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Abstract
Modern CPUs employ Dynamic Voltage and Frequency
Scaling (DVFS) to boost performance, lower power, and
improve energy efficiency. Good DVFS decisions re-
quire accurate performance predictions across frequen-
cies. A new hardware structure for measuring lead-
ing load cycles was recently proposed and demonstrated
promising performance prediction abilities in simulation.

This paper proposes a method of leveraging exist-
ing hardware performance monitors to emulate a lead-
ing loads predictor. Our proposal, LL-MAB, uses ex-
isting miss status handling register occupancy informa-
tion to estimate leading load cycles. We implement
and validate LL-MAB on a collection of commercial
AMD CPUs. Experiments demonstrate that it can accu-
rately predict performance with an average error of 2.7%
using an AMD OpteronTM4386 processor over a 2.2x
change in frequency. LL-MAB requires no hardware- or
application-specific training, and it is more accurate and
requires fewer counters than similar approaches.

1 Introduction
Dynamic voltage and frequency scaling (DVFS) is
used to optimize performance under power and energy
constraints, typically under the control of the OS or
firmware. One of the key challenges of utilizing DVFS
effectively is dynamically predicting the performance
impact of frequency changes for arbitrary applications.
This can be difficult because program execution time
does not depend solely on core frequency. While some
sections of a program will run faster at higher frequen-
cies, others are limited by non-core components, such
as DRAM latency. Because of this, simple linear scal-
ing models (where performance is directly proportional
to frequency) often yield inadequate estimates [5].

Unfortunately, it can be difficult to predict the effect
of memory accesses on performance. Not all memory
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accesses cause stalls to the core because of caches in the
core clock domain. In addition, processors can exploit
memory-level parallelism (MLP) by overlapping multi-
ple cache misses. As such, not all cache misses directly
affect the performance. Finally, DRAM access latency
varies with access patterns, making it difficult to predict
time spent waiting on memory from access counts alone.

One promising approach for predicting DVFS perfor-
mance is the recently proposed leading loads model [5,
7, 10], which splits the execution time of an applica-
tion into time spent in the core (which changes along
with frequency) and in the memory (which does not). It
then uses new leading load performance counters to ac-
curately estimate this memory time. Simulations demon-
strated that this approach could predict application per-
formance under DVFS with an order of magnitude higher
accuracy than previously proposed models, while requir-
ing no training (unlike regression-based models). These
results led the authors to suggest that hardware support
for leading loads should be added to future processors.

This paper demonstrates how to leverage existing
hardware performance counters that measure miss status
handling register (MSHR) activity on commodity AMD
processors in order to approximate a leading loads per-
formance predictor. This predictor can accurately esti-
mate the performance impact of DVFS changes on arbi-
trary applications running on real hardware. It requires
no hardware- or application-specific training, and uses
only a small number of performance counters.

We validate our method on three different AMD pro-
cessors across multiple hardware generations. We com-
pare our technique with previously proposed predictors
and explain how it is different from an ideal leading load
predictor. We show that our model provides a more accu-
rate prediction with less variance in error rate than other
predictors that work on existing hardware. To the best
of our knowledge, this is the first time the leading loads
model has been demonstrated on real hardware.



2 Related Work
There is a large body of work on performance modeling
under frequency variation. Rountree et al. [10] and Eeck-
hout [4] describe many of the previous techniques. Eeck-
hout categorizes analytic performance estimation models
into empirical models, which use black-box approaches,
and mechanistic models which are designed from the un-
derlying machine principals. Some of the most popu-
lar empirical models are based on regression [11]. They
can have good accuracy, but need many input variables
and long training runs. Their accuracy is a function of
the quality of the training set, and they must be retrained
whenever the underlying machine changes.

Mechanistic models often include simplifications and
abstractions to make the problem tractable. Proportional
scaling models (or “linear scaling”) are the simplest and
assume that performance scales linearly with frequency.
These are simple to implement, but only work well when
the application spends little time accessing memory.

