
Horton Tables: Fast Hash Tables for In-Memory Data-Intensive Computing

Alex D. Breslow∗

AMD Research
Dong Ping Zhang

AMD Research
Joseph L. Greathouse

AMD Research
Nuwan Jayasena
AMD Research

Dean M. Tullsen
UC San Diego

Abstract

Hash tables are important data structures that lie at the
heart of important applications such as key-value stores
and relational databases. Typically bucketized cuckoo
hash tables (BCHTs) are used because they provide high-
throughput lookups and load factors that exceed 95%.
Unfortunately, this performance comes at the cost of re-
duced memory access efficiency. Positive lookups (key
is in the table) and negative lookups (where it is not) on
average access 1.5 and 2.0 buckets, respectively, which
results in 50 to 100% more table-containing cache lines
to be accessed than should be minimally necessary.

To reduce these surplus accesses, this paper presents
the Horton table, a revamped BCHT that reduces the ex-
pected cost of positive and negative lookups to fewer than
1.18 and 1.06 buckets, respectively, while still achiev-
ing load factors of 95%. The key innovation is remap
entries, small in-bucket records that allow (1) more el-
ements to be hashed using a single, primary hash func-
tion, (2) items that overflow buckets to be tracked and
rehashed with one of many alternate functions while
maintaining a worst-case lookup cost of 2 buckets, and
(3) shortening the vast majority of negative searches to 1
bucket access. With these advancements, Horton tables
outperform BCHTs by 17% to 89%.

1 Introduction

Hash tables are fundamental data structures that are
ubiquitous in high-performance and big-data applica-
tions such as in-memory relational databases [12, 17, 40]
and key-value stores [20, 24]. Typically these workloads
are read-heavy [4, 62]: the hash table is built once and
is seldom modified in comparison to total accesses. A
hash table that is particularly suited to this behavior is a
bucketized cuckoo hash table (BCHT), a type of open-

addressed hash table.1 BCHTs group their cells into
buckets: associative blocks of two to eight slots, with
each slot capable of storing a single element.

When inserting an element, BCHTs typically select
between one of two independent hash functions, each of
which maps the key-value pair, call it KV , to a differ-
ent candidate bucket. If one candidate has a free slot,
KV is inserted. In the case where neither has spare
slots, BCHTs resort to cuckoo hashing, a technique that
resolves collisions by evicting and rehashing elements
when too many elements vie for the same bucket. In
this case, to make room for KV , the algorithm selects an
element, call it KV ′, from one of KV ’s candidate buck-
ets, and replaces it with KV . KV ′ is then subsequently

∗This author is also a PhD student at UC San Diego. Send corre-
spondence regarding the work to abreslow@cs.ucsd.edu.

rehashed to its alternate candidate using the remaining
hash function. If the alternate bucket for KV ′ is full, KV ′

evicts yet another element and the process repeats until
the final displaced element is relocated to a free slot.

Although these relocations may appear to incur large
performance overheads, prior work demonstrates that
most elements are inserted without displacing others and,
accordingly, that BCHTs trade only a modest increase in
average insertion and deletion time in exchange for high-
throughput lookups and load factors that often exceed
95% with greater than 99% probability [19], a vast im-
provement over the majority of other techniques [60,64].

BCHTs, due to this space efficiency and unparalleled
throughput, have enabled recent performance break-
throughs in relational databases and key-value stores
on server processors [20, 60, 64] as well as on ac-
celerators such as GPUs [71], the Xeon Phi [15, 60],
and the Cell processor [34, 64]. However, although
BCHTs are higher-performing than other open address-
ing schemes [60, 64], we find that as the performance of
modern computing systems becomes increasingly con-
strained by memory bandwidth [1, 11, 52, 70], they too
suffer from a number of inefficiencies that originate from
how data is fetched when satisfying queries.

Carefully coordinating table accesses is integral to
throughput in hash tables. Because of the inherent ran-
domness of hashing, accesses to hash tables often ex-
hibit poor temporal and spatial locality, a property that
causes hardware caches to become increasingly less ef-
fective as tables scale in size. For large tables, cache
lines containing previously accessed hash table buckets
are frequently evicted due to capacity misses before they
are touched again, degrading performance and causing
applications to become memory-bandwidth-bound once
the table’s working set cannot be cached on-chip. Given
these concerns, techniques that reduce accesses to addi-
tional cache lines in the table prove invaluable when op-
timizing hash table performance and motivate the need
to identify and address the data movement inefficiencies
that are prevalent in BCHTs.

Consider a BCHT that uses two independent hash
functions to map each element to one of two candidate
buckets. To load balance buckets and attain high load
factors, recent work on BCHT-based key-value stores
inserts each element into the candidate bucket with the
least load [20,71], which means that we expect half of the
elements to be hashed by each function. Consequently,
on positive lookups, where the queried key is in the ta-
ble, 1.5 buckets are expected to be examined. Half of

1Under open addressing, an element may be placed in more than
one location in the table. Collisions are resolved by relocating elements
within the table rather than spilling to table-external storage.

the items can be retrieved by examining a single bucket,
and the other half require accessing both. For negative
lookups, where the queried key is not in the table, 2
lookups are necessary. Given that the minimum num-
ber of buckets that might need to be searched (for both
positive and negative lookups) is 1, this leaves a very sig-
nificant opportunity for improvement.

To this end, this paper presents Horton tables,2 a care-
fully retrofitted bucketized cuckoo hash table, which
trades a small amount of space for achieving positive and
negative lookups that touch close to 1 bucket apiece. Our
scheme introduces remap entries, small and succinct in-
bucket records that enable (1) the tracking of past hash-
ing decisions, (2) the use of many hash functions for lit-
tle to no cost, and (3) most lookups, negative and posi-
tive alike, to be satisfied with a single bucket access and
at most 2. Instead of giving equal weight to each hash
function, which leads to frequent fetching of unneces-
sary buckets, we employ a single primary hash func-
tion that is used for the vast majority of elements in the
table. By inducing such heavy skew, most lookups can
be satisfied by accessing only a single bucket. To permit
this biasing, we use several secondary hash functions (7
in our evaluations) to rehash elements to alternate buck-
ets when their preferred bucket lacks sufficient capacity
to directly store them. Rather than forgetting our choice
of secondary hash function for remapped elements, we
convert one of the slots in each bucket that overflows into
a remap entry array that encodes which hash function
was used to remap each of the overflow items. It is this
ability to track all remapped items at low cost, both in
terms of time and space, that permits the optimizations
that give Horton tables their performance edge over the
prior state-of-the-art.

To achieve this low cost, instead of storing an ex-
plicit tag or fingerprint (a succinct hash representation
of the remapped object) as is done in cuckoo filters [21]
and other work [8, 13], we instead employ implicit tags,
where the index into the remap entry array is a tag com-
puted by a hash function Htag on the key. This space
optimization permits all buckets to use at most 64 bits of
remap entries in our implementation while recording all
remappings, even for high load factors and tables with
billions of elements. As a further optimization, we only
convert the last slot of each bucket into a remap entry
array when necessary. For buckets that do not overflow,
they remain as standard buckets with full capacity, which
permits load factors that exceed 90 and 95 percent for 4-
and 8-slot buckets, respectively.

Our main contributions are as follows:

• We develop and evaluate Horton tables and demon-
strate speed improvements of 17 to 89% on graph-
ics processors (GPUs). Although our algorithm is
not specific to GPUs, GPUs represent the most ef-
ficient platform for the current state of the art, and
thus it is important to demonstrate the effectiveness
of Horton tables on the same platform.

• We present algorithms for insertions, deletions, and
lookups on Horton tables.

• We conduct a detailed analysis of Horton tables by
deriving and empirically validating models for their

2Named for elephants’ remarkable recall powers [18].

expected data movement and storage overheads.
• We investigate additional optimizations for inser-

tions and deletions that further reduce data move-
ment when using multiple hash functions, reclaim-
ing remap entries once their remapped elements are
deleted, even when they are shared by two or more
table elements.

This paper is organized as follows: In Section 2 we
elaborate on the interplay between BCHTs and single in-
struction multiple data (SIMD) processors, in Section 3
we describe BCHTs, in Section 4 we provide a high-level
overview of Horton tables, in Section 5 we describe the
lookup, insertion, and deletion algorithms for Horton ta-
bles, and then in Section 6 we present our models for
Horton tables that include the cost of insertions, dele-
tions, and remap entry storage. Section 7 covers our ex-
perimental methodology, and Section 8 contains our per-
formance and model validation results. Related work is
described in Section 9 and Section 10 concludes.

2 The Role of SIMD

In key places in this paper, we make references to
SIMD and GPU architectures. Although not necessary
for understanding our innovations, these references are
present due to SIMD’s importance for high-throughput
implementations of in-memory hash tables and BCHTs
in particular.

Recent work in high-performance databases that lever-
ages BCHTs has shown that SIMD implementations
of BCHTs, as well as larger data processing primi-
tives, are often more than 3× faster than the highest
performing implementations that use scalar instructions
alone [6, 44, 60]. These SIMD implementations enable
billions of lookups per second to be satisfied on a sin-
gle server [60, 71], an unimaginable feat only a few
years ago. At the same time, SIMD implementations
of BCHTs are faster than hash tables that use other
open addressing methods [60, 64]. Such implementa-
tions are growing in importance because both CPUs and
GPUs require writing SIMD implementations to maxi-
mize performance-per-watt and reduce total cost of own-
ership.

For these reasons, we focus on a SIMD implementa-
tion of BCHTs as a starting point and endeavor to show
that all further optimizations provided by Horton tables
not only have theoretical models that justify their perfor-
mance edge (Section 6) but also that practical SIMD im-
plementations deliver the performance benefits that the

theory projects (Section 8).3

3 Background on BCHTs

In this section, we describe in detail BCHTs and the
associated performance considerations that arise out of
their interaction with the memory hierarchy of today’s
systems.

