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Abstract
This paper presents an argument for distributing dynamic
software analyses to large populations of users in order to lo-
cate bugs that cause security flaws. We review a collection of
dynamic analysis systems and show that, despite a great deal
of effort from the research community, their performance is
still too low to allow their use in the field. We then show
that there are effective sampling mechanisms for accelerat-
ing a wide range of powerful dynamic analyses. These mech-
anisms reduce the rate at which errors are observed by indi-
vidual analyses, but this loss can be offset by the subsequent
increase in test population. Nevertheless, there are unsolved
issues in this domain that deserve attention if this technique
is to be widely utilized.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—statistical meth-
ods; D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, distributed debugging, testing tools

General Terms Performance, Security, Verification

Keywords Distributed Analysis, Sampling

1. Introduction
Dynamic software analyses observe programs as they run
and make inferences about the correctness, performance,
or security of any particular execution. Because they work
alongside the executing program, these tests are able to ob-
serve situations that offline or static analyses have difficulty
checking. Static tools, for example, may struggle to observe
some errors due to the state space explosion problem caused
by control-flow decisions. Dynamic analyses, in contrast, are
able to test any path an analyzed execution takes.

Security tests such as taint analysis and correctness
checks such as data race detection can help create robust
software that is resilient to malicious attacks. However, they
are unable to catch errors that lie on unexecuted paths. Con-
sequently, dynamic analyses benefit from seeing large num-
bers of executions with a variety of inputs, allowing them
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Table 1: Overheads from a selection of dynamic analyses

Analysis Slowdown

Assertion Checking (Sec. 2.1) 5% – 2×

DIFT (Sec. 2.2) 3× – 150×

Race Detection (Sec. 2.3) 8× – 100×

Atomicity Checking (Sec. 2.4) 25× – 400×

Symbolic Execution (Sec. 2.5) 10× – 200×

to test more paths. Ideally, end-users would run these tests
at all times, checking the plethora of potentially dangerous
situations they encounter.

Unfortunately, these systems suffer from very high run-
time overheads. Table 1 shows some example dynamic anal-
yses and the range of slowdowns they can cause. These large
overheads present a twofold problem: they limit the number
of test inputs that a developer can execute before shipping
a piece of software, and they severely reduce the number of
users willing to run the analyses. In both cases, high over-
heads hamper the tool’s effectiveness.

Researchers have proposed solutions to help combat this
problem. Zhao et al., for instance, showed a number of
mechanisms to accelerate shadow variables accesses [44].
Others have shown demand-driven analyses that are only en-
abled when operating on variables of interest to the analysis
[16, 20]. There have also been works on parallelizing secu-
rity checks [34] and decoupling the act of analysis from the
original execution [8, 37].

These techniques do not completely solve the overhead
problem. Umbra, for instance, reduced the overhead of
shadow data accesses from 8–12× to 2–4× [44], but this
is still more than most users would tolerate. This stymies the
ability to distribute these tests to large populations of users.

In this paper, we make the argument that the best solution
to this overhead problem is to sample the analysis space,
allowing limited portions of the program to be analyzed
during any individual execution. Ideally, the tool’s ability to
detect errors will be proportional to its overhead. This would
allow users to control the overheads they experience while
finding some percentage of the program’s errors.

Because the entire dynamic execution will not be ana-
lyzed while sampling, no test is guaranteed to find all observ-
able errors. We argue that distributing these sampled analy-
ses across large end-user populations will offset the lower er-
ror detection rate. This larger population will also see many
more inputs and dynamic states than a developer running a
small test suite.



Allowing users to run these powerful analyses can in-
crease the number of bugs caught and corrected before male-
factors can take advantage of them. Dynamic analysis sam-
pling makes this possible and therefore is a promising re-
search direction. We believe the community should focus on
solving the outstanding research and engineering problems
that currently stand in the way of its widespread use.

2. Dynamic Security Analyses
Many dynamic software analyses can be used to reduce a
program’s vulnerability surface. Although they can guaran-
tee neither correct execution nor the elimination of all bugs,
they can still find many difficult-to-observe errors.

In this section, we review dynamic security analyses, their
benefits, and their overheads. This list is not comprehensive,
but an attempt to present a selection from the literature.