Recent mechanistic DVFS estimation models are built
from the underlying concept that program execution time
is split into core time (time doing work) and memory time
(time stalled waiting for memory). Core time is inversely
proportional to frequency. However, because the latency
to memory does not change when the core’s frequency
changes, memory time is not affected by DVFS.

The difficulty of this performance estimation mech-
anism lies in appropriately characterizing these times.
Modern processors can execute instructions out of or-
der, with multiple loads accessing memory in parallel.
Simple memory models do not capture this, which leads
to incorrect estimates. For example, stall models moni-
tor the amount of time that a core is not committing in-
structions and assume that this is due to time spent in the
memory system [5]. We will show later that this is often
an inaccurate assumption, since processors can stall for
numerous reasons besides memory latency.

2.1 Leading Loads (LL) Model
Leading loads were simultaneously defined by three
groups attempting to solve the problems of these lin-
ear and stall models [5, 7, 10]. They utilized the insight
that, while many memory accesses may be outstanding,
only one can stall the pipeline. As such, the first non-
speculative load that misses in the last level of the core’s
cache is considered a leading load. The time between
the miss and when it returns is assumed to be memory
time. This time is counted even if core work continues
under the miss. All misses until this load returns are not
leading loads – they represent MLP . A simplifying as-
sumption of this model is that these MLP accesses will
not eventually stall the pipeline.

Once a leading load returns, the next miss becomes
the leading load. All time when there is no leading load
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Figure 1: Leading loads example.

is counted as core time. This is illustrated in Figure 1,
where there are 3 load misses: A, B and C. The misses
begin at t1, t2, and t6, then finish at t4, t5, and t8, respec-
tively. A and C are leading loads; their delay is memory
time. B is not a leading load because a leading load (A)
already exists; it is MLP and does not stall the core.

There are limitations to this model, such as the as-
sumption that MLP loads will not stall the pipeline, and
its inability to deal with bandwidth-bound applications
[9]. However, the simulated results for these counters
appear promising (with estimation errors of 0.2%), and
the hardware is simple, requiring only a single counter
per core. The major impediment was the apparent lack
of leading load hardware performance events, which pre-
vented testing this mechanism outside of simulation.

2.2 Green Governor (GG) Model
Because their newly proposed leading load counter did
not yet exist in hardware, Spiliopoulos et al. also devised
a simpler model in their Green Governors work that used
existing counters [12]. They monitor the number of last
level cache (LLC) misses and number of cycles without
a retired instruction. They then characterize the average
miss latency using a tool such as lmbench [8] and multi-
ply this delay by the number of LLC misses to estimate
memory time. If the amount of time not retiring instruc-
tions is less than this, the smaller time is used instead.

When predicting the program’s performance from fre-
quency f to f ′, this model can be described by Equa-
tion 1. The memory time Mt is calculated using stall cy-
cles S, the number of LLC misses N, the per-miss delay
time D, and the original frequency f . The new execution
time T ′ is then calculated from Mt , the original execution
time T , and the ratio of frequency change.

T ′ = (T −Mt)×
f
f ′
+Mt ;Mt = min(

S
f
,N×D) (1)

This model makes a number of simplifying assumptions,
since it is constrained by existing hardware. First, it as-
sumes that LLC misses have a constant latency, since
it only measures miss count. Second, it ignores MLP.
Nonetheless, with careful tuning, it can yield reasonably
accurate performance estimates.
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3 Implementing Leading Loads

On AMD CPUs, a Miss Address Buffer (MAB)1 is a
structure that tracks a single outstanding cache miss.
Misses are assigned to available MABs based on a fixed
priority; a miss that occurs when the highest priority
MAB is available will always be assigned to that MAB.
The first miss will be assigned to the highest priority
MAB, as will the next miss after that one returns. Thus,
the amount of time that the highest priority MAB is oc-
cupied represents the aggregate latency of all of the lead-
ing loads. This MAB’s occupancy time can be measured
directly (in clock cycles) using a hardware performance
counter. To the best of our knowledge, no such mecha-
nism exists in processors from other vendors.