To begin, we illustrate two common scenarios that are
triggered by the insertion of two different key-value pairs
KV1 and KV2 into the hash table, as shown in Figure 1.
Numbered rows correspond to buckets, and groups of

3For a primer on SIMD and GPGPU architectures, we recommend
these excellent references: H&P (Ch. 4) [30] and Keckler et al. [39].

a ď Đ EMPTY

d e f g
h EMPTY EMPTY EMPTY

i j k l
ŵ Ŷ o p
Ƌ ƌ s EMPTY

t u ǀ ǁ

HϮ

Hϭ

INSERT KVϭ

KEY VALUE

INSERT KVϮ

HϮ

Hϭ

ϯ
ϰ
ϱ
ϲ

Ϯ
ϭ
Ϭ

Figure 1: Inserting items KV1 and KV2 into a BCHT

four cells within a row to slots. In this example, H1 and
H2 correspond to the two independent hash functions that
are used to hash each item to two candidate buckets (0
and 2 for KV1, 3 and 6 for KV2). Both H1 and H2 are a
viable choice for KV1 because both buckets 0 and 2 have
free slots. Deciding which to insert into is at the discre-
tion of the algorithm (see Section 3.3 for more details).

For KV2, both H1 and H2 hash it to buckets that are
already full, which is resolved by evicting one of the ele-
ments (in this case u), and relocating it and other conflict-
ing elements in succession using a different hash func-

tion until a free slot is found.4 So e moves to the empty
position in bucket 5, m to e’s old position, u to m’s old
position, and KV2 to u’s old position. Li, et al. demon-
strated that an efficient way to perform these displace-
ments is to first conduct a breadth-first search starting
from the candidate buckets and then begin moving ele-
ments only once a path to a free slot is discovered [47].

3.1 State-of-Practice Implementation

A number of important parameters affect the perfor-
mance of BCHTs. In particular, the number of hash func-
tions (f) and the number of slots per bucket (S) impact
the achievable load factor (i.e., how full a table can be
filled) as well as the expected lookup time. A hash table
with more slots per bucket can more readily accommo-
date collisions without requiring a rehashing mechanism
(such as cuckoo hashing) and can increase the table’s
load factor. Most implementations use four [20,60,64] or
eight [71] slots per bucket, which typically leads to one
to two buckets per hardware cache line. Using more slots
comes at the cost of more key comparisons on lookups,
since the requested element could be in any of the slots.

Increasing f , the number of hash functions, allows a
key-value pair to be mapped to more buckets, as each
hash function maps the item to one of f different buck-
ets. This improved flexibility when placing an item per-
mits the hash table to achieve a higher load factor. How-
ever, on lookups, more buckets need to be searched be-
cause the element could be in more locations. In practice,
f = 2 is used most often because it permits sufficient
flexibility in where keys are mapped without suffering
from having to search too many buckets [20, 54, 63].

BCHTs are primarily designed for fast lookups. The
get operation on any key requires examining the contents
of at most f buckets. Because buckets have a fixed width,

4So in this example, elements on the chain that were originally
hashed with H1 would be rehashed using H2 and vice versa.

the lookup operation on a bucket can be unrolled and effi-
ciently vectorized. These traits allow efficient SIMD im-
plementations of BCHTs that achieve lookup rates supe-
rior to linear probing and double-hashing-based schemes
on past and present server architectures [60, 64] and ac-
celerators such as Intel’s Xeon Phi [60].

3.2 Memory Traffic on Lookups

Like prior work, we divide lookups into two cate-
gories: (1) positive, where the lookup succeeds because
the key is found in the hash table, and (2) negative where
the lookup fails because the key is not in the table.

Prior work diverges on the precise method of access-
ing the hash table during lookups. The first method,
which we term latency-optimized, always accesses all
buckets where an item may be found [47, 64]. Another
technique, which we call bandwidth-optimized, avoids
fetching additional buckets where feasible [20, 71].

Given f independent hash functions where each of
them maps each item to one of f candidate buckets, the
latency-optimized approach always touches f buckets
while the bandwidth-optimized one touches, on average,
(f + 1)/2 buckets on positive lookups and f buckets on
negative lookups. For our work, we compare against the
bandwidth-optimized approach, as it moves less data on
average. Reducing such data movement is a greater per-
formance concern on throughput-oriented architectures
such as GPUs, since memory latency is often very effec-
tively hidden on these devices [23]. Thus, we compare
against the more bandwidth-oriented variant of BCHT,
which searches 1.5 buckets instead of 2 (or more, if there
are more hash functions) for positive lookups.

3.3 Insertion Policy and Lookups

Unlike the latency-optimized scheme, the bandwidth-
optimized algorithm searches the buckets in some de-
fined order. If an item is found before searching the
last of the f candidate buckets, then we can reduce the
lookup’s data movement cost by skipping the search
of the remaining candidate buckets. Thus if f is 2,
and we call the first hash function H1 and the second
H2, then the average lookup cost across all inserted
keys is 1 * (fraction of keys that use H1) +
2 * (fraction of keys that use H2). There-
fore, the insertion algorithm’s policy on when to use H1

or H2 affects the lookup cost.
Given that hash tables almost always exhibit poor tem-

poral and spatial locality, hash tables with working sets
that are too large to fit in caches are bandwidth-bound
and are quite sensitive to the comparatively limited off-
chip bandwidth. In the ideal case, we therefore want to
touch as few buckets as possible. If we can strongly fa-
vor using H1 over H2 during insertions, we can reduce the
percentage of buckets that are fetched that do not contain
the queried key, which reduces per-lookup bandwidth re-
quirements as well as cache pollution, both of which im-
prove lookup throughput.

Existing high-throughput, bandwidth-optimized
BCHT implementations [20, 71] attempt to load-balance
buckets on insertion by examining all buckets the key
can map to and placing elements into the buckets with
the most free slots. As an example, in Figure 1, KV1

would be placed in the bucket hashed to by H2. The

intuition behind this load balancing is that it both
reduces the occurrence of cuckoo rehashing, which is
commonly implemented with comparatively expensive
atomic swap operations, and increases the anticipated
load factor. Given this policy, H1 and H2 are both used
with equal probability, which means that 1.5 buckets are
searched on average for positive lookups. We refer to
this approach as the load-balancing baseline.

An alternative approach is to insert items into the first
candidate bucket that can house them. This technique re-
duces the positive lookup costs, since it favors the hash
functions that are searched earlier. We refer to this as the
first-fit heuristic. As an example, in Figure 1, KV1 would
be placed in the final slot of the top bucket of the table
even though bucket 2 has more free slots. This policy
means that items can be located with fewer memory ac-
cesses, on average, by avoiding fetching candidate buck-
ets that follow a successful match. When the table is not
particularly full, most elements can be inserted and re-
trieved by accessing a single table cache line.

Although prior work mentions this approach [19, 64],
they do not evaluate its performance impact on lookups.
Ross demonstrated its ability to reduce the cost of in-
serts but does not present data on its effect on lookups,
instead opting to compare his latency-optimized lookup
algorithm that always fetches f buckets to other open ad-
dressing methods and chaining [64]. Erlingsson et al. use
the first-fit heuristic, but their results focus on the num-
ber of buckets accessed on insertions and feasible load
factors for differing values of f and S (number of slots
per bucket) and not the heuristic’s impact on lookup per-
formance [19]. For the sake of completeness, we evalu-
ate both the load-balancing and first-fit heuristics in Sec-
tion 8.

One consequence of using first-fit is that, because it
less evenly balances the load across buckets, once the ta-
ble approaches capacity, a few outliers repeatedly hash to
buckets that are already full, necessitating long, cuckoo
displacement chains when only 2 hash functions are
used. Whereas we were able to implement the insertion
routine for the load-balancing baseline and attain high
load factors by relocating at most one or two elements,
the first-fit heuristic prompted us to implement a serial
version of the BFS approach described by Li et al. [47]
because finding long displacement chains becomes nec-
essary for filling the table to a comparable level. One so-
lution to reducing these long chains is to use more hash
functions. However, for BCHTs, this increases both the
average- and worst-case lookup costs because each item
can now appear in more distinct buckets. In the sections
that follow, we demonstrate that these tradeoffs can be ef-
fectively circumvented with our technique and that there
are additional benefits such as fast negative lookups.

4 Horton Tables

Horton tables are an extension of bucketized cuckoo
hash tables that largely resolve the data movement is-
sues of their predecessor when accessing buckets during
lookups. They use two types of buckets (Figure 2): one
is an unmodified BCHT bucket (Type A) and the other
bucket flavor (Type B) contains additional in-bucket
metadata to track elements that primarily hash to the
bucket but have to be remapped due to insufficient ca-

KeǇ‐Value [ϳ] Reŵap EŶtrǇ [Ϯϭ]

ϱϲ ďǇtes ϴ ďǇtes ;ϭ uŶused ďitͿ

KeǇ Value ϳǆ Ϯϭǆ FuŶĐtioŶ ID
ϯ ďits ;eŵptǇ + ϳ alterŶate ďuĐketsͿ ϰ + ϰ ďǇtes

Type B

KeǇ‐Value [ϴ]

ϲϰ ďǇtes

KeǇ Value ϴǆ
ϰ + ϰ ďǇtes

Type A

Figure 2: Horton tables use 2 bucket variants: Type A
(an unmodified BCHT bucket) and Type B (converts final
slot into remap entries)

pacity. All buckets begin as Type A and transition to
Type B once they overflow, enabling the aforementioned
tracking of displaced elements. This ability to track all
remapped items at low cost, both in terms of time and
space, permits the optimizations that give Horton tables
their performance edge over the prior state of the art.

Horton tables use Hprimary, the primary hash func-
tion, to hash the vast majority of elements so that most
lookups only require one bucket access. When inserting
an item KV = (K,V), it is only when the bucket at in-
dex Hprimary(K) cannot directly store KV that the item
uses one of several secondary hash functions to remap
the item. We term the bucket at index Hprimary(K) the
primary bucket and buckets referenced by secondary
hash functions secondary buckets. Additionally, pri-
mary items are key-value pairs that are directly housed
in the bucket referenced by the primary hash function
Hprimary, and secondary items are those that have been
remapped. There is no correlation between the bucket’s
type and its primacy; Type A and B buckets can simulta-
neously house both primary and secondary elements.

