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The node-level architecture of exascale systems may look significantly different than current designs. 
Heterogeneous cores [13] will be severely power- and heat-constrained [6]. They may have large amounts of 2.5D 
[11] or 3D [17] stacked DRAM and may have even larger non-volatile storage [5]. Simulating the large design space 
of these systems is important in order to find the best candidates for further study. Current simulation techniques 
offer good visibility into low-level details but are too slow and memory intensive for such explorations. 

We propose a simulation model that is based on the idea that reducing insight into some low-level details can 
greatly increase the simulator’s performance. This allows both the exploration of a broader design space as well as 
the analysis of larger and more representative workloads. Figure 1 presents our simulation methodology, which 
utilizes existing hardware, along with fast performance and power estimation models, to simulate HPC 
benchmarks at nearly full speed. This can yield better insights into exascale node designs by allowing faster 
turnaround of tests at different design points and more workloads that better represent exascale applications. 
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Figure 1. Simulation Overview. Monitoring data and ordering relationships are gathered for dynamic program segments. An 
offline tool then estimates the runtime and power of each segment for a simulated machine and calculates the total runtime. 

We propose a trace-based simulator that gathers performance and ordering information while running the 
program-under-test on commodity hardware. These traces are saved for later use in an offline power and 
performance estimation tool. This tool uses the performance information, ordering constraints, and a description 
of the simulated machine to estimate how the program would run on the simulated hardware. 

There are two types of traces saved when executing the program. Each offers different information about program 
segments that are divided at, for instance, library calls or changes in program phase [22]. The first is a performance 
data trace that includes a selection of hardware counters, memory traces, and other values that summarize a 
segment’s execution and that will later be used to estimate how that segment would run on a different hardware 
design. The second is a segment dependence trace that contains a collection of transitive relationships between 
segments that allow the offline analysis tool to ascertain which segments are able to execute at any point in time. 

CPU 0

CPU 1

GPU

pthread_create() pthread_join()

ocl_enqueue(opencl) ocl_wait()
kernel end

pthread_exit()

① ② 

③ ④ 

⑤ 

⑥ 

⑦ 
② happens after ①

③ happens after ①

④ happens after ③

⑤ happens after ③

⑥ happens after ④

⑥ happens after ⑤

⑦ happens after ②

⑦ happens after ⑥

①, ②, ⑦ runs on a CPU

③, ④, ⑥ runs on a CPU

⑤ runs on a GPU

(a) Example Execution Trace (b) Segment Dependence Information  
Figure 2. Example Execution Trace. (a) shows an example execution where the numbered segments are delimited by calls to 

parallel library functions. (b) lists the segment dependence information that is calculated from this example. 

An example of these traces is shown in Figure 2. Figure 2(a) shows an execution where the numbered segments are 
delimited by function calls that communicate between parallel tasks. The ordering information, shown in Figure 
2(b), describes the segment dependence trace for this small program. The hardware performance data may be 
information such as “Segment 1 had 2 million instructions and 200k cache misses.” 

As shown in Figure 1, this information is gathered as the program executes by making modifications to the 
benchmarks’ shared libraries. For the example shown in Figure 2, this would involve intercepting calls to Pthreads 
and OpenCL functions that demarcate the segments [20]. Each of these functions would then save out 
performance and dependence information while also performing their intended tasks. 

Finally, these traces are sent through an offline estimation mechanism that, in conjunction with a description of 
the machine being simulated, models the runtime and power of each segment. Segments that do not depend upon 
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one another can be co-scheduled if there is enough available hardware on the simulated system, while other 
segments must be serialized with one another. The dependence information is useful at this point to ensure 
correctness when: 1) the simulated machine is a different size than the machine used to generate the traces and 2) 
segment performance scaling would otherwise cause segments to start before all of their predecessors finished. 

