system/files/documents/The-Energy-Efficient-
AMD-EPYC-Design.pdf.

[16] Martha Broyles, Christopher J. Cain, Todd Rosedahl, and Guillermo J. Silva. 2015.
IBM EnergyScale for POWER8 Processor-Based Systems. Technical Report. IBM.

[17] Thomas Burd, Noah Beck, Sean White, Milam Paraschou, Nathan Kalyanasund-
haram, Gregg Donley, Alan Smith, Larry Hewitt, and Samuel Naffziger. 2019.
“Zeppelin”: An SoC for Multichip Architectures. IEEE J. Solid-State Circuits 54, 1
(Jan. 2019), 133–143. https://doi.org/10.1109/JSSC.2018.2873584

[18] Xinwei Chen, Yorai Wardi, and Sudhakar Yalamanchili. 2017. Power Regulation
in High Performance Multicore Processors. In IEEE Conference on Decision and
Control.

[19] Srinivas Chennupaty. 2018. Thin & Light & High Performance Graph-
ics. https://www.hotchips.org/hc30/1conf/1.04_Intel_Thin_Light_Gaming_
HotChips_SC_Final.pdf. In Hot Chips: A Symposium on High Performance Chips.
Intel Corporation.

[20] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. 2011. Pack &
Cap: Adaptive DVFS and Thread Packing Under Power Caps. In International
Symposium on Microarchitecture.

[21] Intel Corporation. 2009. Voltage Regulator Module (VRM) and Enterprise Voltage
Regulator-Down (EVRD) 11.1. https://www.intel.ie/content/www/ie/en/power-
management/voltage-regulator-module-enterprise-voltage-regulator-down-
11-1-guidelines.html. Accessed: 2019.

[22] Intel Corporation. 2015. Intel Dynamic Platform and Thermal Framework
(DPTF) for Chromium OS. https://01.org/intel%C2%AE-dynamic-platform-
and-thermal-framework-dptf-chromium-os/documentation/implementation-
design-and-source-code-organization. Accessed: 2019.

[23] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F. Wenisch,
and Ricardo Bianchini. 2012. CoScale: Coordinating CPU and Memory System
DVFS in Server Systems. In International Symposium on Microarchitecture.

[24] NASA Advanced Supercomputing Division. 2003. NAS Parallel Benchmarks.
https://www.nas.nasa.gov/publications/npb.html.

[25] John C. Doyle, Joseph E. Wall, and Gunter Stein. 1982. Performance and Robust-
ness Analysis for Structured Uncertainty. In IEEE Conference on Decision and
Control.

[26] Christophe Dubach, Timothy M. Jones, and Edwin V. Bonilla. 2013. Dynamic
Microarchitectural Adaptation Using Machine Learning. ACM Trans. Archit. Code
Optim. 10, 4 (Dec. 2013), 31:1–31:28.

[27] Songchun Fan, Seyed Majid Zahedi, and Benjamin C. Lee. 2016. The Computa-
tional Sprinting Game. In International Conference on Architectural Support for
Programming Languages and Operating Systems.

[28] Antonio Filieri, Henry Hoffmann, and Martina Maggio. 2015. Automated Multi-
objective Control for Self-adaptive Software Design. In Joint Meeting on Founda-
tions of Software Engineering.

[29] GIGA-BYTE Technology Co., Ltd. 2019. GIGABYTE. http://www.gigabyte.us/
Motherboard/GA-AX370-Gaming-5-rev-10#kf. Accessed: 2019.

[30] GlobeNewswire. 2017. AMD Delivers Semi-Custom Graphics Chip For New In-
tel Processor. http://www.nasdaq.com/press-release/amd-delivers-semicustom-
graphics-chip-for-new-intel-processor-20171106-00859.