We thus describe our LL-MAB model, which assumes
that the wall-clock occupancy time of the highest pri-
ority MAB will remain unchanged across different core
frequencies, since its occupancy relies on values return-
ing from memory. The remaining execution time, when
nothing is in the highest priority MAB, is core time,
which is inversely proportional to frequency. More for-
mally, if an application’s execution time is T at frequency
f and the highest priority MAB is occupied for M clock
cycles, then the predicted execution time T ′ of the same
application at a frequency f ′ is given by Equation 2.

T ′ =
M
f
+(T − M

f
)× f

f ′
(2)

While Family 15h cores measure MAB occupancy
time for L2 cache misses, Family 10h cores measure L1
cache misses. For the purposes of implementing the LL
model, this introduces two inaccuracies. First, a leading
load from the L1 may still hit in the L2, which is also
in the core clock domain. Second, for leading loads that
miss in both the L1 and L2 caches, the MAB occupancy
time includes the latency of the request from the L1 to
L2. Neither should be counted as leading load time, since
they will change as the core frequency changes.

In addition, the MABs hold prefetch misses, which
should not be counted as leading loads because they will
not cause the core to stall. We will show in Section 4
that these inaccuracies are small enough that LL-MAB
model is still more accurate than existing predictors.

We implemented LL-MAB on three different AMD
processors with two different microarchitectures, de-
scribed in Table 1. These cores assign MABs in slightly
different orders: Family 10h and Family 15h processors
give highest priority to MAB1 and MAB0, respectively.
Our LL-MAB implementation uses these counters to es-
timate the leading load time.

We also implemented an enhanced version of the
Green Governor (GG) performance estimation model for

1Commonly known as a Miss Status Handling Register (MSHR).

Table 1: Processor configurations and hardware events.

AMD AMD AMD
PhenomTMII OpteronTM A10-

X6 1090T 4386 5800K
Family 10h 15h 15h

Core Freq. 1.6/3.2 GHz 1.4/3.1 GHz 1.4/3.8 GHz
DRAM DDR3-800 DDR3-1600 DDR3-1066

MAB Counter MAB1 MAB0 MAB0
L3 Latency 13.0ns 32.2ns n/a
L2 Latency 24.7ns 12.8ns 32.3ns

H/W Event Event Select Code
E1 Exe. Cyc. 0x00410076 0x00410076 0x00410076
E2 MAB Cyc. 0x00410169 0x00410069 0x00410069
E3 Stall Cyc. 0x014100c0 0x014100c0 0x014100c0
E4 L3 Misses 0x4004107e0 0x40040f7e1 No L3 Cache

0x40040ffe1
E5 L2 Misses 0x0001077e 0x00410043 0x00410043

comparison. Because the L3 cache in AMD processors
is in a separate clock domain from the cores, its access
time will remain constant at different core frequencies.
Spiliopoulos et al. measured last level cache misses,
which means that they did not measure L2 (core domain)
misses that hit in the L3 (memory domain). To compare
both of these designs, we build two GG models: one that
counts L2 misses, and one that counts L3 misses.

Different memory access patterns cause different
DRAM delays. As such, rather than using a single mem-
ory latency chosen arbitrarily from a microbenchmark,
we instead search the space of possible latencies to find
the value that yields the lowest estimation error. This
means that we are testing the algorithm on its training
data, which may yield optimistic results from the GG
model. However, this allows us to operate under the as-
sumption that the GG model’s latency has been chosen
well (which may not always be the case).

Finally, where possible, our GG models did not use
cache misses caused by prefetchers. On Family 15h
processors, specifying the appropriate selection of L3
performance events allows us to ignore prefetch misses.
However, this is not possible on Family 10h processors.

Table 1 shows the configurations of the systems we
measured and the specific performance events we used
to collect the data required by the predictors in our ex-
periments. All of the predictors use the Program Cy-
cles counter, though this could potentially be replaced by
the hard-coded timestamp counter to reduce counter re-
quirements. The linear estimation method uses only this,
while the stall model also uses Stall Cycles. LL-MAB
model needs only one additional counter: MAB Wait Cy-
cles. The GG models need 2 or 3 more. GG-L3 uses
Stall Cycles and L3 Misses (Family 15h uses 2 hardware
counters for this in order to remove prefetch misses). In
GG-L2, L3 Misses are replaced by L2 Misses.
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4 Evaluation Results and Analysis

4.1 Experimental Methodology
We validated our LL-MAB model using 66 single-
threaded benchmarks from the NAS Parallel Bench-
marks [1]2, PARSEC [2]3, Rodinia [3]4, and SPEC
CPU2006 [6]5. For comparison, we also tested the linear,
stall, GG-L2 and GG-L3 models.