The methods used to perform these power and performance estimations are active areas of research. They 
depend on the property being estimated, the desired level of detail, and the hardware being modeled. For 
example, rough estimates of CPU performance under frequency and memory scaling [7][18][21] require different 
techniques than GPU performance estimates [23][24]. Power estimation also requires different values and 
formulae [9][10]. More accurate estimates will require more information in the performance trace and will 
increase the runtime of the offline analysis. As an extreme, a user that is particularly interested in accurately 
estimating a particular detail of a segment could go so far as to send it through a conventional low-level simulator. 

Related Work: Node-level performance modeling has been an active area of research for decades, as simulators 
became necessary to guide architectural and microarchitectural design decisions. Tools such as gem5 [2], 
multi2sim [25], MARSSx86 [19], and GPGPU-Sim [1] model the systems at a relatively low level in order to 
accurately gauge performance changes from microarchitectural modifications. Power models such as Wattch [3], 
GPU-Wattch [15], and McPAT [16] also require low-level architectural details or cycle-by-cycle activity information. 

In contrast, the simulation infrastructure presented in this paper can rely on higher-level statistics in order to 
greatly increase performance. Rather than requiring microarchitectural details, we rely on higher-level estimation 
mechanisms (though the low-level simulators can also be used as accurate estimation tools). 

Sniper [4] simulates hardware at a higher-level through interval analysis, an analytical model that primarily pays 
attention to events that cause pipeline bubbles [8]. Other systems even create whole-system analytical models 
that can be designed based on regression tests [14] or other automated tests [12]. These systems present 
interesting performance and power estimation mechanisms. We hypothesize that performance monitoring values 
gathered on real hardware can form good inputs to the analytical models without requiring the overhead of 
detailed simulation, and that the additional accuracy of executing longer runtimes with more realistic data sets. 

Challenges addressed: The DOE co-design centers have put significant effort into scaling down a selection of large, 
long-running HPC applications for study on modern nodes. Nonetheless, these proxy applications are still too 
computationally and memory intensive to run in many traditional low-level simulators. Large simulation runtimes 
can severely hamper node design space explorations, and the memory usage of low-level simulators will limit what 
sizes of problems can even be run. Unfortunately, reducing the benchmarks’ sizes loses applications fidelity even 
as it enables more accurate hardware simulation [26]. A reduced input that is not carefully designed may not stress 
the hardware in the same way as a larger input (e.g. the FLOP/byte ratios may change), while truncated 
simulations rarely test the majority of an application. Even if this scaling were done well, however, many hardware 
problems addressed by exascale research require long runtimes. Thermal-aware computation, for instance, 
requires seconds or minutes of application runtime to appropriately analyze changes in hardware temperature. 
This high-level simulator trades off low-level hardware visibility in order to address these issues. 

Maturity and Effort: AMD has developed an initial version of this simulator and used it to study several novel 
hardware designs as part of the FastForward effort. The work required to make incremental improvements (e.g. 
better performance estimation models, support for additional libraries when gathering ordering constraints, etc.) 
is relatively self-contained, and is part of AMD’s continued efforts into exascale computing research. The largest 
effort often goes into gathering new hardware performance statistics and building accurate models from them. 

Applicability: A high-level simulator is applicable not just to high-performance computing, but to any hardware 
design space exploration that need not necessarily model precise microarchitectural changes. If an estimator can 
be built to model the hardware changes, this system can allow a fast and easy way to evaluate their worth. This 
could be useful in areas such as: big-core/little-core heterogeneous designs, CMP energy optimization studies, data 
center power optimizations, and others. In addition, the performance and power estimation mechanisms that are 
a vital component of this system are useful in their own right (e.g. [21]). 

Uniqueness: The underlying approach for this simulator is useful outside of exascale node analysis, but the 
exascale design effort has a unique need for the ability to analyze large hardware designs space on long-running 
and memory-intensive applications. Essentially, other area of computing may benefit from fast simulation, but 
exascale node design requires it. 

Novelty: As discussed above, this simulation infrastructure is related to other high-level simulation systems. 
Nonetheless, the underlying idea of trace-based analysis with a generic (and changeable) performance and power 
estimation framework that are fed by hardware performance monitors is unique amongst existing tools. 
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