[31] Juan Gómez-Luna, Izzat El Hajj, Victor Chang, Li-Wen Garcia-Flores, Simon
Garcia de Gonzalo, Thomas Jablin, Antonio J Pena, and Wen-mei Hwu. 2017.
Chai: Collaborative Heterogeneous Applications for Integrated-architectures. In
IEEE International Symposium on Performance Analysis of Systems and Software.

[32] Da-Wei Gu, Petko H. Petkov, and Mihail M. Konstantinov. 2013. Robust Control
Design with MATLAB (2nd ed.). Springer.

[33] Can Hankendi, Ayse Kivilcim Coskun, and Henry Hoffmann. 2016. Adapt&Cap:
Coordinating System- and Application-Level Adaptation for Power-Constrained
Systems. IEEE Des. Test 33, 1 (2016), 68–76.

[34] Vinay Hanumaiah, Digant Desai, Benjamin Gaudette, Carole-JeanWu, and Sarma
Vrudhula. 2014. STEAM: A Smart Temperature and Energy Aware Multicore
Controller. ACM Trans. Embed. Comput. Syst. 13, 5s (Oct. 2014), 151:1–151:25.

[35] Jin Heo, Dan Henriksson, Xue Liu, and Tarek Abdelzaher. 2007. Integrating Adap-
tive Components: An Emerging Challenge in Performance-Adaptive Systems
and a Server Farm Case-Study. In International Real-Time Systems Symposium.

[36] Canturk Isci, Alper Buyuktosunoglu, Chen-yong Chen, Pradip Bose, andMargaret
Martonosi. 2006. An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget. In International
Symposium on Microarchitecture.

[37] Sanjeev Jahagirdar, Varghese George, Inder Sodhi, and Ryan Wells. 2012. Power
Management of the Third Generation Intel Core Micro Architecture formerly
Codenamed Ivy Bridge. In Hot Chips: A Symposium on High Performance Chips.

[38] Sudhanshu Shekhar Jha, Wim Heirman, Ayose Falcón, Trevor E. Carlson, Kenzo
Van Craeynest, Jordi Tubella, Antonio González, and Lieven Eeckhout. 2015.
Chrysso: An Integrated Power Manager for Constrained Many-core Processors.
In ACM International Conference on Computing Frontiers.

[39] Philo Juang, Qiang Wu, Li-Shiuan Peh, Margaret Martonosi, and Douglas W.
Clark. 2005. Coordinated, Distributed, Formal Energy Management of Chip
Multiprocessors. In International Symposium on Low Power Electronics and Design.

[40] Youngtaek Kim, Lizy Kurian John, Sanjay Pant, Srilatha Manne, Michael Schulte,
W. Lloyd Bircher, and Madhu S. Sibi Govindan. 2012. AUDIT: Stress Testing the
Automatic Way. In International Symposium on Microarchitecture. IEEE Computer
Society, 212–223.

[41] Charles Lefurgy. 2013. Avoiding Core Meltdown! - Adaptive Techniques for
Power and Thermal Management of Multi-Core Processors. https://researcher.
watson.ibm.com/researcher/files/us-lefurgy/DAC2013_Lefurgy_v6.pdf. Tutorial,
Design Automation Conference.

[42] Xiaodong Li, Zhenmin Li, Francis David, Pin Zhou, Yuanyuan Zhou, Sarita
Adve, and Sanjeev Kumar. 2004. Performance Directed Energy Management for
Main Memory and Disks. In International Conference on Architectural Support for
Programming Languages and Operating Systems.

[43] Lennart Ljung. 1999. System Identification : Theory for the User (2 ed.). Prentice
Hall PTR, Upper Saddle River, NJ, USA.

[44] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry
Hoffmann. 2017. Automated Control of Multiple Software Goals Using Multiple
Actuators. In Joint Meeting on Foundations of Software Engineering.

[45] Ravi Mahajan, Robert Sankman, Neha Patel, Dae-Woo Kim, Kemal Aygun, Zhiguo
Qian, Yidnekachew Mekonnen, Islam Salama, Sujit Sharan, Deepti Iyengar, and
DebendraMallik. 2016. EmbeddedMulti-die Interconnect Bridge (EMIB) – AHigh
Density, High Bandwidth Packaging Interconnect. In IEEE Electronic Components
and Technology Conference.