The AMD PhenomTMII 1090T processor ran Canoni-
cal Ubuntu Desktop 12.04 (kernel 3.2.0-24), the AMD
OpteronTM4386 processor ran FedoraTM19 Desktop
(kernel 3.10.6-200), and the AMD A10-5800K proces-
sor ran CentOS release 6.4 (kernel 2.6.32-358.23.2). We
used msr-tools to set and read the performance coun-
ters, cpufreq to change DVFS states, and numactl to lock
each benchmark to a single core. For each processor, we
measured two frequencies, the higher at least twice the
lower. We then estimated the change in user-level un-
halted clock cycles between the two frequencies.

As mentioned, we chose the GG miss latency that pro-
vided the best average prediction accuracy across all of
the benchmarks, based on an exhaustive search of all pos-
sible latency values from 0 to 200ns with a step size of
0.1ns. These values are also listed in Table 1. Because
the L3 misses on the AMD PhenomTMII 1090T proces-
sor include prefetch misses, the ideal L3 miss latency
was lower than the L2 miss latency. These values are up
to 2× different than those measured with microbench-
marks, which implies that our GG results are optimistic.

4.2 Experimental Evaluation
Figures 2, 3, and 4 show the average and standard de-
viation of the absolute value of the prediction errors. In
this case, error is the difference between the estimated
and the actual cycles at one frequency when gathering
statistics at the other. Unless noted, all results are listed
in the order: AMD PhenomTMII 1090T processor, AMD
OpteronTM4386 processor, AMD A10-5800K processor.
The stall-based model had much higher average error
than the others and is not shown. Its average errors were
21.7%, 31.3% and 32.0%, respectively.

As shown in the figures, our LL-MAB predictor had
the lowest average error and standard deviation for all
three processors. The GG-L2 and GG-L3 models are
slightly worse, but have similar accuracy to one an-
other. It is worth reiterating that their latency values
were carefully tuned to reduce error rate, so these num-
bers do not necessarily mean that one is better than the
other. Nonetheless, LL-MAB model’s average error was

2NPB: All 10 SER programs; size ”B” for DC and ”C” for others.
3PARSEC: All 13 gcc-serial benchmarks with native inputs.
4Rodinia: bfs, b+tree, heartwall, hotspot, kmeans, lavaMD, leuko-

cyte, lud, particlefilter, pathfinder, srad, cfd, nw, streamcluster.
5SPEC CPU2006: All 29 benchmarks with ref inputs.

5.27%, 2.71%, and 4.80%, 1.22, 1.30, and 1.71 per-
centage points lower than the most accurate GG model.
Linear estimation had the worst average prediction error
among the models shown.

While a lower prediction error is preferred, the second
graph in each of these figures demonstrates the standard
deviation of these error rates. In this case, the LL-MAB
model had a much smaller variance in its errors, implying
a more consistent error rate. This is especially important
for performance estimation, since an outlier can lead to a
severe loss in performance or energy efficiency.

Figures 5 and 6 plot the absolute prediction error ver-
sus memory boundedness for each benchmark. As de-
scribed by Rountree et al. [10], memory boundedness
is the ratio of measured execution cycles at the two fre-
quencies. For compute-bound applications, the number
of execution cycles should be (approximately) fixed re-
gardless of the frequency, so the memory boundedness
should be (approximately) one. Larger values indicate
applications that spend more time in the memory system.

By definition, the linear model’s error is proportional
to the memory boundedness, so its error rate was highest
for memory-bound programs. The stall-based model, on
the other hand, exhibited large errors for compute-bound
programs, because it incorrectly assumed that compute-
bound applications with many pipeline stalls (due to, for
example, mispredicted branches) were memory bound.