Type B buckets convert the final slot of Type A buck-

ets into a remap entry array, a vector of k-bit5 elements
known as remap entries that encode the secondary hash
function ID used to rehash items that cannot be accom-
modated in their primary bucket. Remap entries can

take on one of 2k different values, 0 for encoding an un-

used remap entry, and 1 to 2k − 1 for encoding which
of the secondary hash functions R1 to R2k−1 was used
to remap the items. To determine the index at which
a remapped element’s remap entry is stored, a tag hash
function known as Htag is computed on the element’s key
which maps to a spot in the remap entry array.

Remap entries are a crucial innovation of Horton ta-
bles, as they permit all secondary items to be tracked so
that at most one primary and sometimes one secondary
hash function need to be evaluated during table lookups
regardless of whether (1) the lookup is positive or nega-
tive and (2) how many hash functions are used to rehash
secondary items. At the same time, their storage is com-
pactly allocated directly within the hash table bucket that
overflows, boosting the locality of their accesses while
still permitting high table load factors.

5k could range from 1 to the width of a key-value pair in bits, but
we have found k = 3 to be a good design point.

ϴ ϱ EMPTY EMPTY

ϯϯ EMPTY ϭϱ Ϯ

ϯϱ ϭϴ ϮϮ Ϯϯ

EMPTY EMPTY ϰ ϯϳ
ϯϴ ϰϯ ϭϬ E E

EMPTY EMPTY EMPTY ϳ

ϴ ϱ EMPTY EMPTY

ϯϯ ϳ ϭϱ Ϯ

ϯϱ ϭϴ ϮϮ ϳ E ϱ Ϯ

EMPTY EMPTY Ϯϯ ϯϳ
ϯϴ ϰϯ ϭϬ E E

EMPTY EMPTY EMPTY ϰ

Rϳ

RϮ Rϱ

Figure 3: Comparison of a bucketized cuckoo hash ta-
ble (L) and a Horton table (R). E = empty remapy entry.

With Horton tables, most lookups only require touch-
ing a single bucket and a small minority touch two. At
the same time remap entries typically use at most sev-
eral percent of the table’s capacity, leaving sufficient free
space for Horton tables to achieve comparable load fac-
tors to BCHTs.

Figure 2 shows the Type A and Type B bucket designs
given 4-byte keys and values and 8-slot buckets. The
bucket type is encoded in one bit of each bucket. For
Type A buckets, this costs us a bit from just one of the
value fields (now 31 bits). For Type B buckets, we en-
code 21 3-bit remap entries into a 64-bit slot, so we have
a bit to spare already. If we have a value that requires all
32 bits in the last slot of a Type A bucket, we can move it
to another slot in this bucket or remap to another bucket.

Because Type B buckets can house fewer elements
than Type A buckets, Type A buckets are used as much as
possible. It is only when a bucket has insufficient capac-
ity to house all primary items that hash to it that it is con-
verted into a Type B bucket, a process known as promo-
tion. To guarantee that elements can be found quickly,
whenever possible we enforce that primary elements are
not displaced by secondary items. This policy ensures
both that more buckets remain Type A buckets and that
more items are primary elements.

4.1 A Comparison with BCHTs

Figure 3 shows a high-level comparison of Horton ta-
bles with an f = 2, traditional BCHT that stores the same
data. Buckets correspond to rows and slots to individ-
ual cells within each row. In the Horton table (right),
each item maps to its primary bucket by default. Bucket
2 (zero indexing) has been promoted from Type A to
Type B because its 4 slots are insufficient to directly
house the 6 key-value pairs that Hprimary has hashed
there: 35, 18, 22, 7, 23, and 4. Because there is insuf-
ficient space to house 7, 23, and 4 directly in Bucket
2, they are remapped with hash functions R7, R2, and
R5, respectively, and the function IDs are stored directly
in the remap entry array at the indices referenced by
Htag(7) = 0, Htag(23) = 3, and Htag(3) = 2. If we con-
trast the Horton table and the associated cuckoo hash ta-
ble, we find that, of the shown buckets, the Horton table
has a lookup cost of 1 for elements 8, 5, 33, 15, 2, 35, 18,
22, and 37 and a lookup cost of 2 for 7, 23, and 4, which
averages out to 1.25. By contrast the bucketized cuckoo
hash table has an expected lookup cost of 1.5 [20, 71] or
2.0 [47, 64], depending on the implementation.

351
0 20

 Determine if K matches

 an item in bucket x

REA[t].isEmpty()? If match found, return it.

 Else if x.isTypeA(),

 return KNF
 Else go to

 Compute tag hash t with Htag(K) t

Else go to

 If there is match, return it.

 Else return KNF

 Compute Hprimary(K) x

14

 If remap entry at index t is empty, return KNF

K = b.key?

HprimaryK
x gfe REA

 Compute the secondary hash function

 specified by the remap entry (R3) and

 check if K matches an item in w

cba d

R3K w nml REAjih k

Figure 4: Horton table lookups. KNF and REA are ab-
breviations for key not found and remap entry array.

5 Algorithms

In this section, we describe the algorithms that we use
to look up, insert, and delete elements in Horton tables.
We begin each subsection by detailing the functional
components of the algorithms and then, where relevant,
briefly outline how each algorithm can be efficiently im-
plemented using SIMD instructions.

5.1 Lookup Operation

Our lookup algorithm (Figure 4) works as follows.

1 Given a key K, we first compute Hprimary(K), which

gives us the index of K’s primary bucket. 2 We next ex-
amine the first S− isTypeB() slots of the bucket, where
isTypeB() returns 1 if Bucket x is Type B and 0 if it
is Type A by checking the bucket’s most significant bit.
3 If the key is found, we return the value. In the case

that the key is not found and the bucket is Type A, then
the element cannot appear in any other bucket, and so we
can declare the key not found.

4 If, however, the bucket is Type B, then we must ex-
amine the remap entry array when the item is not found
in the first S− 1 slots of K’s primary bucket (Bucket x).
We first compute Htag(K) to determine the index into the

remap entry array (shown as t = 14 in the figure). 5 If
the value at that slot is 0, which signifies empty, then
we declare the key not found because the key cannot ap-
pear in any other bucket. However, if the remap entry is
set, then 6 we evaluate the secondary function Ri spec-
ified by the remap entry (R3 in Figure 4) on a combina-
tion of the primary bucket and remap entry index (see
Section 5.3.4) to get the index of the secondary bucket
(Bucket w). We then compare K to the first S− isTypeB()
elements of w. 7 If we get a match, then we return
it. If we do not get a match, then because an element
is never found outside of its primary bucket or the sec-
ondary bucket specified by its remap entry, then we de-
clare the key not found. It cannot be anywhere else.

5.2 SIMD Implementation of Lookups

Our approach leverages bulk processing of lookups
and takes a large array of keys as input and writes
out a corresponding array of retrieved values as out-
put. We implement a modified version of Zhang et al.’s
lookup algorithm [71], which virtualizes the SIMD unit
into groups of S lanes (akin to simple cores that co-
execute the same instruction stream) and assigns each

HprimaryK

 Hash key: Hprimary(K) x

Bucket x

 Attempt primary insertion of KV = (K, V)

 Hash key K to Bucket x and discover
 there are no free slots or secondary items.

R3K

R1K

R2K

Bucket y

 Compute R1 through R7 (only 3 shown) on KV and

 remap it to Bucket y using R3 because it is the least full.

351

0 20

 Compute Htag(K) and

 check if remap entry is already set.

 If not (as shown here), then

 proceed to step

 Set the remap entry at index 12 to 3
 to record R3 was used to rehash KV.

Set to 3

12

REAgfedcba

KVih

lkj

tsrqponm

Figure 5: Common execution path for secondary inserts. REA is an abbreviation of remap entry array.

group a different bucket to process. When an element
is found in the first S − isTypeB() slots, we write the
value out to an in-cache buffer. For the minority of
lookups where more processing is necessary, e.g. com-
puting the tag hash, indexing into the remap entry array,
computing the secondary hash function, and searching
the secondary bucket, we maintain a series of additional
in-cache buffers where we enqueue work corresponding
to these less frequent execution paths. When there is a
SIMD unit’s worth of work in a buffer, we dequeue that
work and process it. Once a cache line worth of contigu-
ous values have been retrieved from the hash table, we
write those values back to memory in a single memory

transaction.6

5.3 Insertion Operation

The primary goal of the insertion algorithm is to prac-
tically guarantee that lookups remain as fast as possible
as the table’s load factor increases. To accomplish this,
we enforce at all levels the following guidelines:

1. Secondary items never displace primary items.
2. Primary items may displace both primary and sec-

ondary items.
3. When inserting into a full Type A bucket, only con-

vert it to Type B if a secondary item in it cannot be

remapped to another bucket to free up a slot.7

These guidelines ensure that as many buckets as possible
remain Type A, which is important because converting a
bucket from Type A to Type B can have a cascading ef-
fect: both the evicted element from the converted slot and
the element that caused the conversion may map to other
buckets and force them to convert to Type B as well. Fur-
ther, Type B buckets house fewer elements, so they de-
crease the maximum load factor of the table and increase
the expected lookup cost.

5.3.1 Primary Inserts

Given a key-value pair KV to insert into the table, if
the primary bucket has a spare slot, then insertion can
proceed by assigning that spare slot to KV . Spare slots
can occur in Type A buckets as well as Type B buckets
where a slot has been freed due to a deletion, assuming
that Type B buckets do not atomically pull items back
in from remap entries when slots become available. For
the primary hash function, we use one of Jenkins’ hash
functions that operates on 32-bit inputs and produces 32-
bit outputs [35]. The input to the function is the key, and

6A simpler algorithm can be used when S is a multiple of the num-
ber of lanes, as all lanes within a SIMD unit process the same bucket.

7An item’s primacy can be detected by evaluating Hprimary on its
key. If the output matches the index where it is stored, then it is primary.

we mod the output by the number of buckets to select a
bucket to map the key to.