2.1 Assertion Checking
Some analysis systems begin their search for vulnerabilities
by statically analyzing the code for operations that can be
proven to be either secure or insecure. The tool can then in-
sert dynamic checks around the remaining operations to en-
sure their safety at runtime. CCured used this combination of
static and dynamic testing to secure programs against mem-
ory errors such as buffer overflows [33]. It is also possible
to use this static/dynamic hybrid testing to perform checks
such as ensuring type safety [11]. The overheads observed
with these tools depends both of the complexity of the as-
sertions and the power of the static analysis. The simple
memory assertions inserted by CCured slow a selection of
computationally-intensive applications up to 87% [10].

2.2 Dynamic Information Flow Tracking
Sometimes referred to as taint analysis, dynamic information
flow tracking (DIFT) associates shadow values with memory
locations and registers, propagates them alongside the exe-
cution of the program, and checks them to find errors. These
shadow propagations form a dynamic dataflow that traces
the movement of security-critical data throughout the pro-
gram. Shadow variables can represent security information
such as the trustworthiness or secrecy levels of data within
the program, depending on the particular analysis.

One of the most commonly studied taint analyses is con-
trol flow attack detection [36, 41]. Other examples of this
type of analysis include memory corruption detection [6],
confidentiality verification [9, 29], malware analysis [43],
and error tracing [3].

The performances of these systems can vary widely and
depend on the type of analysis, the optimizations applied,
the system used to construct the tool, and the inputs given
to the particular execution of the program under test. Mea-
sured overheads for control flow attack detectors range from
3.6× [36] to upwards of 150× [20]. Other DIFT analyses
see overheads of similar orders of magnitude: 20× [43] to
hundreds of times [9] slower than native program execution.

1. if (ptr == NULL) {

4. ptr = malloc(1);

5. memcpy(ptr, benign, 1);

}

2. if (ptr == NULL) {

3. ptr = malloc(256);

6. memcpy(ptr, hostile, 256);

}

THREAD 1 THREAD 2Value of ptr

ptr = NULL

ptr = large_buf

ptr = small_buf

ptr = small_buf

ptr = small_buf

Figure 1: A data race resulting in a security flaw. The numbers
represent dynamic execution order. Both threads attempt to initial-
ize the shared pointer (1, 2). Due to the lack of synchronization,
thread 1 allocates a small buffer (4), but thread 2 then copies a
large amount of data into it (6). This particular ordering can cause
a buffer overflow, exposing a potential security flaw.

2.3 Data Race Detection
Dynamic data race detectors calculate if it is possible for
two threads that access a shared memory location to do so
in an unordered way. These unordered accesses can lead to
nondeterministic operation or crashes when programs access
variables in unintuitive, undesired orders. While this may
not seem to be a security problem at first, Figure 1 shows
an example of a data race that creates a memory corruption
vulnerability. This example is drawn from a security flaw
found in some versions of the OpenSSL TLS library [32].

A number of commercial and open source race detectors
exist [4, 35, 38, 42]. Their performance depends heavily on
the tool and its optimizations, as well as the amount of shar-
ing seen within any particular dynamic execution of the pro-
gram. Our tests put current versions of Helgrind at about a
100× slowdown, while Serebryany and Iskhodzhanov list
slowdowns of between 20× and 50× for Google Thread-
Sanitizer [38]. FastTrack is an example of work on lowering
the overheads of a dynamic data race detector; it is able to
reduce slowdowns to about 8.5× for some benchmarks [13].

2.4 Atomicity Violation Detection
Atomicity violations are concurrency errors that are similar
to, yet distinct from, data races. In parallel code, a program-
mer may desire that some collection of variables be accessed
atomically (i.e. no other thread accesses any of the variables
until the first thread finishes working on them). However,
even if variables are locked in a way that prevents data races,
this atomicity is not guaranteed [12].

Lu et al. looked at a number of concurrency bugs in large
open-source programs and found that atomicity violations
were quite common [26]. Figure 2 demonstrates how these
flaws, much like data races, could result in security errors.
Even though the accesses to the shared pointer have locks
surrounding them, meaning that race detection tools would
not indicate an error, the threads can still be ordered in such
a way that the buffer overflow exists.