[46] Abhinandan Majumdar, Leonardo Piga, Indrani Paul, Joseph L. Greathouse, Wei
Huang, and David H. Albonesi. 2017. Dynamic GPGPU Power Management
Using Adaptive Model Predictive Control. In International Symposium on High
Performance Computer Architecture.

[47] Marvell Corporation. 2019. MoChi Architecture. http://www.marvell.com/
architecture/mochi/.

[48] John H. Mathews and Kurtis D. Fink. 2006. Numerical Methods Using MAT-
LAB. Pearson Education, Limited. https://books.google.com/books?id=-
DpDPgAACAAJ

[49] Micro-Star Int’l Co.,Ltd. 2019. MSI Graphics Cards. https://www.msi.com/
Graphics-card/Radeon-RX-580-8G. Accessed: 2019.

[50] Asit K. Mishra, Shekhard Srikantaiah, Mahmut Kandemir, and Chita R. Das. 2010.
CPM in CMPs: Coordinated Power Management in Chip-Multiprocessors. In
International Conference for High Performance Computing, Networking, Storage
and Analysis.

[51] Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann. 2018.
CALOREE: Learning Control for Predictable Latency and Low Energy. In In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems.

http://developer.amd.com/resources/developer-guides-manuals/
http://developer.amd.com/resources/developer-guides-manuals/
http://developer.amd.com/resources/developer-guides-manuals/
http://developer.amd.com/resources/developer-guides-manuals/
https://www.amd.com/system/files/documents/understanding-power-management.pdf
https://www.amd.com/system/files/documents/understanding-power-management.pdf
https://www.amd.com/en/products/graphics/radeon-rx-580
https://www.amd.com/en/products/graphics/radeon-rx-580
http://www.amd.com/en/ryzen
https://www.amd.com/en/products/ryzen-processors-laptop
https://www.amd.com/system/files/documents/The-Energy-Efficient-AMD-EPYC-Design.pdf
https://www.amd.com/system/files/documents/The-Energy-Efficient-AMD-EPYC-Design.pdf
https://doi.org/10.1109/JSSC.2018.2873584
https://www.hotchips.org/hc30/1conf/1.04_Intel_Thin_Light_Gaming_HotChips_SC_Final.pdf
https://www.hotchips.org/hc30/1conf/1.04_Intel_Thin_Light_Gaming_HotChips_SC_Final.pdf
https://www.intel.ie/content/www/ie/en/power-management/voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.html
https://www.intel.ie/content/www/ie/en/power-management/voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.html
https://www.intel.ie/content/www/ie/en/power-management/voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.html
https://01.org/intel%C2%AE-dynamic-platform-and-thermal-framework-dptf-chromium-os/documentation/implementation-design-and-source-code-organization
https://01.org/intel%C2%AE-dynamic-platform-and-thermal-framework-dptf-chromium-os/documentation/implementation-design-and-source-code-organization
https://01.org/intel%C2%AE-dynamic-platform-and-thermal-framework-dptf-chromium-os/documentation/implementation-design-and-source-code-organization
https://www.nas.nasa.gov/publications/npb.html
http://www.gigabyte.us/Motherboard/GA-AX370-Gaming-5-rev-10#kf
http://www.gigabyte.us/Motherboard/GA-AX370-Gaming-5-rev-10#kf
http://www.nasdaq.com/press-release/amd-delivers-semicustom-graphics-chip-for-new-intel-processor-20171106-00859
http://www.nasdaq.com/press-release/amd-delivers-semicustom-graphics-chip-for-new-intel-processor-20171106-00859
https://researcher.watson.ibm.com/researcher/files/us-lefurgy/DAC2013_Lefurgy_v6.pdf
https://researcher.watson.ibm.com/researcher/files/us-lefurgy/DAC2013_Lefurgy_v6.pdf
http://www.marvell.com/architecture/mochi/
http://www.marvell.com/architecture/mochi/
https://books.google.com/books?id=-DpDPgAACAAJ
https://books.google.com/books?id=-DpDPgAACAAJ
https://www.msi.com/Graphics-card/Radeon-RX-580-8G
https://www.msi.com/Graphics-card/Radeon-RX-580-8G