In the case where the bucket is full, we do not immedi-
ately attempt to insert KV into one of its secondary buck-
ets but first search the bucket for secondary elements. If
we find a secondary element KV ′ that can be remapped
without displacing primary elements in other buckets,
then we swap KV with KV ′ and rehash KV ′ to another
bucket. Otherwise, we perform a secondary insert (see
Sections 5.3.2, 5.3.3, and 5.3.4).

5.3.2 Secondary Inserts

We make a secondary insert when the item that we
want to insert, KV = (K,V), hashes to a bucket that is
full and in which all items already stored in the bucket are
primary. Most of the time, secondary inserts occur when
an element’s primary bucket has already been converted
to Type B (see Section 5.3.3 and Figure 6 for the steps for
converting from Type A to B); Figure 5 shows the most
common execution path for a secondary insert.

1 We first determine that a primary insert is not pos-

sible. 2 We then compute the tag hash function on the
key. If the remap entry at index Htag(K) is not set, we

proceed to step 3 . Otherwise, we follow the remap
entry collision management scheme presented in Sec-
tion 5.3.4 and Figure 7. 3 At this point, we need to
find a free cell in which to place KV . We check each
candidate bucket referenced by the secondary hash func-
tions R1 through R7, and we place the remapped ele-
ment in the bucket with least load, Bucket y in Fig-
ure 5. Alternatively, we could have placed KV into the
candidate bucket with the first free slot – we chose the
load-balancing approach because it reduced the preva-
lence of expensive cuckoo chains for relocating ele-

ments. 4 Lastly, we update the remap entry to indicate
which secondary hash function was used. In this exam-
ple, R3 was used and Htag on K evaluated to 12, so we
write 3 in the 12th slot of the remap entry array of x,
KV ’s primary bucket.

5.3.3 Conversion from Type A to Type B

Figure 6 shows the series of steps involved for con-

verting a bucket from Type A to Type B. 1 – 2 If there
are no secondary elements that can be displaced in the
primary bucket, then the bucket evicts one of the items
(h) to make room for the remap entry array, 3 – 5 re-

hashes it to another bucket, and 6 – 7 then proceeds
by rehashing the element that triggered the conversion.
As in the algorithm in Section 5.3.2, we attempt to re-
locate both items to their least loaded candidate buckets.
8 – 10 Once moved, the numerical identifier of each

༃①Atteŵpt to iŶsert KV①=①;K,①VͿ①
ǁith HprimarǇ;KͿ①→①ǆ

BuĐket ǆ

REABuĐket Ǉ

BuĐket z

REA

Ϯϭ
Ϭ ϮϬ

gfedĐďa

j k KV l ŵ Ŷi

o p h

HprimarǇK

༄ BuĐket ǆ is full, aŶd all iteŵs are priŵarǇ.
CoŶǀert TǇpe A → TǇpe B

༅①Atteŵpt to turŶ KV①aŶd h iŶto seĐoŶdarǇ eŶtries
BuĐket ǆ hgfedĐďa

BuĐket ǆ

REABuĐket Ǉ
BuĐket z

gfedĐďa

j k l ŵ Ŷi

o p

༆ TrǇ to reŵap iteŵ:
Rϭ;h.keǇͿ①→①z,
RϮ;h.keǇͿ①→①w, etĐ.

༇ BuĐket z has ŵost eŵptǇ slots aǀailaďle for h, so iŶsert h as a seĐoŶdarǇ iteŵ iŶ BuĐket z.

༈①TrǇ to reŵap iteŵ:
Rϭ;KͿ①→①u,
RϮ;KͿ①→①Ǉ, etĐ.

Rϭh.keǇ ༉ BuĐket Ǉ①has ŵost eŵptǇ slots aǀailaďle for KV, so
iŶsert KV as a seĐoŶdarǇ iteŵ iŶ BuĐket Ǉ.

༌①Reŵap eŶtries
desĐriďe seĐoŶdarǇ
hash used for
reŵapped iteŵs.

༊①Htag;h.keǇͿ①→①ϯ ་ Htag;KͿ①→①ϭϬ①

Figure 6: Steps for converting from Type A to Type B. REA is an abbreviation of remap entry array.

secondary hash function that remapped each of the two
items (KV and h) is stored in the remap entry array of
the primary bucket at the index described by Htag of each
key.

5.3.4 Remap Entry Collision Management

A major challenge of the remap entry approach is
when two or more items that require remapping map to
the same remap entry. Such collisions can be accom-
modated if all items that share a remap entry are made
to use the same secondary hash function. However, if
the shared secondary hash function takes the key as in-
put, it will normally map each of the conflicting items
to a different bucket. While this property poses no great
challenge for lookups or insertions, it makes deletions
of remap entries challenging because without recording
that a remap entry is shared, we would not know whether
another item is still referenced by it. Rather than asso-
ciating a counter with each remap entry to count colli-
sions as is done in counting Bloom filters [13, 22], we
instead modify the secondary hash function so that items
that share a remap entry map to the same secondary
bucket. Since they share the same secondary bucket, we
can check if it is safe to delete a remap entry on deletion
of an element KV that the entry references by comput-
ing the primary hash function on each element in KV ’s
secondary bucket. If none of the computed hashes ref-
erence KV ’s primary bucket for any of the elements that
share KV ’s secondary bucket, then the remap entry can
be deleted.

To guarantee that items that share remap entries hash
to the same secondary bucket, we hash on a combination
of the primary bucket index and the implicit tag as com-
puted by Htag(key). Since this tuple uniquely identifies
the location of each remap entry, we can create a one-
to-one function from tuples to unique secondary hash
function inputs, shown in Equation 1, where i is a num-
ber that uniquely identifies each secondary hash function

and which ranges from 1 to 2k −1 for k-bit remap entries
(e.g. R3 is the third secondary function out of 7 when k is
3), HL1 and HL2 are hash functions, ksec is the secondary
key derived from the tuple, and n is the number of remap
entries per remap entry array. The uniqueness of these
tuples as inputs is important for reducing collisions.

Ri(ksec) = (HL1(ksec) +HL2(ksec, i)) % Total Buckets

where ksec(bucket index, tag) = bucket index∗n + tag
(1)

By modifying the characteristics of HL1 and HL2, we are
able to emulate different hashing schemes. We employ

 Attempt to insert
 KV (K V with

 Hprimary(K x

Bucket x

REABucket y

Bucket z

REA

21
0 20

 Htag(K

 Attempt to remap KV

 Try to remap KV
 using R1(K z

 Insert KV into Bucket z

gfedcba

j k KV l m n

KV

i

o p h

Figure 7: Resolution of a remap entry collision

modified double hashing by using Jenkins’ hash [35] for
HL1 and Equation 2 for HL2 where KT is a table of 8
prime numbers. We found this approach preferable be-
cause it makes it inexpensive to compute all of the sec-
ondary hash functions, reduces clustering compared to
implementing HL2 as linear probing from HL1, and, as
Mitzenmacher proved, there is no penalty to bucket load
distribution versus fully random hashing [55].

HL2(ksec, i) = KT [ksec%8] ∗ i (2)

Sometimes the secondary bucket cannot accommodate
additional elements that share the remap entry array. If
so, we swap the item that we want to insert with another
element from its primary bucket that can be rehashed.
Because both elements in the swap are primary elements,
this swap does not adversely affect the lookup rate.

Figure 7 presents a visual depiction of a remap entry
collision during insertion that is resolved by having the
new item map to the same bucket as the other items refer-
enced by the remap entry. It continues from the example
in Figure 6 and follows with inserting a new item KV ′.

1 When inserting KV ′, we first check for a free slot or
an element that can be evicted from Bucket x because it
is a secondary item when in x. 2 If no such item exists,
then we begin the process of remapping KV ′ to another
bucket. 3 We first check the remap entry, and if it is set,

4 we proceed to the bucket it references, z in Figure 7.

5 We check for a free slot or a secondary item in z that
can be displaced. If it is the former, we immediately in-
sert KV ′. Otherwise, we recursively evict elements until
a free slot is found within a certain search tree height.
Most of the time, this method works, but when it does
not, we resort to swapping KV ′ with another element in
its primary bucket that can be recursively remapped to a
secondary bucket.

5.4 Deletion Operation

Deletions proceed by first calculating Hprimary on the
key. If an item is found in the primary bucket with that
key, that item is deleted. However, if it is not found in the
primary bucket, and the bucket is Type B, then we check
to see whether the remap entry is set. If it is, then we cal-
culate the secondary bucket index and examine the sec-
ondary bucket. If an item with a matching key is found,
then we delete that item. To determine whether we can
delete the remap entry, we check to see if additional el-
ements in the secondary bucket have the same primary
bucket as the deleted element. If none do, we remove the
remap entry.

5.4.1 Repatriation of Remapped Items

On deletions, slots that were previously occupied be-
come free. In Type A buckets, there is no difference
in terms of lookups regardless of how many slots are
free. However, with Type B buckets, if a slot becomes
free, that presents a performance opportunity to move a
remapped item back into its primary bucket, reducing its
lookup cost from 2 to 1 buckets. Similarly, if a Type
B bucket has a combined total of fewer than S+1 items
stored in its slots or remapped via its remap entries, it can
be upgraded to a Type A bucket, which allows one more
item to be stored and accessed with a single lookup in the
hash table. Continual repatriation of items is necessary
for workloads with many deletes to maximize lookup
throughput and the achievable load factor. Determin-
ing when best to perform this repatriation, either via an
eager or lazy heuristic, is future work.

6 Feasibility and Cost Analysis

In this section, we investigate the feasibility of using
remap entries, the associated costs in terms of storage
overhead, and the expected cost of both positive and neg-
ative hash table lookups.

6.1 Modeling Collisions

One of the most important considerations when con-
structing a Horton table is that each bucket should be able
to track all items that initially hash to it using the primary
hash function Hprimary. In particular, given a hash table
with BT buckets and n inserted items, we want to be able
to compute the expected number of buckets that have ex-
actly x elements hash to them, for each value of x from
0 to n inclusive. By devising a model that captures this
information, we can determine how many remap entries
are necessary to facilitate the remapping and tracking of
all secondary items that overflow their respective primary
buckets.