Atomicity violations are difficult to automatically detect,
as they are a disconnect between what the programmer wants
and what she commands. While the designer may assume
that two regions are executed atomically, a tool cannot learn
this assumption from the code. As such, current tools that
find these errors focus on training over many known-good



UNLOCK
if (ptr==NULL)

LOCK

UNLOCK
if (ptr==NULL)

LOCK

UNLOCK
ptr = malloc(1);

LOCK UNLOCK
ptr = malloc(256);

LOCK

UNLOCK
memcpy(ptr, ...);

LOCK

UNLOCK
memcpy(ptr, ...);

LOCK

Figure 2: Atomicity violation security flaw. This version of the
code has locks around every access to the shared pointer. A race
detector will not see this as an error. Nonetheless, it is still possible
to order the threads such that the buffer overflow exists.

executions, recording the observed atomic regions, and later
verifying that these regions are always accessed atomically.
The online detection mechanisms for these tools have slow-
downs that range from 25× [27] to upwards of 400× [31].

2.5 Dynamic Symbolic Execution
Symbolic execution follows a program as it runs and, rather
than working with concrete values for any particular vari-
able, attempts to calculate what possible values could exist
in the program. As the program calls functions with known
return values, passes conditional statements, and uses con-
crete values, the limits on any particular variable can be con-
strained. These symbolic values can be checked to find in-
puts that could cause errors such as memory corruption [23].

The system by Larson and Austin looks only at the con-
trol path executed on any particular run, constraining sym-
bolic variables to match the bounds that are imposed by the
current path. It tests memory accesses along the executed
path to find if they could be corrupted by slightly different
inputs that still made it to this state. Tools like DART, on the
other hand, start with completely unconstrained inputs and
systematically search for bugs in all possible control paths
[14]. Godefroid et al. claim that their symbolic execution
is “many times slower than [running] ... a program”, while
Larson and Austin show overheads between 13× and 220×.

3. Sampling for Dynamic Analyses
Because they can only test a single path through a program
per execution, dynamic analyses benefit from observing nu-
merous program executions with different inputs. Figure 3
demonstrates a simple example of this. If an error existed in
basic block D of this control flow graph, a dynamic analysis
would be unable to observe it until the program executed the
code within that block. In this case, it would take an average
of 10,000 executions of the program before the tool would
observe the problem. Note that we are ignoring (for the sake
of brevity) that a static analysis would find this error easily;
this limitation is also true in more complicated examples.

To this end, dynamic analyses can be more effective when
performed by a large population of tester. Ideally, these tests
would be run by end-users, as they run the program more

.99 .01

.01.99

Figure 3: Dynamic analysis may not always catch bugs. This is
a control flow diagram with weighted random probabilities at each
branch. It takes an average of 10,000 executions to run the code
within basic block D. If an bug exists there, a dynamic analysis
will only find it 0.01% of the time.

often than developers and use inputs that developers may
not think to test. Unfortunately, it is unlikely that end-users
would be willing to purchase programs that have been modi-
fied to be 2×, let alone 200×, slower. Few would purchase a
faster computer to run security checks, and it is doubtful that
users who pay for CPU time (such as cloud computing cus-
tomers) would wish to centuple their costs in order to find
errors, regardless of the security benefits.

The following sections look at works that have increased
the performance of a variety of dynamic analyses by per-
forming sampling. In such systems, small portions of the
program are analyzed during each run, allowing perfor-
mance increases over a system that constantly checks the
program. In a well-designed sampling system, the ability
to observe errors is related to the sampling rate and perfor-
mance. Lower sampling rates increase the performance but
lower the probability of finding any particular error.

This accuracy reduction can potentially be offset by the
large increase in the number of testers. As a simple exam-
ple: if sampling analysis catches 10% of the executed errors
in a program, and were used to test the example in Figure 3,
it would catch the error once in every 100,000 executions. If
5000 users were to run these analyses, each would only need
to run the program an average of 20 (rather than 10,000 or
100,000) times before the error would be observed some-
where and a report could be returned to the developer. This
increase in population not only offsets the accuracy loss due
to sampling, but alleviates some of the problem of only ob-
serving errors on executed paths.

This paper will not go into details of the mechanisms for
bug triage with this type of system. However, Liblit and oth-
ers have done a great deal of work designing mechanisms for
pinpointing the cause of errors using the numerous reports
sent from highly distributed bug detection systems [7, 25].