Tangram: Integrated Control of Heterogeneous Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

[52] Kenneth Mitchell and Elliot Kim. 2017. Optimizing for AMD Ryzen
CPU. http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/
uploads/2017/03/GDC2017-Optimizing-For-AMD-Ryzen.pdf. Accessed: 2019.

[53] Benjamin Munger, David Akeson, Srikanth Arekapudi, Tom Burd, Harry R. Fair,
Jim Farrell, Dave Johnson, Guhan Krishnan, Hugh McIntyre, Edward McLellan,
Samuel Naffziger, Russell Schreiber, Sriram Sundaram, Jonathan White, and
Kathryn Wilcox. 2016. Carrizo: A High Performance, Energy Efficient 28 nm
APU. IEEE J. Solid-State Circuits 51, 1 (2016), 105–116.

[54] Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan Venkatara-
mani, Tulika Mitra, and Sanjay Vishin. 2013. Hierarchical Power Management for
Asymmetric Multi-core in Dark Silicon Era. In Design Automation Conference.

[55] Andreas Olofsson. 2016. Common Heterogeneous Integration and IP Reuse
Strategies (CHIPS). https://www.darpa.mil/program/common-heterogeneous-
integration-and-ip-reuse-strategies. Defense Advanced Research Projects
Agency.

[56] Indrani Paul, Wei Huang, Manish Arora, and Sudhakar Yalamanchili. 2015. Har-
monia: Balancing Compute and Memory Power in High-performance GPUs. In
International Symposium on Computer Architecture.

[57] Indrani Paul, Srilatha Manne, Manish Arora, W. Lloyd Bircher, and Sudhakar Yala-
manchili. 2013. Cooperative Boosting: Needy Versus Greedy Power Management.
In International Symposium on Computer Architecture.

[58] Indrani Paul, Vignesh Ravi, Srilatha Manne, Manish Arora, and Sudhakar Yala-
manchili. 2013. Coordinated Energy Management in Heterogeneous Processors.
In International Conference for High Performance Computing, Networking, Storage
and Analysis.

[59] Raghavendra Pradyumna Pothukuchi, Amin Ansari, Petros Voulgaris, and Josep
Torrellas. 2016. Using Multiple Input, Multiple Output Formal Control to Maxi-
mize Resource Efficiency in Architectures. In International Symposium on Com-
puter Architecture.

[60] Raghavendra Pradyumna Pothukuchi, Sweta Yamini Pothukuchi, Petros Voul-
garis, and Josep Torrellas. 2018. Yukta: Multilayer Resource Controllers to Maxi-
mize Efficiency. In International Symposium on Computer Architecture.

[61] Michael A. Prospero. 2014. AMD Announces New Low-Power APUs for Tablets
and Notebooks. https://www.laptopmag.com/articles/amd-mullins-beema-apu.

[62] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang,
and Xiaoyun Zhu. 2008. No "Power" Struggles: Coordinated Multi-level Power
Management for the Data Center. In International Conference on Architectural
Support for Programming Languages and Operating Systems.

[63] Amir M. Rahmani, Bryan Donyanavard, Tiago Müch, Kasra Moazzemi, Axel
Jantsch, Onur Mutlu, and Nikil Dutt. 2018. SPECTR: Formal Supervisory Control
and Coordination for Many-core Systems Resource Management. In International
Conference on Architectural Support for Programming Languages and Operating
Systems.