If we assume that Hprimary is a permutation (i.e., it is
invertible and the domain is the codomain), and that it
maps elements to bins in a fashion that is largely indistin-
guishable from sampling a uniform random distribution,
then given a selection of random keys and a given table
size, we can precisely compute the expected number of
buckets to which Hprimary maps exactly x key-value pairs
by using a Poisson distribution based model [36]. The
expected number of buckets with precisely x such ele-

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Items per Bucket

10-3
10-2
10-1
100
101
102
103
104
105
106

Nu
m

be
r o

f B
uc

ke
ts LF = 0.85

LF = 0.95

Figure 8: Histogram of the number of buckets to which
Hprimary assigns differing amounts of load in elements
for two load factors. Curves represent instantiations of
Equation 3 and bars correspond to simulation.

ments, Bx, is given by Equation 3.

Bx(λ ,x) = Total Buckets ∗ P(λ ,x)

where P(λ ,x) =
e−λ λ x

x!
where λ = Load Factor ∗ Slots Per Bucket

i.e., λ =
Elements Inserted

Total Buckets

(3)

The parameter λ is the mean of the distribution. Given
a load factor, the average number of items that map to
a bucket is the product of the load factor and the slots
per bucket. Figure 8 coplots the results of a bucketized
hash table simulation with results predicted by the an-

alytical model given a hash table with 222 8-slot buck-
ets. In our simulation, we created n unique keys in

the range [0, 232 − 1] using a 32-bit Mersenne Twister
pseudorandom number generator [51] and maintained a
histogram of counts of buckets with differing numbers
of collisions. We found little to no variation in results
with different commonly utilized hash functions (e.g.,
CityHash, SpookyHash, Lookup3, Wang’s Hash, and
FNV [26, 35, 59]). Therefore, we show only the results
using one of Jenkins’ functions that maps 32-bit keys to
32-bit values. Figure 8 shows a close correlation between
the simulation results and Equation 3 for two load fac-
tors. Bars correspond to simulation results and curves to
Equation 3. In each case, the model very closely tracks
the simulation.

A high-level conclusion of the model is that with bil-
lions of keys and 8-slot buckets, there is a non-trivial
probability that a very small subset of buckets will have
on the order of 30 keys hash to them. This analysis in-
forms our decision to use 21 remap entries per remap
entry array and also the need to allow multiple key-value
pairs to share each remap entry in order to reduce the
number of remap entries that are necessary per bucket.

6.2 Modeling Remap Entry Storage Costs

In our hash table design, each promoted bucket trades
one slot for a series of remap entries. To understand the
total cost of remap entries, we need to calculate what per-
centage of buckets are Type A and Type B, respectively.
For any hash table with S slots per bucket, Type A buck-
ets have no additional storage cost, and so they do not
factor into the storage overhead. Type B buckets on the
other hand convert one of their S slots, i.e. 1/S of their
usable storage, into a series of remap entries. Thus the
expected space used by remap entries Ore, on a scale of

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load Factor

0

5

10

15

20

25

30

Pe
rc

en
t

1-slot buckets
2-slot buckets
4-slot buckets
8-slot buckets
16-slot buckets

Figure 9: Expected percentage of hash table storage that
goes to remap entries as the load factor is varied

0 (no remap entries) to 1 (entire table is remap entries),
is the product of the fraction of Type B buckets and the
consumed space 1/S (see Equation 4). For simplicity,
we assume that each item that overflows a Type B bucket
is remappable to a Type A bucket and that these remaps
do not cause Type A buckets to become Type B buck-
ets. This approximation is reasonable for two reasons.
First, many hash functions can be used to remap items,
and second, secondary items are evicted and hashed yet
again, when feasible, if they prevent an item from being
inserted with the primary hash function Hprimary.

Ore =
1

S

n

∑
x=S+1

P(λ ,x) (4)

Figure 9 shows the expected percentage of hash table
storage that goes to remap entries when varying the num-
ber of slots per bucket as well as the load factor. As the
remap entries occupy space, the expected maximum load
factor is strictly less than or equal to 1−Ore. We see that
neither 1 slot nor 2 slots per bucket is a viable option if
we want to achieve load factors exceeding 90%. Solving
for the expected bound on the load factor, we find that 4-,
8-, and 16-slot hash tables are likely to achieve load fac-
tors that exceed 91, 95, and 96%, respectively, provided
that the remaining space not consumed by remap entries
can be almost entirely filled.

6.3 Modeling Lookups

The expected average cost of a positive lookup is de-
pendent on the percentage of items that are first-level
lookups, the percentage of items that are second-level
lookups, and the associated cost of accessing remapped
and non-remapped items. For a bucket with S slots, if
x > S elements map to that bucket, x − S +1 elements
will need to be remapped, as one of those slots now con-
tains remap entries. In the case where x ≤ S, no ele-
ments need to be remapped from that bucket. The frac-
tion of items that require remapping, Iremap, is given by
Equation 5, and the fraction that do not, Iprimary, is given
by Equation 6. As stated previously, lookups that use
Hprimary require searching one bucket, and lookups that
make use of remap entries require searching two. Using
this intuition, we combine Equations 5 and 6 to generate
the expected positive lookup cost given by Equation 7.
Since Iprimary is a probability, and 1 − Iremap is equiva-
lent to Iprimary, we can simplify the positive lookup cost
to 1 plus the expected fraction of lookups that are sec-
ondary. Intuitively, Equation 7 makes sense: 100% of
lookups need to access the primary bucket. It is only

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load Factor

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Bu
ck

et
s

Ac
ce

ss
ed

f = 2 fcn baseline
1-slot buckets
2-slot buckets

4-slot buckets
8-slot buckets
16-slot buckets

Figure 10: The expected buckets accessed per positive
lookup in a Horton table vs. a baseline BCHT that uses
two hash functions

when the item has been remapped that a second bucket
needs to be searched.

Iremap =
∑

n
x=S+1(x −S +1)∗P(λ ,x)

λ
(5)

Iprimary =
∑

S
x=1(x)∗P(λ ,x)+∑

n
x=S+1(S−1)∗P(λ ,x)

λ
(6)

Positive Lookup Cost = Iprimary +2Iremap

= 1 + Iremap
(7)

Figure 10 shows the expected positive lookup cost in
buckets for 1-, 2-, 4-, 8-, and 16-slot bucket designs. Like
before, buckets with more slots are better able to tolerate
collisions. Therefore, as the number of slots per bucket
increases for a fixed load factor, so does the ratio of Type
A buckets to total buckets, which reduces the number of
second-level lookups due to not needing to dereference a
remap entry. In the 1- and 2-slot bucket cases, the bene-
fit of remap entries is less pronounced but is still present.
For the 1-slot case, there is a point at LF = 0.70 where we
expect a baseline bucketized cuckoo hash table to touch
fewer buckets. However, this scenario is not a fair com-
parison as, for a baseline BCHT with 1-slot buckets and
two functions, the expected load factor does not reach
70%. To reach that threshold, many more hash functions
would have to be used, increasing the number of buckets
that must be searched. For the 4-, 8-, and 16-slot cases,
we observe that the expected lookup cost is under 1.1
buckets for hash tables that are up to 60% full, and that
even when approaching the maximum expected load fac-
tor, the expected lookup cost is less than 1.3 buckets. In
the 8-slot and 16-slot cases, the expected costs at a load
factor of 0.95 are 1.18 and 1.1 buckets, which represents
a reduced cost of 21% and 27%, respectively, over the
baseline.

The cost of a negative lookup follows similar reason-
ing. On a negative lookup, the secondary bucket is only
searched on a false positive tag match in a remap en-
try. The expected proportion of negative lookups that
exhibit tag aliasing, Ialias, is the product of the frac-
tion of Type B buckets and the mean fraction of the tag
space that is utilized per Type B bucket (Equation 8). In
the implicit tag scheme, for a 64-bit remap entry array
with 21 3-bit entries, the tag space is defined as the set
{i ∈ N| 0 ≤ i ≤ 20} and has a tag space cardinality, call
it Ctag, of 21. Alternatively, with explicit t-bit tags, Ctag

would be 2t minus any reserved values for designating

1.99
2.00
2.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load Factor

1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10

Bu
ck

et
s

Ac
ce

ss
ed f = 2 fcn baseline

1-slot buckets
2-slot buckets
4-slot buckets
8-slot buckets
16-slot buckets

Figure 11: The expected buckets accessed per negative
lookup in a Horton table vs. a baseline BCHT that uses
two hash functions

states such as empty. For our model, we assume that
there is a one-to-one mapping between remapped items
and remap entries (i.e., each remap entry can only remap
a single item). We further assume that conflicts where
multiple items map to the same remap entry can be miti-
gated with high probability by swapping the element that
would have mapped to an existing remap entry with an
item stored in one of the slots that does not map to an
existing remap entry, then rehashing the evicted element,
and finally initializing the associated remap entry. These
assumptions allow for at most S−1+Ctag elements to be
stored in or remapped from a Type B bucket.

Ialias =
∑

S−1+Ctag

x=S+1 ((x −S +1) ∗ P(λ ,x))

Ctag

(8)

Negative Lookup Cost = Ino alias + 2Ialias

= 1 + Ialias
(9)

Like before, we can simplify Equation 9 by observ-
ing that all lookups need to search at least one bucket,
and it is only on a tag alias that we search a second one.
Because secondary buckets are in the minority and the
number of remapped items per secondary bucket is often
small relative to the tag space cardinality, the alias rate
given in Equation 8 is often quite small, meaning that
negative lookups have a cost close to 1.0 buckets.

In Figure 11, we plot the expected negative lookup
cost for differing numbers of slots per bucket under pro-
gressively higher load factors with a tag space cardinality
of 21. In contrast to positive lookups, adding more slots
has a tradeoff. At low load factors, a table with more
slots has a smaller proportion of elements that overflow
and less Type B buckets, which reduces the alias rate.
However, once the buckets become fuller, having more
slots means that buckets have a greater propensity to have
more items that need to be remapped, which increases the
number of remap entries that are utilized. However, de-
spite these trends, we observe that for 1-, 2-, 4-, 8-, and
16-slot buckets, aliases occur less than 8% of the time
under feasible load factors, yielding an expected, worst-
case, negative lookup cost of 1.08 buckets. Thus we ex-
pect Horton tables to reduce data movement on negative
lookups by 46 to 50% versus an f = 2 BCHT.