The GG models use cache miss counts to reduce the
prediction error when the memory boundedness is low.
In this way, the GG models overcame the high error rate
of the stall-based model for more compute-bound appli-
cations, while keeping the relatively low error rate of the
stall-based model for more memory-bound applications.

Our LL-MAB model was accurate across a range of
benchmarks and hardware, because it more directly mea-
sures the time spent in the memory system. However, as
the memory boundedness increases, the limitations dis-
cussed in Section 3 cause some errors. For the programs
whose memory boundedness is greater than 1.1, the av-
erage absolute error of LL-MAB is still the lowest.

4.3 LL-MAB Model Discussion
LL-MAB demonstrates three primary advantages:

1. LL-MAB provides better average prediction accu-
racy. This was true despite the fact that we gave
our comparison point, GG, as many advantages as
possible. The accuracy of the GG models would be
even worse using directly measured miss latencies.

2. LL-MAB is easier to implement. It only requires
two performance counters, while the GG models
need three or four. The LL-MAB model also re-
quires no hardware- or application-specific training,
unlike Green Governor or regression models.
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(b) Standard deviation of the absolute prediction error.

Figure 2: Average and standard deviation of prediction errors on the AMD PhenomTMII 1090T processor.

0

2

4

6

8

10

12

NPB PARSEC SPEC INT SPEC FP Rodinia ALL

M
ea

n 
P

re
di

ct
io

n 
E

rr
or

 
(%

)

Linear
GG-L2
GG-L3
LL-MAB

(a) Average absolute prediction error.

0

2

4

6

8

10

12

NPB PARSEC SPEC INT SPEC FP Rodinia ALL

S
ta

n
d

ar
d

 D
ev

ia
ti

on
 (

%
)

(b) Standard deviation of the absolute prediction error.

Figure 3: Average and standard deviation of prediction errors on the AMD OpteronTM4386 processor.
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Figure 4: Average and standard deviation of prediction errors on the AMD A10-5800K processor.
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Figure 5: Prediction error vs. measured memory boundedness (higher means more time in the memory system).
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Figure 6: Error vs. memory boundedness on the AMD
A10-5800K processor.

3. LL-MAB is more flexible to system configuration
changes. For example, changing the DRAM fre-
quency of a machine would not impact LL-MAB.
Other models would require retraining.

Unlike the leading loads results shown in the literature,
LL-MAB has a higher average error rate, between 2.5%
and 5%. All three initial papers that modeled LL showed
average error rates of 0.2%, though Miftakhutdinov et al.
ran simulations with a more complex memory system
that showed worse LL results [9]. Regardless, these re-
sults used LL counters that did not have the limitations
of our MAB counter. For instance, they only counted
misses to the LLC, they had no hardware prefetchers, and
(often) assumed a constant delay to memory.

Others (such as those detailed by Rountree et al. [10])
demonstrate regression models on real hardware with
better accuracy than LL-MAB. We did not study these
in detail, because they have the disadvantage of requir-
ing offline training and more hardware counters.

5 Conclusion and Future Work
In this paper, we presented LL-MAB, the first DVFS per-
formance prediction model based on leading loads im-
plemented on existing hardware. Experiments show it
has better prediction accuracy than other state-of-the-art
models. Moreover, it requires fewer hardware counters,
is easier to use, and has less error variance. Because it
is built using existing hardware, it can easily be used by
software to enable online DVFS performance prediction
with no further hardware changes.

Future work could include using the LL-MAB predic-
tor over short periods for fine-grained DVFS decisions.
Similarly, a regression model with this counter may show
even better performance than previous regression mod-
els. Because LL-MAB requires so few hardware coun-
ters, it may also be possible to do online power estima-
tion by monitoring other energy-hungry events.

There are also simple modifications that could in-
crease the accuracy of the MAB event, such as filtering
prefetches. Unlike the scheme described by Miftakhut-

dinov et al. [9], which would require at least an adder for
every MAB, these approaches may yield better results
with little added hardware.
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