3.1 Sampling for Performance Analysis
While performance analysis is not a security test, it is ed-
ucational to review the works on sampling in this area.
Arnold and Ryder showed software mechanisms for sam-
pling performance analyses [1], as did Hirzel and Chilimbi
[19]. These mechanisms, in a broad sense, enter the anal-
ysis on certain software conditions, profile some instruc-
tions, and then leave analysis until the next condition. Hirzel



randomly assert(x!=NULL);
x→data = 5;
randomly assert(y!=NULL);
y→data = x→data2;

(a) Static Code

x→data = 5;
assert(y!=NULL);
y→data = x→data2;

(b) Dynamic Run 1

assert(x!=NULL);
x→data = 5;
y→data = x→data2;

(c) Dynamic Run 2

x→data = 5;
y→data = x→data2;

(d) Dynamic Run 3

Figure 4: Sampling for assertion analyses. This system has a random probability of performing any particular test. It is possible that
x==NULL in, e.g., (4b). However, with a large population, error will be caught proportional to the percent of time each assertion is enabled.

and Chilimbi showed that they were able to gather accurate
performance profiles at overheads of overheads as low as
3–18% (compared to 30%–10× for non-sampled analysis).

The concept of sampling is so well ingrained into the
performance analysis community that commodity proces-
sors have dedicated performance sampling hardware. While
taking interrupts on performance counter rollover is one of
the most common ways of analyzing samples of events [40],
modern processors include sampling facilities such as Intel’s
Precise Event Based Sampling (PEBS) [21]. Such mecha-
nisms amortize interrupt costs by automatically storing in-
formation on a subset of instructions or events into physical
memory buffers without involving software.

3.2 Sampling for Assertion Checking
Liblit et al. described an instruction-based method of sam-
pling assertion tests, as demonstrated in Figure 4 [24]. As
long as the checks are not related to one another, it is pos-
sible to perform sampling by only enabling a random subset
of the assertions during each execution. They showed that
performing this type of sampling was able to lower the max-
imum overhead of their analysis from 2.81× to 26% when
sampling one out of every thousand checks. They demon-
strate that such sampling rates can find uncommon errors
with user populations of moderate size.

Hauswirth and Chilimbi performed similar types of sam-
pling in order to do memory leak detection [18]. Their sam-
pling mechanism enables checks for groups of instructions
so as to reduce the overhead of deciding when to enable
the tool. They also showed that sampling reduces overheads
(from an estimated 5× to 5%), though about 7% of their er-
ror reports falsely identified active pages as leaked.

3.3 Sampling for Dynamic Information Flow Tracking
We recently described mechanisms for sampling dynamic
dataflow analyses, such as those described in Section 2.2
[15]. Because false positives and extraneous false negatives
can occur if we randomly sample code, dataflow analysis
sampling requires that instructions operating on related data
be analyzed together. It is possible that these instructions
are not located near to one another (in space or in time), so
we described the concept of data-based sampling, as shown
in Figure 5. Rather than observing a subset of instructions,
data-based sampling attempts to analyze a subset of the pro-
gram’s dataflows. We previously described such sampling in
a hardware-assisted tool, though that system could not di-
rectly choose to stop analysis to lower overheads [17].

Arnold et al. showed a similar mechanism of object-based
analysis sampling that used the extensive program informa-
tion available to a Java virtual machine. Instead of checking
a subset of dynamic tests, their system only performed anal-
yses (ranging from assertion checks to techniques such as
typestate checking) on a subset of instantiated objects [2].

Both works demonstrated that this type of sampling gives
users control of performance, with the lowest overheads
sitting within a few percent of a system running no analysis.
Nonetheless, they maintained high error detection accuracy
relative to the performance. We showed that one particular
error could be found 0.1% of the time at a 10% slowdown.

3.4 Sampling for Concurrency Tests
LiteRace logs memory accesses and synchronization opera-
tions and performs offline data race detection on them. As
Marino et al. point out, logging a small, random sample of
the memory accesses will allow many races to be detected
while significantly reducing the logging overhead. All syn-
chronization points must still be logged, or the sampling sys-
tem may cause false positives. By choosing to log cold-path
code at a much higher rate, they were able to reduce the run-
time overhead from 651% to 28%, while still detecting about
70% of the observable data races [28].

PACER performs online race detection, but enables the
detector for long intervals. When the analysis is later dis-
abled, each variable is sent through one last check when it is
next accessed. In doing so, Bond et al. showed that it is pos-
sible to find races in rough proportion to the sampling rate
while still allowing control over performance [5].

There is little work on sampling atomicity violation de-
tection in the classic sense. Rather than attempting to sam-
ple previous atomicity violation mechanisms, Jin et al. look
at a new way of detecting atomicity violations by keeping
track of samples of data sharing statistics from many user
runs. They then trace program crashes back to these errors
using statistical analyses, finding both data races and atom-
icity violations [22]. This type of analysis would not be pos-
sible without sampling, showing that distributed sampling
can enable new analyses that were not possible before.