[64] Karthik Rao, William Song, Sudhakar Yalamanchili, and Yorai Wardi. 2015. Tem-
perature Regulation in Multicore Processors using Adjustable-gain Integral Con-
trollers. In IEEE Conference on Control Applications.

[65] Karthik Rao, Jun Wang, Sudhakar Yalamanchili, Yorai Wardi, and Handong Ye.
2017. Application-Specific Performance-Aware Energy Optimization on An-
droid Mobile Devices. In International Symposium on High Performance Computer
Architecture.

[66] Todd Rosedahl. 2014. OCC Firmware Code is Now Open Source. https:
//openpowerfoundation.org/occ-firmware-code-is-now-open-source/. Code:
https://github.com/open-power/docs/blob/master/occ/OCC_overview.md.

[67] Todd Rosedahl, Martha Broyles, Charles Lefurgy, Bjorn Christensen, and Wu
Feng. 2017. Power/Performance Controlling Techniques in OpenPOWER. In
High Performance Computing, Julian M. Kunkel, Rio Yokota, Michela Taufer, and
John Shalf (Eds.). Springer International Publishing, 275–289.

[68] Efraim Rotem. 2015. Intel Architecture, Code Name Skylake Deep Dive: A
New Architecture to Manage Power Performance and Energy Efficiency. Intel
Developer Forum.

[69] EfraimRotem, AlonNaveh, Doron Rajwan, AvinashAnanthakrishnan, and Eliezer
Weissmann. 2012. Power-Management Architecture of the Intel Microarchitec-
ture Code-Named Sandy Bridge. IEEE Micro 32 (March 2012).

[70] Muhammad Husni Santriaji and Henry Hoffmann. 2016. GRAPE: Minimizing
Energy for GPU Applications with Performance Requirements. In International
Symposium on Microarchitecture.

[71] Stepan Shevtsov and Danny Weyns. 2016. Keep It SIMPLEX: Satisfying Multiple
Goals with Guarantees in Control-based Self-adaptive Systems. In ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 229–241.

[72] Balaram Sinharoy, Randy Swanberg, Naresh Nayar, Bruce G. Mealey, Jeff
Stuecheli, Berni Schiefer, Jens Leenstra, Joefon Jann, Philipp Oehler, David Levi-
tan, Susan Eisen, Dean Sanner, Thomas Pflueger, Cedric Lichtenau, William E.
Hall, and Tim Block. 2015. Advanced Features in IBM POWER8 systems. IBM
Jour. Res. Dev. 59, 1 (Jan. 2015), 1:1–1:18.

[73] Sigurd Skogestad and Ian Postlethwaite. 2005. Multivariable Feedback Control:
Analysis and Design. John Wiley & Sons.

[74] SKYMTL. 2014. AMD Mullins & Beema Mobile APUs Preview.
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/66162-

amd-mullins-beema-mobile-apus-preview.html.
[75] Bo Su, Junli Gu, Li Shen, Wei Huang, Joseph L. Greathouse, and Zhiying Wang.

2014. PPEP: Online Performance, Power, and Energy Prediction Framework and
DVFS Space Exploration. In International Symposium on Microarchitecture.

[76] Sriram Sundaram, Sriram Samabmurthy, Michael Austin, Aaron Grenat, Michael
Golden, Stephen Kosonocky, and Samuel Naffziger. 2016. Adaptive Voltage
Frequency Scaling Using Critical Path Accumulator Implemented in 28nm CPU.
In International Conference on VLSI Design.

[77] Sehat Sutardja. 2015. The Future of IC Design Innovation. In International Solid-
State Circuits Conference.

[78] Augusto Vega, Alper Buyuktosunoglu, Heather Hanson, Pradip Bose, and Srini-
vasan Ramani. 2013. Crank It Up or Dial It Down: Coordinated Multiprocessor
Frequency and Folding Control. In International Symposium on Microarchitecture.