7 Experimental Methodology

We run our experiments on a machine with a 4-core
AMD A10-7850K with 32GB of DDR3 and an AMD
RadeonTM R9-290X GPU with a peak memory band-

width of 320 GB/s and 4GB of GDDR5. The L2
cache of the GPU is 1 MiB, and each of the 44 com-
pute units has 16 KiB of L1 cache. Our system runs
Ubuntu 14.04LTS with kernel version 3.16. Results for
performance metrics are obtained by aggregating data
from AMD’s CodeXL, a publicly available tool that
permits collecting high-level performance counters on

GPUs when running OpenCLTM programs.
For the performance evaluation, we compare the

lookup throughput of the load-balanced baseline, first-fit,
and Horton tables. Our baseline implementation is most
similar to Mega-KV [71], where the greatest difference is
that we only use a single hash table rather than multiple
independent partitions and use Jenkins’ hash functions.

Insertions and deletions are implemented in C and run
on the CPU. As our focus is on read-dominated work-
loads, we assume that insertion and deletion costs can
largely be amortized and do not implement parallel ver-
sions. For each of the hash table variants, lookup routines
are implemented in OpenCL [66] and run on the GPU,
with each implementation independently autotuned for
fairness of comparison. Toggled parameters include vari-
able loop unrolling, the number of threads assigned to
each compute unit, and the number of key-value pairs
assigned to each group of threads to process. When
presenting performance numbers, we do not count data
transfer cost over PCIe because near-future integrated
GPUs will have high-bandwidth, low-latency access to
system memory without such overheads. This approach
mirrors that of Polychroniou et al. [60] on the Xeon
Phi [15].

As part of our evaluation, we validate the models pre-
sented in Section 6. We calculate the remap entry stor-
age cost and lookup cost per item in terms of buckets
by building the hash table and measuring its composi-
tion. Unless indicated elsewhere, we use 32-bit keys and
values, 8-slot buckets and remap entry arrays with 21 3-
bit entries. The probing array that we use for key-value
lookups is 1 GiB in size. All evaluated hash tables are
less than or equal to 512 MiB due to memory alloca-
tion limitations of the GPU; however, we confirmed that
we were able to build heavily-loaded Horton tables with
more than 2 billion elements without issue.

Keys and values for the table and the probing array are
generated in the full 32-bit unsigned integer range using
C++’s STL Mersenne Twister random integer generator
that samples a pseudo-random uniform distribution [51].
We are careful to avoid inserting duplicate keys into the
table, as that reduces the effective load factor by inducing
entry overwrites rather than storing additional content.
Since the probing array contains more keys than there
are elements in the hash table, most keys appear multiple
times in the probing array. We ensure that all such re-
peat keys appear far enough from one another such that
they do not increase the temporal or spatial locality of
accesses to the hash table. This approach is necessary to
precisely lower bound the throughput of each algorithm
for a given hash table size.

8 Results

In this section, we validate our models and present
performance results. Figures 12a and 12b compare
the lookup throughput and data movement (as seen by

16
 K

iB
32

 K
iB

64
 K

iB
12

8
Ki

B
25

6
Ki

B
51

2
Ki

B
1

M
iB

2
M

iB
4

M
iB

8
M

iB
16

 M
iB

32
 M

iB
64

 M
iB

12
8

M
iB

25
6

M
iB

51
2

M
iB

Table Size

0

1

2

3

4

5
Bi

lli
on

s
of

 L
oo

ku
ps

 P
er

 S
ec

on
d

Baseline
First-Fit
Horton Tables

(a) Lookup throughput

16
 K

iB
32

 K
iB

64
 K

iB
12

8
Ki

B
25

6
Ki

B
51

2
Ki

B
1

M
iB

2
M

iB
4

M
iB

8
M

iB
16

 M
iB

32
 M

iB
64

 M
iB

12
8

M
iB

25
6

M
iB

51
2

M
iB

Table Size

0
20
40
60
80

100
120
140
160

By
te

s
Ac

ce
ss

ed
 P

er
 L

oo
ku

p

Baseline Write
Baseline Read
First-Fit Write
First-Fit Read
Horton Tables Write
Horton Tables Read

(b) Data movement from global memory

Figure 12: Comparison of BCHTs with a Horton table (load factor = 0.9 and 100% of queried keys found in table)

16
 K

iB
32

 K
iB

64
 K

iB
12

8
Ki

B
25

6
Ki

B
51

2
Ki

B
1

M
iB

2
M

iB
4

M
iB

8
M

iB
16

 M
iB

32
 M

iB
64

 M
iB

12
8

M
iB

25
6

M
iB

51
2

M
iB

Table Size

0

1

2

3

4

5

Bi
lli

on
s

of
 L

oo
ku

ps
 P

er
 S

ec
on

d

Baseline
First-Fit
Horton Tables

(a) Lookup throughput

16
 K

iB
32

 K
iB

64
 K

iB
12

8
Ki

B
25

6
Ki

B
51

2
Ki

B
1

M
iB

2
M

iB
4

M
iB

8
M

iB
16

 M
iB

32
 M

iB
64

 M
iB

12
8

M
iB

25
6

M
iB

51
2

M
iB

Table Size

0
20
40
60
80

100
120
140
160

By
te

s
Ac

ce
ss

ed
 P

er
 L

oo
ku

p

Baseline Write
Baseline Read
First-Fit Write
First-Fit Read
Horton Tables Write
Horton Tables Read

(b) Data movement from global memory

Figure 13: Comparison of BCHTs with a Horton table (load factor = 0.9 and 0% of queried keys found in table)

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Load Factor

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Pe
rc

en
t R

em
ap

 E
nt

rie
s Model

Implementation

(a) Remap entry storage cost

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Load Factor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bu
ck

et
s

Ac
ce

ss
ed

 P
er

 L
oo

ku
p

Model
Implementation

(b) Positive lookup cost

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Load Factor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bu
ck

et
s

Ac
ce

ss
ed

 P
er

 L
oo

ku
p

Model
Implementation

(c) Negative lookup cost

Figure 14: Validation of our models on an 8 MiB Horton table

the global memory) between the load-balancing base-
line (Section 3.3), BCHT with first-fit insert heuris-
tic (Section 3.3) and Horton tables (Section 4) for tables
from 16 KiB to 512 MiB in size. We see that Horton ta-
bles increase throughput over the baseline by 17 to 35%
when all of the queried keys are in the table. In addition,
they are faster than a first-fit approach, as Horton tables
enforce primacy (Section 5.3, Guideline 1) on remapping
of elements whereas first-fit does not. This discrepancy
is most evident from 512 KiB to 8 MiB, where Horton
tables are up to 29% faster than first-fit BCHTs.

These performance wins are directly proportional to
the data movement saved. Initially, there is no sizeable
difference in the measured data movement cost between
the baseline, first-fit, and Horton tables, as the hash ta-
bles entirely fit in cache. Instead, the bottleneck to per-
formance is the cache bandwidth. However, at around 1
MiB, the size at which the table’s capacity is equal to the
size of the last level cache (L2), the table is no longer

fully cacheable in L2, and so it is at this point that the
disparity in data movement between the three approaches
becomes visible at the off-chip memory.

Figures 13a and 13b show the opposite extreme where
none of the queried keys are in the table. In this case,
Horton tables increase throughput by 73 to 89% over the
baseline and first-fit methods because, unlike a BCHT,
Horton tables can satisfy most negative searches with
one bucket access. These results and those for positive
lookups from Figures 12a and 12b align very closely
with the reduction in data movement that we measured
with performance counters. For a workload consisting
entirely of positive lookups, baseline BCHTs access 30%
more cache lines than Horton tables. At the opposite ex-
treme, for a workload of entirely negative lookups, both
first-fit and baseline BCHTs access 90% more hash table
cache lines than Horton tables.

If we examine the total data movement, we find that
both our BCHT and Horton table implementations move

an amount of data close to what our models project. At a
load factor of 0.9, our model predicts 1.15 and 1.05 buck-
ets accessed per positive and negative query, respectively.
Since cache lines are 64 bytes, this cost corresponds to 74
and 67 bytes per query worth of data movement. On top
of that, for each lookup query we have an additional 8
bytes of data movement for loading the 4-byte query key
and 4 bytes for storing the retrieved value, which puts
our total positive and negative lookup costs at 82 and 75
bytes, respectively. These numbers are within 10% of the
total data movement that we observe in Figures 12b and
13b once the hash table is much larger than the size of
the last-level cache. Similarly, we found that our models’
data movement estimates for BCHTs were within similar
margins of our empirical results.

Figures 14a, 14b, and 14c show that each of our mod-
els accurately capture the characteristics of our imple-
mentation. On average, our table requires fewer than
1.15 bucket lookups for positive lookups and fewer than
1.05 for negative lookups at a load factor of 0.9, and both
have a cost of essentially 1.0 up to a load factor of 0.55.
These results are a dramatic improvement over the cur-
rent state of practice and validate the soundness of our al-
gorithms to achieve high load factors without measurably
compromising on the percentage of primary lookups.

9 Related Work

There has been a long evolution in hash tables. Two
pieces of work that share commonality with our own are
the cuckoo filter [21] and MemC3 [20]. MemC3 is a
fast, concurrent alternative to Memcached [24] that uses
a bucketized hash table to index data, with entries that
consist of (1) tags and (2) pointers to objects that house
the full key, value, and additional metadata. For them,
the tag serves two primary functions: (1) to avoid pollut-
ing the cache with long keys on most negative lookups
and (2) to allow variable-length keys. Tags are never used
to avoid bringing additional buckets into cache. If the el-
ement is not found in the first bucket, the second bucket
is always searched. Similarly, the cuckoo filter is also an
f = 2 function, 4-slot bucketized cuckoo hash set that is
designed to be an alternative to Bloom filters [10] that is
cache friendly and supports deletions.