4. Future Research Directions
The previous works on dynamic analysis sampling demon-
strate the power and effectiveness of such techniques. In
these tools, sampling has allowed users or developers to con-
trol the slowdowns caused by dynamic correctness checks,



(a) Static Code (b) Dynamic Run 1 (c) Dynamic Run 2 (d) Dynamic Run 3

Figure 5: Sampling for DIFT. Instead of enabling analysis for random individual instructions, DIFT sampling must attempt to follow entire
shadow dataflows. If a point early in the dataflow is skipped, all values later in the dataflow could be incorrect, leading to needless false
negatives. Care must also be taken in the sampling system to avoid false positives.

significantly reducing overheads at low sampling rates. De-
spite these benefits, there are still unsolved research ques-
tions in this area. Examples include:

• There are analyses that currently have no sampling mech-
anisms. Examples include more complicated DIFT tests,
symbolic execution, and traditional atomicity violation
detection systems. It may not be trivial to sample these.
For example, naı̈ve symbolic execution sampling may set
symbolic variables to concrete values when analysis is
forcibly disabled. This may cause the tool to lose much
of its power if analysis is disabled often.
• There may be new dynamic analyses that are possible

only in distributed sampling systems. The cooperative
concurrency error system described by Jin et al. is an ex-
ample of this [22]. The mechanisms they describe cannot
directly detect bugs and would have high overheads in
non-sampling systems. Nevertheless, by analyzing large
numbers of these observations sampled from buggy runs,
it is possible to find the locations of concurrency errors at
low overhead. Can sampling be used to make new tests?
• There may be better ways of performing data-based sam-

pling. Current techniques randomly remove meta-data
with no regard for the difficulty of analyzing very large
dataflows. The probability of completely observing a
large dataflow is therefore described by a geometric dis-
tribution on the number of attempts to stop. There may be
better ways of doing this, or perhaps mechanisms could
be built to optimize the choices over multiple executions.
• Similarly, it may be possible for the distributed analysis

systems to coordinate their sampling decisions. In this
case, it could be possible to optimize these decisions
to attain high coverage for the whole population. These
choices will probably depend on the type of analysis.
• It would be interested to study the performance decreases

and latency increases that most users would tolerate
in sampling systems. Few studies focus on such top-
ics; our searches mostly found decades-old work with
such claims as “. . . response should begin within two sec-
ond. . . ” [30]. Works such as that by Shye et al., that look
directly at user dissatisfaction with slowdowns, are an
excellent step in this direction [39].

There are also engineering problems that must be solved
if analysis sampling is to be used in practice.

• Few dynamic analysis tools currently allow sampling. No
Valgrind tools, commercial race detectors, or other sys-
tems of this nature allow users to sample their analy-
ses. High-quality analysis systems would need to offer a
push-button option to enable sampling before most devel-
opers could to utilize this technology. Liblit’s Coopera-
tive Bug Isolation project allows some simple instrumen-
tation sampling [25], as does Holmes, which integrates
into Microsoft Visual Studio [7]. However, both are pri-
marily used to link crashes to their most likely source,
rather than probabilistically find errors as they occur.
• There are few libraries to help sampling and distributed

bug reporting in dynamic analysis tools. Tool writers who
use Valgrind, for instance, do not have ready-made sam-
pling libraries; they would instead need to rewrite these
mechanisms for each tool. Tool writers would also need
to begin integrating libraries such as Google’s Breakpad
into their tools if they expect to return bug reports.
• Limited back-end structure for accepting distributed re-

ports exists. Even if developers were to modify their tools
to perform sampling, the mechanisms for accepting these
reports, performing bug triage, and statistically inferring
which bugs lead to errors are not well-supported within
the dynamic analysis community. Most tools currently
emit error reports to local files or to standard outputs,
as they are designed to be run only by the developer.
There would need to be work to integrate systems such
as Mozilla’s Socorro into any popular software that be-
gan to use distributed software analysis.

In summary, while dynamic analysis sampling is an area
of work that promises highly-beneficial results, it also has
a number of interesting research and engineering topics re-
maining. We feel that dynamic analysis sampling has great
future potential and should be the focus of further work
within the dynamic security analysis community.
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