[79] Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H. Loh, Michael J.
Schulte, Mike Ignatowski, Bradford M. Beckmann, William C. Brantley, Joseph L.
Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran, Mitesh Meswani,
Indrani Paul, Matthew Poremba, Steven Raasch, Steven K. Reinhardt, Greg Sad-
owski, and Vilas Sridharan. 2017. Design and Analysis of an APU for Exascale
Computing. In International Symposium on High Performance Computer Architec-
ture.

[80] Hao Wang, Vijay Sathish, Ripudaman Singh, Michael J. Schulte, and Nam Sung
Kim. 2012. Workload and Power Budget Partitioning for Single-chip Hetero-
geneous Processors. In International Conference on Parallel Architectures and
Compilation Techniques.

[81] Xin Wang. 2017. Intelligent Power Allocation: Maximize performance in the
thermal envelope. ARM White Paper.

[82] Xiaodong Wang and José F. Martínez. 2015. XChange: A Market-based Approach
to Scalable Dynamic Multi-resource Allocation in Multicore Architectures. In
International Symposium on High Performance Computer Architecture.

[83] Xiaodong Wang and José F. Martínez. 2016. ReBudget: Trading Off Efficiency vs.
Fairness in Market-Based Multicore Resource Allocation via Runtime Budget Re-
assignment. In International Conference on Architectural Support for Programming
Languages and Operating Systems.

[84] Yefu Wang, Kai Ma, and Xiaorui Wang. 2009. Temperature-constrained Power
Control for Chip Multiprocessors with Online Model Estimation. In International
Symposium on Computer Architecture.

[85] Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark. 2004. Formal
Online Methods for Voltage/Frequency Control in Multiple Clock Domain Micro-
processors. In International Conference on Architectural Support for Programming
Languages and Operating Systems.

[86] Jieming Yin, Zhifeng Lin, Onur Kayiran, Matthew Poremba, Muhammad
Shoaib Bin Altaf, Natahlie Enright Jerger, and Gbriel H. Loh. 2018. Modular
Routing Design for Chiplet-Based Systems. In International Symposium on Com-
puter Architecture.

http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2017/03/GDC2017-Optimizing-For-AMD-Ryzen.pdf
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2017/03/GDC2017-Optimizing-For-AMD-Ryzen.pdf
https://www.darpa.mil/program/common-heterogeneous-integration-and-ip-reuse-strategies
https://www.darpa.mil/program/common-heterogeneous-integration-and-ip-reuse-strategies
https://www.laptopmag.com/articles/amd-mullins-beema-apu
https://openpowerfoundation.org/occ-firmware-code-is-now-open-source/
https://openpowerfoundation.org/occ-firmware-code-is-now-open-source/
Code: https://github.com/open-power/docs/blob/master/occ/OCC_overview.md
Code: https://github.com/open-power/docs/blob/master/occ/OCC_overview.md
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/66162-amd-mullins-beema-mobile-apus-preview.html
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/66162-amd-mullins-beema-mobile-apus-preview.html

	Abstract
	1 Introduction
	2 Computer Control Today
	2.1 Organization
	2.2 Controller Objectives
	2.3 Formal Control vs Heuristics

	3 Background: Robust Control
	4 TANGRAM: Decentralized Control
	4.1 Controller Architecture
	4.2 Subsystem Interface
	4.3 Tangram Control Framework
	4.4 Comparison to Contemporary Systems
	4.5 Tangram Implementation
	4.6 Example of Tangram's Operation
	4.7 Scalability of Tangram

	5 Tangram Prototype
	5.1 Stage One: CPU Cluster Subsystem
	5.2 Stage Two: Node Subsystem
	5.3 Structures in the Controllers
	5.4 Controller Overhead and Response Time

	6 Evaluating the Prototype
	6.1 Applications
	6.2 Designs for Comparison

	7 Results
	7.1 Comparing Enhancement Engine Designs
	7.2 Comparing Control Architectures
	7.3 Comparing Complete Frameworks

	8 Related Work
	9 Conclusion
	Acknowledgments
	A Prototype Design Details
	References