Another related work is Stadium Hashing [41]. Their
focus is to have a fast hash table where the keys are stored
on the GPU and the values in the CPU’s memory. Un-
like us they use a non-bucketized hash table with double
hashing and prime capacity. They employ an auxiliary
data structure known as a ticket board to filter requests
between the CPU and GPU and also to permit concurrent
put and get requests to the same table. Barber et al. use
a similar bitmap structure to implement two compressed
hash table variants [7].

The BCHT [19] combines cuckoo hashing and buck-
etization [25, 57, 58]. Another improvement to cuckoo
hashing is by way of a stash—a small, software victim
cache for evicted items [42].

Other forms of open addressing are also prevalent.
Quadratic hashing, double hashing, Robin Hood hash-
ing [14], and linear probing are other commonly used
open addressing techniques [16]. Hopscotch hashing at-
tempts to move keys to a preferred neighborhood of the
table by displacing others [31]. It maintains a per-slot

hop information field that is often several bits in length
that tracks element displacements to nearby cells. By
contrast, Horton tables only create remap entries when
buckets exceed their baseline capacity.

Other work raises the throughput of concurrent hash
tables by using lock free approaches [53, 67, 68] or fine-
grain spinlocks [47]. Additional approaches attempt to
fuse or use other data structures in tandem with hash ta-
bles to enable faster lookups [48, 61, 65].

In application, hash tables find themselves used in
a wide of variety of data warehousing and process-
ing applications. A number of in-memory key-value
stores employ hash tables [20, 24, 32, 56, 71], and oth-
ers accelerate key lookups by locating the hash table
on the GPU [32, 33, 71]. Early GPU hash tables have
been primarily developed for accelerating applications in
databases, graphics and computer vision [2,3,27,43,45].
In in-memory databases, there has been significant effort
spent on optimizing hash tables due to their use in hash
join algorithms on CPUs [5, 6, 9, 12, 60], coupled CPU-
GPU systems [28, 29, 38], and the Xeon Phi [37, 60].

This work on high-performance hash tables is com-
plementary to additional research efforts that attempt to
retool other indexes such as trees to take better advan-
tage of system resources and new and emerging hard-
ware [46, 49, 50, 69].

10 Conclusion

This paper presents the Horton table, an enhanced
bucketized cuckoo hash table that achieves higher
throughput by reducing the number of hardware cache
lines that are accessed per lookup. It uses a single func-
tion to hash most elements and can therefore retrieve
most items by accessing a single bucket, and thus a sin-
gle cache line. Similarly, most negative lookups can also
be satisfied by accessing one cache line. These low ac-
cess costs are enabled by remap entries: sparingly al-
located, in-bucket records that enable both cache and
off-chip memory bandwidth to be used much more effi-
ciently. Accordingly, Horton tables increase throughput
for positive and negative lookups by as much as 35% and
89%, respectively. Best of all, these improvements do
not sacrifice the other attractive traits of baseline BCHTs:
worst-case lookup costs of 2 buckets and load factors that
exceed 95%.

11 Acknowledgements

The authors thank the reviewers for their insightful
comments and Geoff Kuenning, our shepherd, for his
meticulous attention to detail and constructive feedback.
We were very impressed with the level of rigor that was
applied throughout the review and revision process. We
also thank our peers at AMD Research for their com-
ments during internal presentations of the work and Ge-
off Voelker for providing us invaluable feedback that el-
evated the paper’s quality.

AMD, the AMD Arrow logo, AMD Radeon, and com-
binations thereof are trademarks of Advanced Micro De-
vices, Inc. OpenCL is a trademark of Apple, Inc. used
by permission by Khronos. Other product names used in
this publication are for identification purposes only and
may be trademarks of their respective companies.

References

[1] AILAMAKI, A., DEWITT, D. J., HILL, M. D., AND WOOD,
D. A. DBMSs on a Modern Processor: Where Does Time Go? In
Proc. of the Int’l Conf. on Very Large Data Bases (VLDB) (1999).

[2] ALCANTARA, D. A., SHARF, A., ABBASINEJAD, F., SEN-
GUPTA, S., MITZENMACHER, M., OWENS, J. D., AND

AMENTA, N. Real-Time Parallel Hashing on the GPU. In
Proc. of the ACM SIGGRAPH Conf. and Exhibition on Computer
Graphics and Interactive Techniques in Asia (SIGGRAPH Asia)
(2009).

[3] ALCANTARA, D. A., VOLKOV, V., SENGUPTA, S., MITZEN-
MACHER, M., OWENS, J. D., AND AMENTA, N. Building an
Efficient Hash Table on the GPU. In GPU Computing Gems:
Jade Edition, W. W. Hwu, Ed. Morgan Kaufmann, 2011, ch. 4,
pp. 39–54.

[4] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND

PALECZNY, M. Workload Analysis of a Large-Scale Key-Value
Store. In ACM SIGMETRICS Performance Evaluation Review
(2012), vol. 40, ACM, pp. 53–64.

[5] BALKESEN, C., ALONSO, G., TEUBNER, J., AND ÖZSU, M. T.
Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited. Proc.
of the VLDB Endowment 7, 1 (2013), 85–96.

[6] BALKESEN, C., TEUBNER, J., ALONSO, G., AND OZSU, M. T.
Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the
Underlying Hardware. In Proc. of the IEEE Int’l Conf. on Data
Engineering (ICDE) (2013).

[7] BARBER, R., LOHMAN, G., PANDIS, I., RAMAN, V., SIDLE,
R., ATTALURI, G., CHAINANI, N., LIGHTSTONE, S., AND

SHARPE, D. Memory-Efficient Hash Joins. Proc. of the VLDB
Endowment 8, 4 (2014), 353–364.

[8] BENDER, M. A., FARACH-COLTON, M., JOHNSON, R.,
KRANER, R., KUSZMAUL, B. C., MEDJEDOVIC, D., MONTES,
P., SHETTY, P., SPILLANE, R. P., AND ZADOK, E. Don’t
Thrash: How to Cache Your Hash on Flash. Proc. of the VLDB
Endowment 5, 11 (2012), 1627–1637.

[9] BLANAS, S., LI, Y., AND PATEL, J. M. Design and Evaluation
of Main Memory Hash Join Algorithms for Multi-Core CPUs. In
Proc. of the ACM SIGMOD Int’l Conf. on Management of Data
(SIGMOD) (2011).

[10] BLOOM, B. H. Space/Time Trade-offs in Hash Coding with Al-
lowable Errors. Communications of the ACM 13, 7 (1970), 422–
426.

[11] BONCZ, P. A., KERSTEN, M. L., AND MANEGOLD, S. Break-
ing the Memory Wall in MonetDB. Communications of the ACM
51, 12 (2008), 77–85.

[12] BONCZ, P. A., MANEGOLD, S., AND KERSTEN, M. L.
Database Architecture Optimized for the New Bottleneck: Mem-
ory Access. In Proc. of the Int’l Conf. on Very Large Data Bases
(VLDB) (1999).

[13] BONOMI, F., MITZENMACHER, M., PANIGRAHY, R., SINGH,
S., AND VARGHESE, G. An Improved Construction for Count-
ing Bloom Filters. In Proc. of the Annual European Symposium
(ESA) (2006).

[14] CELIS, P., LARSON, P.-Å., AND MUNRO, I. J. Robin Hood
Hashing. In Proc. of the IEEE Annual Symp. on Foundations of
Computer Science (FOCS) (1985).

[15] CHRYSOS, G., AND ENGINEER, S. P. Intel Xeon Phi Coproces-
sor (Codename Knights Corner). Presented at Hot Chips, 2012.

[16] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND

STEIN, C. Introduction to Algorithms, 3rd ed. The MIT Press,
2009.

[17] DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L. D.,
STONEBRAKER, M. R., AND WOOD, D. A. Implementation
Techniques for Main Memory Database Systems. In Proc. of the
ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD)
(1984).

[18] DR. SEUSS. Horton Hatches the Egg. Random House, 1940.

[19] ERLINGSSON, U., MANASSE, M., AND MCSHERRY, F. A Cool
and Practical Alternative to Traditional Hash Tables. In Proc.
of the Workshop on Distributed Data and Structures (WDAS)
(2006).

[20] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. MemC3:
Compact and Concurrent MemCache with Dumber Caching and
Smarter Hashing. In Proc. of the USENIX Symp. on Networked
Systems Design and Implementation (NSDI) (2013).

[21] FAN, B., ANDERSEN, D. G., KAMINSKY, M., AND MITZEN-
MACHER, M. D. Cuckoo Filter: Practically Better Than Bloom.
In Proc. of the ACM Int’l Conf. on Emerging Networking Experi-
ments and Technologies (CoNEXT) (2014).

[22] FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Z. Sum-
mary Cache: a Scalable Wide-Area Web Cache Sharing Proto-
col. IEEE/ACM Transactions on Networking (TON) 8, 3 (2000),
281–293.

[23] FATAHALIAN, K., AND HOUSTON, M. A Closer Look at GPUs.
Communications of the ACM 51, 10 (2008), 50–57.

[24] FITZPATRICK, B. Distributed Caching with Memcached. Linux
Journal 2004, 124 (Aug. 2004), 5.

[25] FOTAKIS, D., PAGH, R., SANDERS, P., AND SPIRAKIS, P.
Space Efficient Hash Tables with Worst Case Constant Access
Time. In Proc. of the Annual Symp. on Theoretical Aspects of
Computer Science (STACS) (2003).

[26] FOWLER, G., AND CURT NOLL, L. The FNV Non-
Cryptographic Hash Algorithm. http://tools.ietf.org/
html/draft-eastlake-fnv-03. Accessed: 2015-12-01.

[27] GARCÍA, I., LEFEBVRE, S., HORNUS, S., AND LASRAM, A.
Coherent Parallel Hashing. In Proc. of the ACM SIGGRAPH
Conf. and Exhibition on Computer Graphics and Interactive
Techniques in Asia (SIGGRAPH Asia) (2011).

[28] HE, B., YANG, K., FANG, R., LU, M., GOVINDARAJU, N.,
LUO, Q., AND SANDER, P. Relational Joins on Graphics Proces-
sors. In Proc. of the ACM SIGMOD Int’l Conf. on Management
of Data (SIGMOD) (2008).

[29] HE, J., LU, M., AND HE, B. Revisiting Co-Processing for Hash
Joins on the Coupled CPU-GPU Architecture. Proc. of the VLDB
Endowment 6, 10 (2013), 889–900.

[30] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann, 2011.

[31] HERLIHY, M., SHAVIT, N., AND TZAFRIR, M. Hopscotch
Hashing. In Proc. of the Int’l Symp. on Distributed Computing
(DISC) (2008).

[32] HETHERINGTON, T. H., O’CONNOR, M., AND AAMODT,
T. M. MemcachedGPU: Scaling-up Scale-out Key-value Stores.
In Proc. of the ACM Symp. on Cloud Computing (SoCC) (2015).

[33] HETHERINGTON, T. H., ROGERS, T. G., HSU, L., O’CONNOR,
M., AND AAMODT, T. M. Characterizing and Evaluating a Key-
value Store Application on Heterogeneous CPU-GPU Systems.
In Proc. of the IEEE Int’l Symp. on Performance Analysis of Sys-
tems and Software (ISPASS) (2012).

[34] HOFSTEE, H. P. Power Efficient Processor Architecture and the
Cell Processor. In Proc. of the Int’l Symp. on High-Performance
Computer Architecture (HPCA) (2005).

[35] JENKINS, B. 4-byte Integer Hashing. http://burtleburtle.
net/bob/hash/integer.html. Accessed: 2015-12-01.

[36] JENKINS, B. Some Random Theorems. http://
burtleburtle.net/bob/hash/birthday.html. Accessed:
2015-12-01.

[37] JHA, S., HE, B., LU, M., CHENG, X., AND HUYNH, H. P. Im-
proving Main Memory Hash Joins on Intel Xeon Phi Processors:
An Experimental Approach. Proc. of the VLDB Endowment 8, 6
(2015), 642–653.

[38] KALDEWEY, T., LOHMAN, G., MUELLER, R., AND VOLK, P.
GPU Join Processing Revisited. In Proc. of the Int’l Workshop on
Data Management on New Hardware (DaMoN) (2012).

[39] KECKLER, S. W., DALLY, W. J., KHAILANY, B., GARLAND,
M., AND GLASCO, D. GPUs and the Future of Parallel Comput-
ing. IEEE Micro, 5 (2011), 7–17.

[40] KEMPER, A., AND NEUMANN, T. HyPer: A Hybrid
OLTP&OLAP Main Memory Database System Based on Virtual
Memory Snapshots. In Proc. of the IEEE Int’l Conf. on Data
Engineering (ICDE) (2011).

[41] KHORASANI, F., BELVIRANLI, M. E., GUPTA, R., AND

BHUYAN, L. N. Stadium Hashing: Scalable and Flexible Hash-
ing on GPUs. In Proc. of the Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT) (2015).

[42] KIRSCH, A., MITZENMACHER, M., AND WIEDER, U. More
robust Hashing: Cuckoo Hashing with a Stash. SIAM Journal on
Computing 39, 4 (2009), 1543–1561.

[43] KORMAN, S., AND AVIDAN, S. Coherency Sensitive Hash-
ing. In Proc. of the IEEE Int’l Conf. on Computer Vision (ICCV)
(2011).

[44] LEE, V. W., KIM, C., CHHUGANI, J., DEISHER, M., KIM,
D., NGUYEN, A. D., SATISH, N., SMELYANSKIY, M., CHEN-
NUPATY, S., HAMMARLUND, P., SINGHAL, R., AND DUBEY,
P. Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU. In Proc. of the Int’l
Symp. on Computer Architecture (ISCA) (2010).

[45] LEFEBVRE, S., AND HOPPE, H. Perfect Spatial Hashing. In
Proc. of the ACM SIGGRAPH Conf. and Exhibition on Computer
Graphics and Interactive Techniques (SIGGRAPH) (2006).

[46] LEVANDOSKI, J. J., LOMET, D. B., AND SENGUPTA, S. The
Bw-Tree: A B-tree for New Hardware Platforms. In Proc. of the
IEEE Int’l Conf. on Data Engineering (ICDE) (2013).

[47] LI, X., ANDERSEN, D. G., KAMINSKY, M., AND FREEDMAN,
M. J. Algorithmic Improvements for Fast Concurrent Cuckoo
Hashing. In Proc. of the European Conf. on Computer Systems
(EuroSys) (2014).

[48] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
SILT: A Memory-Efficient, High-Performance Key-Value Store.
In Proc. of the ACM Symp. on Operating Systems Principles
(SOSP) (2011).

[49] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
MICA: A Holistic Approach to Fast In-Memory Key-Value Stor-
age. In Proc. of the USENIX Symp. on Networked Systems Design
and Implementation (NSDI) (2014).

[50] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache Craftiness
for Fast Multicore Key-Value Storage. In Proc. of the European
Conf. on Computer Systems (EuroSys) (2012).

[51] MATSUMOTO, M., AND NISHIMURA, T. Mersenne Twister:
A 623-dimensionally Equidistributed Uniform Pseudo-Random
Number Generator. ACM Transactions on Modeling and Com-
puter Simulation (TOMACS) 8, 1 (1998), 3–30.

[52] MCKEE, S. A. Reflections on the Memory Wall. In Proc. of the
ACM Int’l Conf. on Computing Frontiers (CF) (2004).

[53] METREVELI, Z., ZELDOVICH, N., AND KAASHOEK, M. F.
CPHash: A Cache-Partitioned Hash Table. In Proc. of the ACM
SIGPLAN Symp. on Principles and Practice of Parallel Program-
ming (PPoPP) (2012).

[54] MITZENMACHER, M. The Power of Two Choices in Random-
ized Load Balancing. IEEE Trans. on Parallel and Distributed
Systems (TPDS) 12, 10 (2001), 1094–1104.

[55] MITZENMACHER, M. Balanced Allocations and Double Hash-
ing. In Proc. of the ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA) (2014).

[56] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling Memcache at Facebook. In Proc. of the USENIX
Symp. on Networked Systems Design and Implementation (NSDI)
(2013).

[57] PAGH, R., AND RODLER, F. F. Cuckoo Hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[58] PANIGRAHY, R. Efficient Hashing with Lookups in Two Mem-
ory Accesses. In Proc. of the ACM-SIAM Symp. on Discrete Al-
gorithms (SODA) (2005).

[59] PIKE, G., AND ALAKUIJALA, J. Introducing City-
Hash. http://google-opensource.blogspot.com/2011/
04/introducing-cityhash.html. Accessed: 2015-12-01.

[60] POLYCHRONIOU, O., RAGHAVAN, A., AND ROSS, K. A. Re-
thinking SIMD Vectorization for In-Memory Databases. In Proc.
of the ACM SIGMOD Int’l Conf. on Management of Data (SIG-
MOD) (2015).

[61] RAMABHADRAN, S., RATNASAMY, S., HELLERSTEIN, J. M.,
AND SHENKER, S. Prefix Hash Tree: An Indexing Data Structure
Over Distributed Hash Tables. In Proc. of the ACM Symp. on
Principles of Distributed Computing (PODC) (2004).

[62] RAMAN, V., ATTALURI, G., BARBER, R., CHAINANI, N.,
KALMUK, D., KULANDAISAMY, V., LEENSTRA, J., LIGHT-
STONE, S., LIU, S., LOHMAN, G. M., MALKEMUS, T.,
MUELLER, R., PANDIS, I., SCHIEFER, B., SHARPE, D., SI-
DLE, R., STORM, A., AND ZHANG, L. DB2 with BLU Accel-
eration: So Much More Than Just a Column Store. Proc. of the
VLDB Endowment 6, 11 (2013), 1080–1091.

[63] RICHA, A. W., MITZENMACHER, M., AND SITARAMAN, R.
The Power of Two Random Choices: A Survey of Techniques and
Results. In Handbook of Randomized Computing, S. Rajasekaran,
P. M. Pardalos, J. Reif, and J. Rolim, Eds., vol. 1. Kluwer Aca-
demic Publishers, 2001, ch. 9, pp. 255–304.

[64] ROSS, K. Efficient Hash Probes on Modern Processors. In Proc.
of the IEEE Int’l Conf. on Data Engineering (ICDE) (2007).

[65] SONG, H., DHARMAPURIKAR, S., TURNER, J., AND LOCK-
WOOD, J. Fast Hash Table Lookup Using Extended Bloom Filter:
An Aid to Network Processing. In Proc. of the Conf. on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM) (2005).

[66] STONE, J. E., GOHARA, D., AND SHI, G. OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Systems.
Computing in Science & Engineering 12, 3 (2010), 66–73.

[67] TRIPLETT, J., MCKENNEY, P. E., AND WALPOLE, J. Scal-
able Concurrent Hash Tables via Relativistic Programming. ACM
SIGOPS Operating Systems Review 44, 3 (2010), 102–109.

[68] TRIPLETT, J., MCKENNEY, P. E., AND WALPOLE, J. Resizable,
Scalable, Concurrent Hash Tables via Relativistic Programming.
In Proc. of the USENIX Annual Technical Conf. (USENIX ATC)
(2011), p. 11.

[69] WU, X., XU, Y., SHAO, Z., AND JIANG, S. LSM-trie: An LSM-
tree-based Ultra-Large Key-Value Store for Small Data Items.
In Proc. of the USENIX Annual Technical Conf. (USENIX ATC)
(2015).

[70] WULF, W. A., AND MCKEE, S. A. Hitting the Memory Wall:
Implications of the Obvious. ACM SIGARCH Computer Archi-
tecture News 23, 1 (1995), 20–24.

[71] ZHANG, K., WANG, K., YUAN, Y., GUO, L., LEE, R., AND

ZHANG, X. Mega-KV: A case for GPUs to Maximize the
Throughput of In-Memory Key-Value Stores. Proc. of the VLDB
Endowment 8, 11 (2015), 1226–1237.

